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Combining Stability with Symmetry Properties
in Bifurcation Problems.

G. CICOGNA (*)

0. Introduction.

It is well known that the existence of bifurcation phenomena is
intimately connected to stability properties of the system [1, 9, 12-16].
Loosely speaking, a typical result is that a transition from asymptotic
stability to complete instability, produced by some small perturbation,
corresponds to the appearance of a stable bifurcation. We refer
to [12-15] for any detail about these ideas; we will adopt also the main
definitions and notations from these references.

In many cases, the problem under consideration exhibits a « co-
variance » property under some symmetry group C~’-, usually deriving
from precise physical properties (see e.g. [6,10,11,17-20]). We will
try to combine the above mentioned approach to bifurcation theory
with some ideas taken from group-theoretical arguments. We shall
show that some refinements in the results can be obtained in this way;
we will present also some explicit examples as illustration of thepossible
applications.

1. Preliminary group-theoretical statements.

In order to be as general as possible, we shall start by giving
the definition of « covariance» for a generic dynamical system

(*) Indirizzo dell’A. : Dipartimento di Fisica dell’Universitk, Piazza Tor-
ricelli 2, 56100 Pisa, Italy.
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u = u(t, to, where u: and I = B or Z (respectively
for continuous or discrete systems):

DEFINITION 1. The dynamical system u = u(t, to, Wo) is said to be
covariant with respect to a topological group G if there is a real con-
tinuous representation D of G, acting on Rn, such that, for all g E G,

In this Definition, D may be reducible or not; the only assumption
we shall make for convenience is that, if D is reducible, it is also com-
pletely reducible (of course, this is guaranteed if G is finite or compact).
In order to avoid confusion, we shall call t-orbit of a point uo E .Rn
the usual « dynamical » notion of orbit (with initial condition u(ta) = uo),
and G-orbit of u E I~n the set

Similarly, one can introduce the notion of G-orbit of any subset of Rn.
Note that, in view of (1), time action commutes with group action.
One could give also to time variations t -+ t -~- t’ a group-theoretical
meaning: e.g. in periodic problems time variation can be viewed
equivalent to the action of the circle group 81 [8,:L9]. Apart from
the last lines of this paper, we will not consider here this type of
 internal » covariance.

Given a let Gu denote the isotropy subgroup (or
little-group) of u, i.e. the set of those g E G for which D(g) u = u.
From (1), it is clear that if 9 E Guo, then g E Gu, with u = u(t, to, uo),
for all and also that-in general-the isotropy subgroup of any
element u cannot be changed (i.e. enlarged) with the time. Similarly,
when the symmetry is described by a continuous Lie group, one cannot
expect that a t-orbit of a generic point uo is asymptotically stable:
in fact, the t-orbit of a point near u.o and belonging to its G-orbit
(apply an infinitesima,l transformation of G to uo), will not-in general-
approach arbitrarily near the t-orbit of uo . Therefore, we can expect
asymptotic stability only-at most-for G-orbits.

If the dynamical system is defined by means of differential equations:
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the above Definition 1 becomes, with the same notations,

In autonomous problems, if one is interested in stationary solutions
(u = 0), the last property of f in (3) is the usual definition of covariance
for nonlinear maps (see [3, 4, 6, 17]).

In the following, we shall consider autonomous problems, expressed
by families of ordinary differential equations, depending on a real
parameter Â, of the type

where f : and f(1, 0) = 0. We shall assume for simplicity
that f is an analytic function: the possible changes in the results below
can be easily devised if this hypothesis is modified (see [12-15]).
Another important simplification we shall adopt is the following: we
assume that the problem (4) is already restricted in such a way that
at the critical point ~ _ Âo (we choose Âo = 0) all eigenvalues of the
Jacobian 0) have zero real part. This is not a severe restriction,
in fact: i) Covariance property is inherited, as well known [4, 17],
from the general to this restricted case; ii) Existence theorems are
easily extended to the general case by means of standard procedures
(Lyapunov-Schmidt, invariant center manifold); iii) All facts con-

cerning stability remain substantially valid in the general case with
the additional hypothesis that all other eigenvalues have negative
real part [1, 9, 15] (see however also [21] and ref. therein).

The main assumption concerning symmetry properties of our

system (4) can be stated in the following form:

(G) Let the system (4) be covariant under a group G, acting on Rn
through a representation D, and assume that there exists a non-
trivial subgroup .H~ of G such that the subspace X c .R’~ of all
vectors which are left fixed by H is not trivial (i.e. X # 0 and
x =,~4- 

This means, in other words, that in the decomposition of the repres-
entation D into subrepresentations of H, one or more trivial (identity)



140

representations appear. The simplest case occurs when there is just
one trivial representation of H: then X is one-dimensional, H its iso-
tropy subgroup, and (G) reads:

(G1) There is in .Rn a special direction x such that the subspace of
all vectors in which are left fixed by the isotropy subgroup
Gx = H of x is spanned just by x.

