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L2 Vector Bundle Valued Forms

and the Laplace-Beltrami Operator.

FRANCESCO RICCI (*)

0. Introduction.

The theory of vector bundle valued forms has been introduced
first in complex geometry, both for compact and non compact mani-
folds. Later, J. Eells and J. H. Sampson used the real theory, y on
compact manifolds mainly, y in the study of harmonic maps [ES].

This paper deals with some questions that naturally arise in the
study of the Laplace-Beltrami operator on the Hilbert space of square
integrable bundle valued forms, on a complete Riemannian manifold.

In section 1, after reviewing the basic facts on vector bundle
valued differential forms, y we introduce the relevant Hilbert spaces
of forms and we prove the essentially self-adjointness of the Lapla-
cian, which yields the uniqueness of the selfadjoint extension. We
establish also a condition for the unique selfadjoint extension of the
Laplacian equals d8 -f- 8d, where d and 8 are the weak extension
of the differential and codifferential operator respectively.

In section 2 we are concerned with some spectral problems of the
Laplace operator and we examine the Hodge orthogonal decomposi-
tion for vector valued differential forms.

Section 3 is devoted to some examples. We prove a vanishing
condition for harmonic 1-forms with values in the tangent bundle
to complete Riemannian manifolds with non negative constant sec-
tional curvature at every point. A result of non existence is also

(*) Indirizzo dell’A.: Scuola Normale Superiore, Pisa.
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proved for selfadjoint harmonic 1-forms. Furthermore, w e establish
a lower bound for the first eigenvalue for the Laplacian acting on
square integrable 1-forms with values in the tangent bundle to a
surface with positive Gauss curvature, for which the Poinear6 inequality
with compact support holds.

1. Some basic facts.

Let (M, g) be a smooth orientable, connected Riemannian mani-
fold of dimension n. Let ~ : V ~ .~1 be a smooth vector bundle of
finite rank m. Suppose a (positive defined) C- scalar product is
defined on the vector bundle $ and a connection V on ~ is given such
that p) _ p) + c~, for all vector fields X and all
sections of ~. The triple $, ( , ), V is called a Riemannian vector
bundle [EL] , [Ee].

We shall denote by C(~) or C( ) the vector space of smooth sec-
tions of ~. The smooth sections of are called

p-forms on ~1 with values in ~, and we shall denote the space of
~-valued p-forms by -E7~(~) or 

If (~fl, g) is a Riemannian manifold and ~: is a Rieman-

nian vector bundle, a canonical structure is defined on 

0 TT --~ ~Vl, which satisfies the following equation :

Here VM is the Levi-Civita connection on -7- M, and

where x EM and ... , en} is an orthonormal base of 
In terms of the connection V on E an exterior differential operator

d : is defined by
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We can define the exterior product of forms with values in a
vector bundle too. For this purpose, let ~i: Vi-+ .~, i = 1, 2, 3,
be three Riemannian vector bundles with connections Vi, and o : Vi x
X Y2 --~ V3 a vector bundle pairing such that:

for all and all The exterior product of a

VI-valued p-form WI by a Y2-valued q-form W2 is a V,-valued p --~-- q-
form I defined by

being the permutation group on p -~- q letters.
Let be the volume element associated

with g. The Hodge isomorphism * : 

can be defined for all As in
the case of scalar valued p-forms: ** = 

The codifferential operator 6: is the formal ad-

joint to d and is defined by 3 = 
The Laplace-Beltrami operator J: L1 = db + ~c~

is elliptic and formally selfadjoint [EL].
If ~ is a Riemannian vector bundle then the curvature Rl E E2 ~

~ (Y DY~) is the tensor field for which

The curvature of Y--j M satisfies the following identity

where BM is the curvature of the Levi-Civita connection.
Let be the generalized Ricci endomor-
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phism:

where p &#x3E; 0, ~el, ... , en~ is an orthonormal base of TzM and Xi E
E If p = 0 set Sx = 0. The following formula (Weitzemb6ck
formula [EL]) holds:

Let D»(V) be the space of C~° V-valued p-forms with compact sup-
port and let (ai, _~~~, q;)Vg The formula (1.1) implies,
for each x

Note d2W = for all W E Working on a coordinate
domain it is easy to show that for any x E M and for any coO E 

there exists such that dw = 0 in a neighbourhood
of x and m° = oix, where ay is the value of co in x. In the vector

case we have:

PROPOSITION 1.1. Let ... , 99’ k E ( I~ ~ T* M U Y)x be linearly inde-

pendent, where
problem

has a solution y = ggj defined in some neighbourhood of x, then
0 in a neighbourhood of x.

