RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITA DI PADOVA

FRANCESCO RICCI

L? vector bundle valued forms and the
Laplace-Beltrami operator

Rendiconti del Seminario Matematico della Universita di Padova,

tome 76 (1986), p. 119-135
<http://www.numdam.org/item?id=RSMUP_1986__76__119_0>

© Rendiconti del Seminario Matematico della Universita di Padova, 1986, tous
droits réservés.

L’acceés aux archives de la revue « Rendiconti del Seminario Matematico
della Universita di Padova » (http://rendiconti.math.unipd.it/) implique 1’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=RSMUP_1986__76__119_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

ReEND. Sem. Mat. Univ. Pabpova, Vol. 76 (1986)

L? Vector Bundle Valued Forms
and the Laplace-Beltrami Operator.

Francesco Riccr (¥)

0. Introduction.

The theory of vector bundle valued forms has been introduced
first in complex geometry, both for compaet and non compact mani-
folds. Later, J. Eells and J. H. Sampson used the real theory, on
compact manifolds mainly, in the study of harmonic maps [ES].

This paper deals with some questions that naturally arise in the
study of the Laplace-Beltrami operator on the Hilbert space of square
integrable bundle valued forms, on a complete Riemannian manifold.

In section 1, after reviewing the basic facts on vector bundle
valued differential forms, we introduce the relevant Hilbert spaces
of forms and we prove the essentially self-adjointness of the Lapla-
cian, which yields the uniqueness of the selfadjoint extension. We
establish also a condition for the unique selfadjoint extension of the
Laplacian equals d& + 8d, where d and 8 are the weak extension
of the differential and codifferential operator respectively.

In section 2 we are concerned with some spectral problems of the
Laplace operator and we examine the Hodge orthogonal decomposi-
tion for vector valued differential forms.

Section 3 is devoted to some examples. We prove a vanishing
condition for harmonic 1-forms with values in the tangent bundle
to complete Riemannian manifolds with non negative constant sec-
tional curvature ‘at every point. A result of non existence is also

(*) Indirizzo dell’A.: Scuola Normale Superiore, Pisa.
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proved for selfadjoint harmonic 1-forms. Furthermore, we establish
a lower bound for the first eigenvalue for the Laplacian acting on
square integrable 1-forms with values in the tangent bundle to a
surface with positive Gauss curvature, for which the Poincaréinequality
with compact support holds.

1. Some basic facts.

Let (M, g) be a smooth orientable, connected Riemannian mani-
fold of dimension n. Let &: V— M be a smooth vector bundle of
finite rank m. Suppose a (positive defined) € scalar product is
defined on the vector bundle & and a connection V on £ is given such
that X<{w, ) = (Vxo, ¢> + (o, Vxp), for all vector fields X and all
sections w, ¢ of £. The triple &, {, >, V is called a Riemannian vector
bundle [EL], [Ee].

‘We shall denote by C(§) or C(V) the vector space of smooth see-
tions of §. The smooth sections of A»T*M® V> M arc called
p-forms on M with values in & and we shall denote the space of
E-valued p-forms by E»(&) or E»(V).

If (M, ¢g) is a Riemannian manifold and &: V— M is a Rieman-
nian vector bundle, a canonical structure is defined on A?T*M &
®V — M, which satisfies the following equation:

(Vo) Xy, ooy X)) = Vi (X, ooy X)) — D (X, ooy VEX S, ooy X))
J
Here V¥ is the Levi-Civita connection on TM — M, and
oy, ¢, = 1/p! Z<w(ei,7 ey ei,,)y ‘P(ei,a ceey ei,)>a )

i1ennip

where x € M and {e,, ..., ¢,} is an orthonormal base of T, M.
In terms of the connection V on £ an exterior differential operator
d: BE*(V) —E*(V) is defined by