The basic result is the following.

LEMMA 1. If (G) is verified, one has for the restriction that

then one can consider the restricted problem

and if x(to) E X, then x(t) E X for all t.

PROOF. From covariance and ((~) :

which implies, by (G), f(Â, x) EX.

This very simple result is the basis of some theorems on bifurcation
theory in the presence of symmetry (see [3-8,10,11,17-20]~ ; the
situation is very interesting also from a group-theoretical point of
view [8,18, 20]. Assumption ((~) can be put in variously modified or
enlarged ways, e.g.:

) Assuming covariance of eq. (4) under a group G with a repres-
entation D, let .H’ be a subgroup of G such that decomposing D
into direct sum of subrepresentations of H:

there is one subrepresentation, say To, with the property that
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all tensor products

do not intertw ine with the other representations Ti,...,~ ap-
pearing in the above decomposition (7).

The same conclusion of Lemma 1 follows also (with .X = from

(G) : it suffices to write x) as an expansion of p-linear terms, which
transform under H according to Note also that (G) clearly satisfies
(4), being T a sum of trivial representations of H.

2. Stability and symmetry arguments.

Together with the above group-theoretical arguments, we shall
refer to the following assumption, of entirely different nature:

(S) Assume that for A _ lo = 0 the solution u = 0 of the given dy -
namical system (4) is asymptotically stable, but for Â&#x3E; 0 it be-
comes completely unstable (i.e. asymptotically stable in the past).

It is known that (S) implies, in a very precise way, the appearance
of a bifurcation [1, 12-15]. We want finally show that combining
both types of assumptions some hints in the problem of finding
bifurcations can be obtained.

Precisely, we distinguish two cases (Propositions 1 and 2, respec-
tively).

PROPOSITION 1. Let (4) be covariant with respect to a group G,
and let (G) (or (0)) be verified. Assume that (~’) is not verified in .R~
by the original problem (4), but it is verified by its restriction (6)
to X. Then:

(i) There is a bifurcation for ~, &#x3E; 0 of eq. (4), lying in X;

(ii) The bifurcated set is asymptotically stable with respect
to initial conditions belonging to X;

(iii) The bifurcated set is stable (in general, not asymptotically
stable) with respect to initial data belonging to the G-orbit
of the set itself (in this case, it is assumed that G is a con-
tinuous Lie group);
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(iv) All the G-orbit of the bifurcated set describes a bifurcation
set for eq. (4), which is asymptotically stable with respect
to initial data belonging to the G-orbit of X.

PROOF. Straightforward, after the above preparation. Note in

particular that it was precisely assumption (G) (or (G) ) that allowed
the possibility that property (S) holds in X, even if it is not true in B-;
so a bifurcation with properties (i) and (ii) exists. For (iii), let x(to) E X
and ug(to) = D(g)x(to) be a point in the G-orbit of x(to) near x(to),
therefore x(t) E X and u,(t) = D(g) x(t). Then, the simple inequalities

where y and T depend only on G and X (and, in general, y &#x3E; 0 unless

g E .H) show (iii) if x(to) belongs to the (bounded) bifurcation set. Finally,
(iv) is an easy consequence of covariance, which gets

and ensures that all stability properties hold in D(g)X exactly as in X.

Example 1 below will illustrate these results. Clearly, as a con-
sequence of the fact that (S) was not assumed to hold in the whole
.Rn, one cannot expect asymptotic stability for the bifurcation set

for generic initial data. Nevertheless, for the practical point of view,
the above results could be equally important, if there is some sym-
metry constraint (e.g. of physical nature) which can confine the possible
initial conditions to the restricted subspace X (or D(g)X). It can be
noted also that it frequently happens that, when (G) holds, there is
no bifurcation other than the one lying in X (and its G-orbit), discussed
here.

The next result concerns the case that property (~’) is already
verified by system (4) in the whole space .Rn: therefore, the existence
of a bifurcated set is guaranteed. Including a group-theoretical hy-
pothesis can get some additional amount of information. First, one
can obtain a better localization of the bifurcation, and then possibly
deduce some indications about the existence of other solutions. We

get (the proof is now completely natural):

PROPOSITION 2. Assume that property (~’) is verified by the problem
(4) in assume also covariance and that property (G) (or (G) ) holds.
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Then, there exists a bifurcated set in ~, asymptotically stable with
respect to initial conditions belonging to .X, and:

(i) if this set, together with its G-orbit, is the unique bifurcated
set of (4), then it is asymptotically stable also for generic
initial conditions;

(ii) if the bifurcated set found in X, with its G-orbit, is not

asymptotically stable for generic initial data then there is
at least another bifurcation.