In the proof we need the following lemmas.

LEMMA 1.2. Let W be a vector space and

Then S~ = 0 iff there are r + 1 linearly independent 1-forms wi, ...

... , 7 (Or+,, such that = 0 f or i = 1, ..., r + 1.
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PROOF. Let ~g~~, ... , be a base of W=~ such that cpa = cii,

~=1, ...,)-+!.

but then == 0 implies that either

Then necessarly 0 for all multindices, i.e. , ,~ = 0.

LEMMA 1.3. Let W be a vector space, De A’W*, and let icol ...

... , be a base of W* and t + Then is 0 iff 
= 0 for all multindices I = (iI, ... , 2t).

PROOF. By Lemma 1.2 this fact holds if t = 1. Assuming it to
hold for t - 1, we have == 0 for all multindices
I == (ia, ..., it_1) and all j. Then by Lemma 1.2 0,
and the inductive hypothesis yields Q = 0.

PROOF OF THE PROPOSITION 1.1. Let (pj be a solution of the

problem (1.3.j). The yj are linearly independent in r, so they are
linearly independent in a neighbourhood TI of x too. Therefore

= 0 and the operator g~ -~- is zero in U, which
we can assume to be a chart domain as well as a frame domain for
a frame f = (/1, ... , f ~) on ~. Then

where f * = ( f ~, ... , fm) is the dual frame. We have

for all = 1, ..., m and all I = ..., i,,)~ thus by Lemma 1.3
= 0, i.e., = 0-

The Stampacchia inequality is a basic tool in the study of the
Laplace-Beltrami operator on complete manifolds. It provides a way
to estimate the behaviour of dco and 3w knowing that of co and L1w.
We do not give a proof of this inequality, because it proceeds as in
the scalar case [AV].
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From now onwards g) will be always complete (even if some
results are still valid more in general). Let ~O: M --~ .R+ be the geo-
desic distance from a fixed point xo E M.

Set  rl, by H6pf-Rinow-de Rham theorem,
Br is relatively compact.

PROPOSITION 1.4 (Stampacchia inequality). Let $: V- M be a
Riemannian vector bundle on a complete manifold M. There is a

constant A &#x3E; 0, such that for all w E and for all positive real
with .R &#x3E; r :

where

COROLLARY 1.5. If and ~~  + oo then
ll8w ll  + 00 and o llj co 112 for

0. Hence if L1ro = 0 then doi _ 3w = 0.
We shall denote by the completion of Dp(V) with respect

to the product is the Hilbert space of .L2
1f

p-forms with values in the Riemannian vector bundle ~. The dif-

ferential operators we have introduced before live in e.g.,
d : and the domain of d, D(d), is the space of those C1
p-forms (JJ such that and dWEL:+1(V), similarly D(d) _
- w is 02 and 

In the case of ordinary p-forms, if if has negligible boundary,
i.e., d and 8 are adjoint for all p, and if the Riemann curvature tensor
is of class C5, then the Laplace-Beltrami operator is essentially self-
adjoint [Ga]. Since Gaffney’s proof does not seem to be easily extend-
ible to vector bundle valued f orms, we shall follow another way,
proving that the restriction 4~ to forms with compact support of the
Laplace-Beltrami operator 4, has selfadjoint closure.