(dw)(Xla ey Xza+1) = Z(—‘ 1)i+1 VX,(U(XU ey Xi; ceey Xn+1) +

i
-+ z(_’ 1)i+jw([Xi7 Xa‘]y Xn sy Xa” seey Xﬂ veey Xﬂ—l—l) -
i35
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We can define the exterior product of forms with values in a
vector bundle too. For this purpose, let &;: V,—> M, i=1, 2,3,
be three Riemannian vector bundles with connections Vi, ando: V, X
X V,—V, a vector bundle pairing such that:

V?\'(w1°w2) = (V;w1)°w2 + w,0(Viw,)

for all X € C(TM) and all w;€ C(V,). The exterior product of a
V,-valued p-form w; by a V,-valued ¢-form w, is a V,-valued p + ¢-
form w,Aw,, defined by

(‘Ulsz)(le ceey Xp+q) = '

11
= “?j !—l—' z $gN 7T 0y (Xnqyy vy L) 0e(Xnpiayy ooy Xawig) 5
* 1 A€8p4gq

8,., being the permutation group on p - ¢ letters.

Let v,e C(A*T* M) = E*(R) be the volume element associated
with g. The Hodge isomorphism %: A?T*MQQV — Ar?T* MR V*
can be defined setting pAxw = {p, w)v, for all p, we E*(V). As in
the case of scalar valued p-forms: %% = (— 1)?t*=2id,

The codifferential operator é: E#t (V) — E?»(V) is the formal ad-
joint to d and is defined by 6 = (— 1)?*1%1dx*.

The Laplace-Beltrami operator A: E»(V) — E*»(V), 4 = dé + 0d
is elliptic and formally selfadjoint [EL].

If £ is a Riemannian vector bundle then the curvature RY € E?-
(V®V*) is the tensor field for which

R'(X, Y)o =V:Vyo —V;Vio—Vizno,
welC(V) and X, YeC(TM).

The curvature of A?T* M & V— M satisfies the following identity

(R(Xa Y)w((le oy Xp) = RV(X, Y)o(X,, ..., X,)—
— Zw(Xl, ey BMX, YVX, L, X,.) ,
i

where R™ is the curvature of the Levi-Civita connection.
Let 8,€End (A*T*M®V,) be the generalized Ricei endomor-
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phism:

(8.0)(Xyy ooy X,) = 3 (— D¥(Ble;, Xr)@)(es, Xy, ooy Xy ey X)

k,J
where p >0, {é, ..., 6.} is an orthonormal base of T.M and X,e
€T, M. If p=0 set §,=0. The following formula (Weitzembock
formula [EL]) holds:

(1.1) Aw = — Trace Vo + Sw , weB V).

Let D2»(V) be the space of C* V-valued p-forms with compact sup-
port and let (w, ¢) ~~f(w, PV, = fwA*zp The formula (1.1) implies,
for each e D?(V),

(1.2) (4w, ) = (Sw, o) + (Vo, Vo) .
)
Note d*w = R"Aw for all we E?(V). Working on a coordinate
domain it is easy to show that for any x€ M and for any w®e A?-
-T*M there exists o € E»(R) such that dw = 0 in a neighbourhood
of # and o® = w,, where w, is the value of w in . In the vector
case we have:

ProposiTION 1.1. Let ¢f, ..., pp € (A?T* M & V), be linearly inde-

pendent, where p<n—1 and k= m(n) If for j=1,..., k the
problem P

g

(1.3,]
) P = @5

has a solution ¢ = ¢; defined in some neighbourhood of x, then
R”= 0 in a neighbourhood of «.
In the proof we need the following lemmas.

LeMMA 1.2, Let W be a vector space and
Qe AW, r<dimW=mn.

Then Q = 0 iff there are r 4+ 1 linearly independent 1-forms w,, ...
ooy Wpyq, sSuch that QAw; =0 for ¢ =1,...,r + 1.
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Proor. Let {gi,..., p.} be a base of W* such that ¢, = w,,
t=1,..,r+1.