3. Two explicit examples.

EXAMPLE 1. This is an example for Proposition 1. Let us con-

sider the space R9 of real 4 X 4 symmetric traceless matrices u, and
the group G = 804 acting on this space according to the rule (which
describes an irreducible representation of G)

A G-invariant norm is given by

Consider now the following G-covariant problem

Using the covariance under (8), one can first greatly simplify the
problem by transforming the matrices into a diagonal form (this
simply amounts to take a convenient point in the G-orbit), and choosing
the following basis for the subspace of matrices of this form
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Considering the Lyapunov function, y with

one has for its derivative along the solutions of (10)

which shows, according to Lyapunov stability criteria, that the solution
u = 0 of (10) is completely unstable for ~, &#x3E; 0, but for A = Ao = 0
the quantity P can be £ 0, and condition (S) is not verified. However, y
note that the vector e., satisfies (Gi), whereas neither ei nor e2 satisfy
it; this in fact makes possible the restriction to the 1-dimensional
subspace X spanned by and one sees that, being now det x =
= det _ - u~/48, the condition (S) is satisfied in X, and all
assumptions of Proposition 1 are verified. The bifurcation one finds
is the stationary solution of (10) given by

and direct calculations can confirm all other conclusions.

EXAMPLE 2. An example for the case (i) of Proposition 2 could
be easily constructed : observe in fact that a possible situation where
it occurs is clearly given if there is only one type (apart from 0) of
orbits under (~; i.e. when D(g).X fill the whole space Bn for any X.
This is the case e.g. if one chooses G = SOn, operating on I~n through
its fundamental representation, and X any 1-dimensional subspace.

We construct then the following example for the case (ii) of Pro-
position 2. Let Ró be the space of real 3x3 symmetric traceless matrices
u, and let C~ = S03 act irreducibly on this space according to the same
rule as in eq. (8). The following equation

is covariant with respect to this group action. As in example 1, let
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us put matrices, using cova,riance, in diagonal form, and choose

From the Lyapunov function

I

one obtains

which shows that condition (~’) is satisfied in any case for ~, &#x3E; 0.

Now, one can see that the vector e2 satisfies condition (but not e1),
therefore, the problem can be restricted to the one-dimensional sub-
space X generated by e2. In fact, one finds the stationary bifurcating
solution

but it is easily seen that this solution (with its G-orbit) is not stable.
This implies that another (asymptotically stable) solution must exist:
there is in fact the stationary solution

with the expected stability properties. One can also see that, apart
from these two solutions (and their G-orbits), problem (11) does not
admit other bifurcations.

4. An important particular case.

The situation considered in this section can be viewed, in a sense,
as a particular case of Propositions 1 and 2, but it deserves a separate
statement for its special interest. For simplicity, we shall consider
only the case similar to that covered by Proposition 2 (there is no
difficulty in dealing with the other possibility). The group-theoretical
assumption is now the following:
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(G2) Let 1~~ be even dimensional (n = 2m) and let the group G de-
scribing the covariance of the system act on .R~ through a repre-
sentation D which splits into the direct sum of two equivalent
irreducible representations:

Denoting by Yi the m-dimensional subspace acted upon by
Di (i = 1, 2 ; Y2 = Y2), assume that there is a

vector si in Yi (and then a vector x2 in Y2) satisfying (Gl) with
respect to the subrepresentation Dl of G.

Assumption (G2) implies that the original problcm (4) can now
be reduced to a 2-dimensional one by restricting the space Rn to the
subspace X generated by x, and x2. Actually, this situation has been
already considered (especially from the group-theoretical point of view)
in [8]. Restricting to the subspace .~’ allow s us the resort to all known
theorems on R2. For instance, we get:

PROPOSITION 3. (i) Assume properties (G2) and (8); then, if eq. (4)
has no singular points other than the origin u = 0 (at least in some
neighbourhood of 1£ = 0, À = Ào = 0), there are bifurcating sets, which
are G-orbits of annular regions (possibly cyclic t-orbits) contained in X;

(ii) Assume (G2) and that the two eigenvalues (necessarily having
multiplicity m) of the Jacobian matrix 0) are complex conjugate
and satisfy the usual Hopf transversality condition. Then, there is in
X a bifurcating periodic solution of Hopf type, and its G-orbit is made
up of periodic solutions. Stability properties of these solutions easily
follow from know theorems (see [2, 12-15]) and previous remarks.

As a final remark, concerning (ii) above, we note that, as a con-
sequence of covariance, the matrix L(2) - 2ut(À, 0) is forced to com-
mute with D, and the property of D assumed in (G2) implies that
L(£) must have the following form

where ai, Pi are real functions of 2 and Im is the m-dimensional identity
matrix. It is then possible to give conditions on ai, /3i in order that
transversality is satisfied; alternatively y as shown in [8], one can
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impose an additional circle-symmetry 81 = 802 to the problem (cor-
responding to the time transla,tions t - t + t’, mod 2n), and the same
result is obtained.
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