Let d, and 6, be the restrictions of d and 6 to Let Je
and d* be respectively the closure and the adjoint of de in the Hilbert
space L2(Y) (similarly 3, and 8*c denote respectively the closure and
the adjoint of We have [Ve]

PROPOSITION 1.6. The following statements hold

i) Dp(V) is dense in D(6*) with the norm
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ii) Dp(V) is dense in D(d*) with the norm

iii) is dense in - w ith the norm

COROLLARY 1.7. dJ~ = 3~ and 6* = ·

From now onwards we shall set de = ~* - d and = dt = 8.
If ro E D(d) then from the formal adjointness of d
and 8 we get (ro, bp) = (dro, p), i.e. , ro and dro - 6* to so

d c bt. Similarly 6 c dt. Therefore by Corollary 1.7 d c cic and 8 
So the adjointness of de and 3, implies that of d and 6. From
d c 6* we get 6, and d D dc yields d* c d* = Thus d* = 6,
and analogously b* = d, proving thereby

COROLLARY 1.8. The operators d and 8 are adjoint and we have

Let t : -+ R be the symmetric non-negative bilinear
form defined on D(t) = D~(Y) by t[m, q] = (4m, p). This form is

closable [Ka, p. 318]. The domain of the closure t is the Hil-
bert space of those such that there is a sequence 
in with and We have

and the norm of is given by
Proposition 1.6 wc have Now we are able
to prove

THEOREM 1.9. The Laplace-Beltrami operator, restricted to forms
with compact support, is essentially selfadjoint in L2(Y).

PROOF. Setting d’ = d ~ -f - I, then J’ === J c + I and J, c is selfad-

joint iff J’ is. We shall prove that J’ is selfadjoint. If to E D(A,)
we have
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Therefore by the Schwarz inequality , i.e., (d’ )-1 exists
as a bounded operator. So .R(d’) = is closed. We want to
show = If q then (d’g~, q) = 0 for all qJ EDp(V).
The linear differential operator d’ : is elliptic and for-
mally selfadjoint as well d, therefore by regularity theorems, ([EL]
or [We]), q E EP(V) and = 0, i.e., 4q == - r¡. By Corollary 1.5
Ildr¡11  + oo and  + oo E D(d) n D(8) = Then

we can find a sequence with 7y~ -~~, -* dq and
3qn -+ We have

Therefoise q == 0 and = so A’-’ is selfadjoint, i’ is

selfadjoint and d~ is essentially selfadjoint.
REMARK 1.10. The conclusion of Theorem 1.9 holds if the hypoth-

esis that the Riemannian metric of ~ be complete is replaced by the
assumptions that L1 be non negative.

Theorem 1.9 implies that there is only one selfadjoint extension
of d o . We denote this extension by 0 ; we have 4Y = ~c = L1: = 3t.
In the same way as for Corollary 1.8 one can show that L1 is sym-
metric and d * = d - 0.

In [Ga] Gaffney shows that if M has negligible boundary the
operator 3~ &#x26;Jf is selfadjoint and equals d . Let now V be a

Riemannian vector bundle on the complete manifold M, for which
a unique selfadjoint extension of L1 exists. The question arise wheth-
er A = d8 + 8d. Here is a particular result. Let T be the linear

operator defined by for all m E D2, (V).

THEOREM 1.11. If the linear operator T is bounded then

o d8 + 8d.

PROOF. a) We begin by proving that + (~~ d~ ) ~ . If

ro E D(l~) let be a sequence in such that ron --~ ro and
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Furthermore

In view of our hypothesis, (~cvn)nEN and are convergent, y for

Therefore

as n, 9n- 00. So and are Cauchy sequence and

b) We show now that For let

(W,JnEN be a sequence in such that and 

We have

so ~ay --~ WE D(6,) and this enta,ils that wE and (o -

= (d~ 3~ ) " m. Similarly one shows that (~~d~ ) ~ c 

c) In view of the completeness of (M, g) a) and b) imply that
d5 -~- 8d D A. Now by a theorem of von Neumann [Ka, p. 275] the
operators Sd and d8 are selfadjoint, so d8 -E- 8d is symmetric. There-

LEMMA 1.12. There is a constant which depends only on
dim M, such that for all 9
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PROOF. Let e.1 be an orthonormal base of 

where c(n) is a constant depending only on dim .lVl,

If we set

we get

REMARK 1.13. Lemma 1.12 implies that if BY) is a bounded
function on M then the operator T is bounded. That is the case,
e.g., if ~ is compact or if .~ is locally symmetric and $ is a tensor
product of tensor power and exterior power of the tangent bundle
and cotangent bundle of Indeed we have = 0 and Rv, Rv)
is constant.