Q= > Qe NN,

1<) <. <6, <n
but then QAw; = 0 implies that either

Q. . =0 or TE€{iyy ony iy} .

i1 iy

Then necessarly 2, , = 0 for all multindices, i.e., £ = 0.

1

LeMMA 1.3. Let W be a vector space, 2 € A*W*, and let {w, ...
.vy ©,} be a base of W* and ¢4 s<n. Then 2 is 0 iff QAw; A...
...\w;, = 0 for all multindices I = (iy, ..., %,).

Proor. By Lemma 1.2 this fact holds if { = 1. Assuming it to
hold for ¢t — 1, we have (QAw A...Aw;,_)Aw; = 0 for all multindices
I = (¢4 ..., %) and all j. Then by Lemma 1.2 QA\w; A...Aw;,_ =0,
and the inductive hypothesis yields £ = 0.

PROOF OF THE PROPOSITION 1.1. Let ¢; be a solution of the
problem (1.3.j). The @, are linearly independent in %, so they are
linearly independent in a neighbourhood U of # too. Therefore
d*g;lv = R"Ag;|lv = 0 and the operator ¢ — R"A¢ is zero in U, which
we can assume to be a chart domain as well as a frame domain for
a frame f = (f,,...,fn) on & Then

.RVIU = zﬁ ngtx®fﬁ

where f* = (f, ..., /") is the dual frame. We have
vENd@ .. N\datr =0 ,

for all o, f=1,...,m and all I = (i, ..., 4,), thus by Lemma 1.3
R7; =0, i.e., R'|y = 0.

The Stampacchia inequality is a basic tool in the study of the
Laplace-Beltrami operator on complete manifolds. It provides a way
to estimate the behaviour of dw and dw knowing that of w and Aw.
‘We do not give a proof of this inequality, because it proceeds as in
the scalar case [AV].
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From now onwards (M, g) will be always complete (even if some
results are still valid more in general). Let o: M — R, be the geo-
desic distance from a fixed point x,€ M.

Set B, = {we M: g(x)<r}, by Hopf-Rinow-de Rham theorem,
B, is relatively compact.

PropPosITION 1.4 (Stampacchia inequality). Let &: V— M be a
Riemannian vector bundle on a complete manifold M. There is a
constant A > 0, such that for all w € E?(V) and for all positive real
numbers o, 7, B, with B> r:

ld|3, + [do]3, < (/o + A/(R—1)?) o], + o] do|5, ,
where [w]3 :fw/\*w.

COROLLARY 1.5. If we E?(V), |w| <+ oo and |dw| <+ oo then
ldw] < 400, [dw] <+ oo and |do|*+ |do]*<1/s|w|*+ ¢ ]|dw|* for
all >0. Hence if 4w =0 then dw = dw = 0.

We shall denote by L2(V) the completion of D?(V) with respect
to the product (w,¢) :fw/\*(p. L3(V) is the Hilbert space of I,

M

p-forms with values in the Riemannian vector bundle & The dif-
ferential operators we have introduced before live in L2(V), e.g.,
d: L2(V) - L2*(V) and the domain of d, D(d), is the space of those C!
p-forms w such that e Ly(V) and dw e L*Y(V), similarly D(4) =
= {weLy(V): wis C* and dwe Ly(V)}.

In the case of ordinary p-forms, if M has negligible boundary,
i.e., d and 0 are adjoint for all p, and if the Riemann curvature tensor
is of class (%, then the Laplace-Beltrami operator is essentially self-
adjoint [Ga]. Since Gaffney’s proof does not seem to be easily extend-
ible to vector bundle valued forms, we shall follow another way,
proving that the restriction 4. to forms with compact support of the
Laplace-Beltrami operator 4, has selfadjoint closure.

Let d, and §, be the restrictions of d and & to D2»(V). Let d,
and d* be respectively the closure and the adjoint of d, in the Hilbert
space L2(V) (similarly §, and §* denote respectively the closure and
the adjoint of d,). We have [Ve]

ProrosiTioN 1.6. The following statements hold

i) D»(V) is dense in D(6¥) with the norm
lols = (lof® + [6Fw]?)* .
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ii) D»(V) is dense in D(d¥) with the norm
ol = (lol* + |ao]2) .
iii) D?(V) is dense in D(6F) N D(d¥) with the norm

w(w) = ([o]*+ [670

*+ [ wl?)? .

COROLLARY 1.7. d¥ = §, and ¢* =d..

From now onwards we shall set d, = 0* =d and §, = d* = 8.
If we D(d) and @ € D»*(V) then from the formal adjointness of d
and 0 we get (o, dp) = (dw, @), i.e., we D(6F) and do = 87w so
d c 6¥. Similarly 6 c d*. Therefore by Corollary 1.7 dcd, and é c §,.
So the adjointness of d, and §, implies that of d and ¢. From
dco¥ we get d¥*>5, and dod, yields d*cd¥ =§,. Thus d* = §,
and analogously 6* = d, proving thereby

COoROLLARY 1.8. The operators d and 0 are adjoint and we have
*=d, da*=39.

Let t: L3(V)X L2(V) — R be the symmetric non-negative bilinear
form defined on D(t) = D*(V) by tlw, ¢] = (dw, p). This form is
closable [Ka, p. 318]. The domain W2(V) of the closure f is the Hil-
bert space of those w € L2(V) such that there is a sequence (w,),cy
in D?(V) with w,— ®, do,—d,0 and dw,— 6,w. We have

i[wy o] = lim t[w,, @l = (dw, d‘l’) + (8w, 899) ’

and the norm of W2(V) is given by w(w) = (|o|*+ o, w])t. By
Proposition 1.6 we have W2(V) = D(d) N\ D(8). Now we are able
to prove

THEOREM 1.9. The Laplace-Beltrami operator, restricted to forms
with compact support, is essentially selfadjoint in LZ(V).

Proo¥. Setting A'= A, -+ I, then _ﬁ’: A,+1 and A, is selfad-
joint iff A" is. We shall prove that A’ is selfadjoint. If w e D(A,)
we have

(4' v, w) = (do, do) + (80, dv) + (0, ©) > (0, ©) .
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Therefore by the Schwarz inequality |4'w|> ||, i.e., (A')! exists
as a bounded operator. So R(A') = D(A'-1) is closed. We want to
show R(A') = L2(V). If ne R(A')* then (A'p,n) = 0 for all pe D*(V).
The linear differential operator A': E?(V) — E?(V) is elliptic and for-
mally selfadjoint as well 4, therefore by regularity theorems, ([EL]
or [We]), ne E»(V) and A4’y =0, i.e., A4n =—n. By Corollary 1.5
ldn]l < + oo and |dn]] < 4+ oo so ne D(d) N D(8) = W3V). Then
we can find a sequence (7,),ey in D?(V) with 5, -5, dn, — dy and
on, — 8. We have

0> —(n,n) = (4n,n) = li:n (An, 1.) = li:n [(dn, dn,) + (01, On.)] =
= (dn, dn) + (dn, o) >0 .

Therefore 7 = 0 and DAY = LyV), so A'-1 s selfadjoint, A’ is
selfadjoint and A4, is essentially selfadjoint.

REMARK 1.10. The conclusion of Theorem 1.9 holds if the hypoth-
esis that the Riemannian metric of M be complete is replaced by the
agsumption that 4 be non negative.

Theorem 1.9 implies that there is only one selfadjoint extension
of A,. We denote this extension by A; we have A = A, = A* = A*.
In the same way as for Corollary 1.8 one can show that A is sym-
metric and A* = 4 = A.

In [Ga] Gaffney shows that if M has negligible boundary the
operator d,d¥ 4 §,0% is selfadjoint and equals A. Let now V be a
Riemannian vector bundle on the complete manifold M, for which
a unique selfadjoint extension of A exists. The question arise wheth-
er A = db -+ 8d. Here is a particular result. Let 7 be the linear
operator T: LZ(V) — L***(V) defined by w+> R"Aw for all we D?(V).