2. Wp2(V)-ellipticity and 

A Riemannian vector bundle is called ([AV]) if
there is a constant c &#x3E; 0 such that for all
(JJ E W-1, ,(V). The smallest constant for which the above inequality
holds is called the constant of Wp2(V)-ellipticity of $. 
ticity implies there are no non zero L2 harmonic forms. Following [Gi]
we introduce another notion, weaker than Wp2(V)-ellipticity. We shall
say that a Riemannian vector bundle $ is RI(V)-elliptic if there is
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a positive constant c’ such that

and we shall call the smallest constant, for which the inequality holds,
the constant of Rp2(V)-ellipticity. 

__

Note that we have and by regularity the-
orems N(4l) = 40 = 0 and The space N(A),
which we also denote by is the space of L2 harmonic p-forms
with values in the vector bundle $. The square root of 4Y, which
will be need in the proof of Theorem 2.1, is the operator 4Y’ : L2( Y) -
- Lp2(V), selfadjoint and non negative as well as 0, such that (å})2 = 4Y.
Recall that 4l" has the following properties [Ka]:

THEOREM 2.1. Let ~ : V-* lf be a Riemannian vector bundle
on a complete manifold. Then E is Wp2(V)-elliptic iff 0 belongs to
the resolvent of A, i.e., A has a bounded inverse. The 

ticity constant is ][ and (by selfadjointness of A-1) is also equal
to the spectral radius of 

PROOF. is then = 101 and A is inver-
tible. Let c be the Wp2(V)-ellipticity constant and (J) E D(I1): we have
(,~c~, c~) c ~ (c~, c~), therefore so for 

i.e., /1-1 is bounded and Conversely suppose W1 is

bounded. Then A-’ is selfadjoint and non negative as well L1, and
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REMARK 2.2. If S : .L2 ( V’) is the generalized Ricci endo-
morphism and if there is a positive constant k such that 

for all then we have 

see (1.2), and by density this inequality holds for all w E Wp2(V).
In order to characterize the Rp2(V)-ellipticity on complete mani-

folds, we need the following lemma [Ho].

LEMMA 2.3. Let Hand IT be two Hilbert spaces and T : H -+ H’
be a densely defined closed operator. Further, let F be a closed sub-
space of H’ such that 

i) If R( I) = li then for all 

where c is a positive constant.

ii) If then the equa-
tion u, with u E F, has a solution v such that 
 c llull.

THEOREM 2.4. Let $: V-* M be a Riemannian vector bundle
on a complete manifold. The following statements are equivalent:

a) JR(A) is closed.

b) is closed.

C) ~ is 

PROOF. a) ~ b). By property ii) of 4l’ we get N(4l’) = 
therefore

We conclude noting R(4li) D R(4l) holds.

b ) ~ c) . By Lemma 2.3 i ) there is a constant c such that 

c) ~ a). If then there is a sequence 
such that Ocv. Further by Corollary 1.5 
and are Cauchy sequences and
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By hypothesis there is a constant c &#x3E; 0 such that

for all therefore we have

if we get for all , and by
Lemma 2.3 ii) we conclude R(f1) is closed.

REMARK 2.5. Rp2(V)-ellipticity is equivalent to the possibility of
solving the equation 4lw = f , for all f E R(0) coupled with the exist-
ence of a constant c &#x3E; 0 such that the solution a~ can be so chosen
that The Rp2(V)-ellipticity is also equivalent to the Hodge
orthogonal decomposition = 

REMARK 2.6. Vesentini [Ve] proved in the scalar case that, if

there is a compact K c if and a constant c &#x3E; 0 such that for all

we have (So, ro)x ccyx, for all wE then 

is Rp2(R)-elliptic and every eigenspace relatively to a proper value
I  c is finite dimensional. This result is easily estensible to the

general case of forms with values in a Riemannian vector bundle.

3. Particular cases and examples.

Some of the results established will now be applied to the tangent
bundle of an oriented connected complete Riemannian manifold. For
the sake of simplicity we shall be concerned only with 1-forms.