THEOREM 1.11. If the linear operator 7 is bounded then
A=db+ 8d.

PROOF. a) We begin by proving that A.c (d.6,)~ + (.d.)~. If
we D(4,) let (w,)ey be a sequence in D?(V) such that w,— o and
Aw, — A,0. Then
|dw, — Aw,|? = |dd(wn— ®,) + 0d(w,— @n)|* =

= 2(dd (0, — W), 0d(wp— 0,)) + |déw,— ddw,|% + |ddw, — ddw,|? .
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Furthermore

l(dé(wn_‘ wm), 6d(wn—' wm))l - l(dza(wn_ wm)’ d(wn— wm)) [ <

< | RPN (0n— 0n) | |dw,— dw,,| <const [|dw,— dw. | |dw,— dw,] .

In view of our hypothesis, (dw,),y and (dw,),cy are convergent, for

[dwn— dwn|* + 0w, — 0w, |2 = (A(wn— ©n), ©n— 0,) <

<[ dw,— A on|wn— o] .
Therefore
ldéw,— ddw,|? + | ddw,— éd,,|*> =

= |Aw,— Aw,|*—2(dd(ws — wm), 6d(®,— ©,)) >0,
as n, m—oo. So (ddw,) and (ddw,) are Cauchy sequence and
ddw,— (d,6,)~ o, ddw, — (0.d.)" o .

b) We show now that (d.8,)~cd.8,. For we D((d.4,)~), let
(w,).en b€ a sequence in D?(V) such that w, —w and déw, — (d.6,)" w.
We have

[0, — b, | = (A0(wn— W)y W0 — ©n) < [|dO(@n— @) || |0 — @ull ,
§0 dw,— 8,0, we D(J,) and this entails that w e D(d,8,) and d,6, w =
= (d,0,)~ ». Similarly one shows that (6,d.)~céd.d,.

¢) In view of the completeness of (M, g) a) and b) imply that
dd 4+ 8d> A. Now by a theorem of von Neumann [Ka, p. 275] the
operators 8d and d8 are selfadjoint, so dd |+ 8d is symmetric. There-
fore 8d + d& c (d® + &8d)* c A* = A, that is db 4 &d = A.

LeEMMA 1.12. There is a constant ¢>0, which depends only on
dim M, such that for all p e B*(V® V*) and ypeE(V)

LpAy, e Ay) <@, X<y, ¥ -
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ProOF. Let {e,, ..., e,} be an orthonormal base of T .M.

{PAY, 9Ny =
=1/(p + Q! Z <(‘p/\"l’)(6in ceey ei,+¢)’ (‘p/\'/’)(gm ey 0i,,+q)>x<

i1 ipig

<e(n)[plq! X {ple)op(es), plenoy(es))s
1,J
where ¢(n) is a constant depending only on dim M,

I:(iu""ip)y J:(jly-",ja) and <P(31)=‘P(€i,a---,3i,,) .

If we set

la|l.= sup <xov, ®o),[{v, V), for all eV, QV7,

v€ V¢~(0)

we get
PAY, @AYy <e(n)1[p! > Lpler), pler)).1/q! sz(e,), P(es))s =
= ¢(n)<@, @0y, ¥D: *

REMARK 1.13. Lemma 1.12 implies that if (R¥, R") is a bounded
function on M then the operator T is bounded. That is the case,
e.g., if M is compact or if M is locally symmetric and £ is a tensor
product of tensor power and exterior power of the tangent bundle
and cotangent bundle of M. Indeed we have VxR" = 0 and (R", R">
is constant.

2. Wi(V)-ellipticity and R%(V)-ellipticity.

A Riemannian vector bundle is called W3(V)-elliptic ([AV]) if
there is a constant ¢> 0 such that |w|?*<e¢(|dw|?+ |Sw|2), for all
o€ W3(V). The smallest constant for which the above inequality
holds is called the constant of W%(V)-ellipticity of & W?2(V)-ellip-
ticity implies there are no non zero L, harmonie forms. Following [Gi]
we introduce another notion, weaker than W%(V)-ellipticity. We shall
say that a Riemannian vector bundle & is R%(V)-elliptic if there is



L2 vector bundle valued forms ete. 129
a positive constant ¢’ such that
lo)z<e(ldo]®+ |8o]?) for all we W3(V) N R(A) = R3(V),

and we shall call the smallest constant, for which the inequality holds,
the constant of R2(V)-ellipticity.

Note that we have L3V)= N (A)® R(A) and by regularity the-
orems N(A) = {w € E?»(V): Ao = 0 and w € L3(V)}. The space N(A),
which we also denote by H%(V), is the space of L, harmonic p-forms
with values in the vector bundle £ The square root of A, which
will be need in the proof of Theorem 2.1, is the operator Al: L"(V)

— L3(V), selfadjoint and non negative as vvell as A, such that (A})2=
Recall that A? has the following properties [Ka]:

i) D(AY) = Wi(V)= D) and
Z‘[w, @] = (do, dp) + (8w, 89)) = (Alw, Alg) .

iil) If we W3(V), peLz(V) and (Aiw, A¥) = (¢, 0) for all
0 e D»(V), then we D(A) and Aw = ¢.

THEOREM 2.1. Let &: V— M be a Riemannian vector bundle
on a complete manifold. Then & is W3(V)-elliptic iff 0 belongs to
the resolvent of A, i.e., A has a bounded inverse. The W3(V)-ellip-
ticity constant is ||A-!| and (by selfadjointness of A=) is also equal
to the spectral radius of A-.

Proor. If & is W3(V)-elliptic, then H%(V) = {0} and A is inver-
tible. Let ¢ be the W2(V)-ellipticity constant and w e D(A): we have
(Aw, w)e> (v, w), therefore |Awl|ec>||lw]|, so for all ne R(A),

A1y <eln] ,

i.e., A-' is bounded and ||A'|<ec. Conversely suppose A~ is
bounded. Then A-! is selfadjoint and non negative as well A, and
(Ao, A tw) = (A0, w) < |A| o2 So if neD(A}) = W3(V) we
have

Inlz< 1A= || Ain]2 = [A|(ldy]*+ |89]?) ,

i.e., & is W2(V)-elliptic and e¢< |A|.
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REMARK 2.2. If 8: L3(V) — L2(V) is the generalized Ricci endo-
morphism and if there is a positive constant k¥ such that (Sw, w)>
>k(w, w) for all weD?(V), then we have |do|*+ |[dw|>>k|w]?
see (1.2), and by density this inequality holds for all w € W5(V).

In order to characterize the R3(V)-ellipticity on complete mani-
folds, we need the following lemma [Hd].

LemMmA 2.3. Let H and H' be two Hilbert spaces and T: H — H'
be a densely defined closed operator. Further, let F be a closed sub-
space of H' such that F > R(T).

i) If R(T)=F then |u|x <c|T*u|x, for all we R(T) N D(T*),
where ¢ is a positive constant.

ii) If |u|w<c|T*u|x for all we FN D(T*), then the equa-
tion Tv = u, with w € F, has a solution v such that |v|<
<elul.

THEOREM 2.4. Let £: V— M be a Riemannian vector bundle
on a complete manifold. The following statements are equivalent:

a) R(A) is closed.
b) R(AY) is closed.
¢) & is R3(V)-elliptic.

ProoF. a) =-b). By property ii) of A! we get N(A!) = N(A),
therefore

IV) = N(AY @ R(AY) = Hy(V)® E(B), and (D) = R(A¥).