The Weitzembock formula (1.1) for C(End (TM))
takes the local expressions on coordinate domain

If either n, &#x3E; 2 and M has constant sectional curvature at every point,
or .~C is a surface, then the Riemann and Ricci curvature tensors are
expressed by,
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where k is a real C°° function on M, which is constant if k &#x3E; 2.

The operator S’: is selfadjoint on every
fiber, i.e., (S’m, q;)x == (w, for all x EM. So, if we fix a point
x E .~ and we choose a Riemann normal coordinate system at x, we
get, the proper values of ~’ in x are determined by the equation

Solving this equation we decompose every fiber T,,* M 0 T, M into
three mutually orthogonal eigenspaces:

Setting . we define three sub bundles of T .1V1.

Now using (1.2) we get for all

and ill _ W2 + Wa, with Wi E is the orthogonal decomposi-
tion. If k&#x3E; 0 and if the manifold is complete then :

for all co E W~(TM).
Here are a few consequences of this equation (for similar results

on scalar valued 1-forms see [Do1], [Do2], [Do3], [GW]).
PROPOSITION 3.1. Let (J) E EI(TSn), n &#x3E; 2, where Sn is the n-sphere.

4m = 0 iff ro = const 6, where 6 is the 1-form with values in IS"
defined by 6(X) - X, for all 

PROOF. Equation (3.4) implies both Wa == W2 = 0 and Vro = 0,
then ro = where f is a smooth function, and Vo _ V(fb) = df0
&#x26; 6 = 0, i.e., d f = 0 and f is a constant.
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If .hC is a surface, let or E be the skew adjoint operator,
or E C(A2), with eigenfunctions + V-1 a exists since M is orientable.

PROPOSITION 3.2. Let .1~ be a complete surface with non nega-
tive Gauss curvature. If co E n and 4w = 0 then
Vco = 0. If the Gauss curvature is positive at some point and L1w = 0
then m = const 6 + const ~. Hence, if Vol M = oo there are no L,
harmonic forms with values in 

PROOF. Equation (3.5) implies the first statement. If k &#x3E; 0 at

some point then c~3 = 0 everywhere and so (o = fb + ga, where f
and g are smooth functions on M. Vd = Vb .= 0 implies 0 = Vro ==
== + But d f ~ ~ and dg 0 a are mutually orthogonal,

PROPOSITION 3.3. Let .1~ be a complete Riemannian manifold
with non negative sectional curvature. If m E El(T M) n 
is selfadjoint, and L1ro = 0 then Ve) = 0. Thus if Vol .1~ == oo there
are no selfadjoint L2 harmonic 1-forms with values in TM.

PROOF. Choose a normal coordinate system ( y, U) at x E such

that = 1, ... , n} is an orthonormal base of TxM, made up
by eigenvectors of wz. Since ay dyi(x), where the

i,f

are the eigenvalues of cvx, the Weitzemb6ek formula yields

The equation implies

But this yields the conclusion since RMirir is the sectional curvature
of the oriented plane 

Let .M be now a surface and The equations
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imply V(oils are mutually orthogonal as well as the Wi’S. Furthermore

Now if the Poinear6 inequality for functions with compact support
holds (for some examples related to the isoperimetric inequality and
the eigenvalue problem for the Laplacian see [Ya]), i.e., if a posi-
tive constant c exists, such that for all smooth

M M

functions f with compact support, then

So if k has a positive lower bound, say then

and, by a density argument, for all m E We have the fol-

lowing proposition.

PROPOSITION 3.4. Let M be a complete Riemannian surface with
Gauss curvature and for which the Poinear6 inequality for
compactly supported C’ functions holds, y with constant c. Then TM
is W12(TM)-elliptic and min {c, 2k0} is a lower bound for the first

eigenvalue of the Laplace-Beltrami operator on L2 TM-valued 1-forms.

REMARK 3.5. The constant c that appears in the Poinear6 inequality
is also the first eigenvalue for the Laplace operator on functions with
compact support [Ya] , and this extablishes a link between the La-
placian on functions and the Laplacian on L2 TM-valued 1-f orms
in the case of a compact orientable connected surface.
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