We conclude noting R(A?) > R(A) holds.

b) =¢). By Lemma 2.3 i) there is a constant ¢ such that [o[2<
<c|Atw|2, for all we D(AY) N R(A?), i.e., for all weRYV)

loj2<e(|dw|*+ [8w]*) .
¢) =a). If we D(A) then there is a sequence (,),ey in D?(V)
such that w,— ® and Adw,-—> Aw. Further by Corollary 1.5 (d,),cx

and (dw,),.y are Cauchy sequences and

[do]*+ [30]*<1/s|o]|* + o] Aw

2, ¢>0.
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By hypothesis there is a constant ¢ > 0 such that
lo]*<e(ldo]® + |8w]?)
for all we R%(V), therefore we have

o2 < eo/(1 — ¢fo) | Aw]*

If 0>¢ we get |o|*<c|Aw|? for all we DA)N R(A), and by

Lemma 2.31ii) we conclude R(A) is closed.

REMARK 2.5. R2(V)-ellipticity is equivalent to the possibility of
solving the equation Aw = f, for all f € R(A) coupled with the exist-
ence of a constant ¢ > 0 such that the solution @ can be so chosen
that |w] <ec|f|. The R3(V)-ellipticity is also equivalent to the Hodge
orthogonal decomposition L2(V) = H3(V)® R(A).

REMARK 2.6. Vesentini [Ve] proved in the scalar case that, if
there is a compact K c M and a constant ¢ >0 such that for all
x ¢ K we have (8w, ), <clw, w),, for all w € D?(R), then M XR — M
is R?(R)-elliptic and every eigenspace relatively to a proper value
A <<ec is finite dimensional. This result is easily estensible to the
general case of forms with values in a Riemannian vector bundle.

3. Particular cases and examples.

Some of the results established will now be applied to the tangent
bundle of an oriented connected complete Riemannian manifold. For
the sake of simplicity we shall be concerned only with 1-forms.

The Weitzembéck formula (1.1) for w € B{TM) = C(End (TM))
takes the local expressions on coordinate domain

(3.1) (dw)i = — ¢"*(V,V,0); + R¥*, 0} 4 Ric"; o} .
If either n > 2 and M has constant sectional curvature at every point,

or M is a surface, then the Riemann and Riceci curvature tensors are
expressed by,

(3.2) BY 0= k(gugn— 9udin) Ric,; = k(n —1)g;
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where k is a real C° function on M, which is constant if k> 2.
The operator §': wj—> 8'(w); = R™ ;0] is selfadjoint on every
fiber, i.e., (§'w, @), = {w, 8'p), for all xe M. So, if we fix a point
#€ M and we choose a Riemann normal coordinate system at », we
get, the proper values of §’ in x are determined by the equation

k(wj — 0!(Trace (w))) = o] .
Solving this equation we decompose every fiber T*M ® T, M into
three mutually orthogonal eigenspaces:
1) =—kn—1), 4,,={0.€ T MRXT.M: w,= const d,},
where 0,(X) = X, for all XeT,M.
2) dh=—k Ay, ={0,eTEMRIT,M; w, is skew adjoint).
3) A=k, Ay, = {0, €T MRXT ,M: w, is selfadjoint with null
trace}.

Setting A,= (J 4., we define three sub bundles of T*M ® T M.

x€EM

Now using (1.2) we get for all w € DY (T M)

(B4) (4o, 0) = (Yo, Vo) + (1 —2) [Ioy, @,y0, +n [y, 050,

M M

and o = w, + 0, + w,, with o, C(4,), is the orthogonal decomposi-
tion. If k>0 and if the manifold is complete then:

(3.5) (Ao, bo) = (Vo, Vo) + (0 —2) [ Koy, 020, + [k, 0,30,

for all w € Wi(TM).
Here are a few consequences of this equation (for similar results
on scalar valued 1-forms see [Dol], [Do2], [Do3], [GW]).

ProrosiTION 3.1. Let w € BY(T8*), n > 2, where 8" is the n-sphere.
Ao = 0 iff © = const , where ¢ is the 1-form with values in T8»
defined by 6(X) = X, for all Xe C(TM).

Proor. Equation (3.4) implies both w; = w, =0 and Vo =0,
then o = fd, where f is a smooth function, and Vo = V(fé) = df ®
®06 =0, ie., df =0 and f is a constant.
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If M is a surface, let ¢ € E*(TM) be the skew adjoint operator,
oe C(4,), with eigenfunctions +vV— 1, o exists since M is orientable.

ProprosITION 3.2. Let M be a complete surface with non nega-
tive Gauss curvature. If we BY(TM)N LY{(TM) and Aw = 0 then
Vo = 0. If the Gauss curvature is positive at tome point and dw = 0
then w = const 6 + const . Hence, if Vol M = oo there are no L,
harmonic forms with values in TM.

Proor. Equation (3.5) implies the first statement. If k> 0 at
some point then w, = 0 everywhere and so w = fé + go, where f
and g are smooth functions on M. Vg = V4 = 0 implies 0 = Voo =
=df® 3§+ dgRo. But df® 6 and dg® ¢ are mutually orthogonal,
then df ® 0 = dg&® o = 0, df = dg = 0 and f = const, g = const.

ProrosiTioN 3.3. Let M be a complete Riemannian manifold
with non negative sectional curvature. If we EYTM)nN LY(TM)
is selfadjoint, and Aw = 0 then Vw = 0. Thus if Vol M = oo there
are no selfadjoint L, harmonic 1-forms with values in 7M.

Proor. Choose a normal coordinate system (y, U) at ¥ € M, such
that {0/0y.: ¢ =1, ..., n} is an orthonormal base of 7, M, made up
by eigenvectors of w,. Since w,= Y 1,8:0/0y,)|,® dy’(z), where the

i,

A8 are the eigenvalues of w,, the Weitzembéck formula yields

Sw, wy, = — I R, 4,2 + > Ric, 4 .

The equation Ric,, = > R, implies
j
<S(O, w>-’t = ZRM""}.{A, + ERMirir)'? = ZRMirir(}‘i - lr)z .
1,7 1,r i<r

But this yields the conclusion since RM,, . is the sectional curvature
of the oriented plane (9/0y;)|.A(2[0¥r)].-
Let M be now a surface and we EY(TM). The equations
0 =0w,+ w,+ w,=fd+ go+ o, ,
Viwse O(4;), Vx(f0) =df(X)0 and Vygo=dg(X)o
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imply Vw,’s are mutually orthogonal as well as the w,’s. Furthermore

1761 =171, |90l = 9]l and [V(f6)] = |df], |V(go)| = |dg]. Thus (3.4)
yields for all w € DY (T M)

(86) (4w, ) = [Vau*+ |f]*+ |dg]* + 2 [k, @), -

Now if the Poincaré inequality for functions with compact support

holds (for some examples related to the isoperimetric inequality and

the eigenvalue problem for the Laplacian see [Ya]), i.e., if a posi-

tive constant ¢ exists, such that cf o, < f {df, df>v,, for all smooth
M M

functions f with compact support, then

(40, @) > [ <oy, @0, + of <y @270, +2[ w3, 0, -
M

M M

So if k has a positive lower bound, say k,, then
(Adw, w)>min {¢, 2k} |w]|? for all we DY(TM)

and, by a density argument, for all w € Wi (T M). We have the fol-
lowing proposition.

ProposITION 3.4. Let M be a complete Riemannian surface with
Gauss curvature k>k,>0 and for which the Poincaré inequality for
compactly supported C! functions holds, with constant ¢. Then TM
is W,(TM)-elliptic and min {¢, 2k,} is a lower bound for the first
eigenvalue of the Laplace-Beltrami operator on L, 7' M-valued 1-forms.

REMARK 3.5. The constant ¢ that appears in the Poincaré inequality
is also the first eigenvalue for the Laplace operator on functions with
compact support [Ya], and this extablishes a link between the La-
placian on functions and the Laplacian on L, TM-valued 1-forms
in the case of a compact orientable connected surface.
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