RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

P. C. CRAIGHERO

A result on m-flats in A_k^n

Rendiconti del Seminario Matematico della Università di Padova, tome 75 (1986), p. 39-46

http://www.numdam.org/item?id=RSMUP_1986__75__39_0

© Rendiconti del Seminario Matematico della Università di Padova, 1986, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A result on m-flats in A_k^n

P. C. CRAIGHERO (*)

RIASSUNTO - In questa nota si dimostra che ogni varietà $V^{(m)}$ di \mathbf{A}_k^n , che sia isomorfa ad \mathbf{A}_k^m , con $m \leq 1/3(n-1)$, è la trasformata di un sottospazio lineare $S^{(m)} \subset \mathbf{A}_k^n$ mediante un automorfismo globale $\Phi \colon \mathbf{A}_k^n \to \mathbf{A}_k^n$ il quale risulta prodotto di automorfismi lineari e triangolari. Come conseguenza di ciò si ha il fatto che ogni linea di \mathbf{A}_k^n , con $n \geq 4$, risulta elementarmente rettificabile.

Introduction.

Let k be an algebraically closed field of characteristic zero. An automorphism $\Phi: \mathbf{A}_k^n \to \mathbf{A}_k^n$ which is the product of linear and triangular automorphisms is called tame. A variety $\mathcal{F}^{(m)}$ which is isomorphic to \mathbf{A}_k^m , will be called an m-flat. A 1-flat is called a line. Two varieties V', V'' such that there exists an automorphism $\Phi: \mathbf{A}_k^n \to \mathbf{A}_k^n$ with $\Phi(V') = V''$, will be called equivalent. An m-flat which is equivalent to a linear subspace $S^{(m)}$ of \mathbf{A}_k^n will be called shortly linearizable. A linearizable 1-flat will be called rectifiable. If an m-flat $\mathcal{F}^{(m)}$ is transformed into a linear subspace by means of a tame automorphism of \mathbf{A}_k^n , we say that $\mathcal{F}^{(m)}$ is tamely linearizable. In Chapter 11 of [1], p. 413, Prof. Abhyankar raises the following interesting

Question: is it true that in A_k^n , with $n \ge 3$, there are *m*-flats which are not equivalent?

(*) Indirizzo dell'A.: Istituto di Matematica Applicata, via Belzoni 7, 35100 Padova (Italy).

This question is exactly the same as to ask the following: is it true that in A_k^n , with $n \ge 3$, there are m-flats which are not linearizable?

In this paper we give a partial answer to this last question by showing in Theorem 1) that, if $m \leqslant \frac{1}{3}(n-1)$, any m-flat in A_k^n is tamely linearizable. This has the interesting consequence that any line in A_k^n , with $n \geqslant 4$, is tamely rectifiable, which corners down the possibility for a line not to be rectifiable in A_k^3 , so that Conjecture 1), p. 413 in [1], can be true only for n=3 (in A_k^2 every line is tamely rectifiable, as a consequence of the well known Theorem of Abhyankar and Moh [2]). On the other hand, in A_k^3 , there are examples of rigid lines which are very difficult to rectify, namely the

$$C_n$$
: $(t + t^n, t^{n-1}, t^{n-2})$ for $n \ge 5$

(see Conjecture 3), [1], p. 414). However in a previous work [3], we managed to rectify just C_5 , by means of an automorphism which, according to a Conjecture of M. Nagata (see [4], p. 47), should not be tame (we recall that, for $n \ge 3$, it is not yet known whether a non tame automorphism of A_k^n exists).

Let us consider in A_k^n , an arbitrary m-flat $\mathcal{F}^{(m)}$, with $m \leq \frac{1}{3}(n-1)$ (of course it will be $n \geq 4$). $\mathcal{F}^{(m)}$ admits a biregular parametric representation by polynomials:

$$(*) \begin{cases} x_1 = F_1(u_1, ..., u_m) \\ \vdots \\ x_n = F_n(u_1, ..., u_m) \end{cases} , \qquad (**) \begin{cases} u_1 = G_1(x_1, ..., x_n) \\ \vdots \\ u_m = G_m(x_1, ..., x_n) \end{cases}$$

with $F_1, ..., F_n \in k[X_1, ..., X_m]$ and $G_1, ..., G_m \in k[X_1, ..., X_n]$. Let us call a straight line a *chord* of $\mathcal{F}^{(m)}$ if it meets $\mathcal{F}^{(m)}$ in at least two distinct points. The union of all the chords of $\mathcal{F}^{(m)}$ is contained in the (unirational) algebraic variety V, whose parametric representation is

$$\begin{cases} y_1' = F_1(u_1, ..., u_m) + \lambda [F_1(v_1, ..., v_m) - F_1(u_1, ..., u_m)] \\ \vdots \\ y_n' = F_n(u_1, ..., u_m) + \lambda [F_n(v_1, ..., v_m) - F_n(u_1, ..., u_m)] \end{cases}$$

where $u_1, ..., u_m, v_1, ..., v_m$, λ are algebraically independent over k. Of course dim $V \leq 2m + 1$. It can be shown that V contains also the union of all the tangent straight lines to $\mathcal{F}^{(m)}$, which is contained

in the variety W whose parametric representation is

$$\left\{egin{aligned} y_1'' &= F_1(u_1,\,...,\,u_m) \,+\, \lambda_1 \left[rac{\partial F_1}{\partial X_1}
ight] + ... \,+\, \lambda_m \left[rac{\partial F_1}{\partial X_m}
ight] \ dots \ y_n'' &= F_n(u_1,\,...,\,u_m) \,+\, \lambda_1 \left[rac{\partial F_n}{\partial X_1}
ight] + ... \,+\, \lambda_m \left[rac{\partial F_n}{\partial X_m}
ight] \end{aligned}
ight.$$

where $u_1, ..., u_m, \lambda_1, ..., \lambda_m$ are algebraically independent over k, and $[\partial F_i/\partial X_j]$ means $\partial F_i/\partial X_j$ calculated in $(u_1, ..., u_m)$.

Anyway, even without proving that $W \subset V$, we have dim $W \leq 2m$. Let us embed canonically \mathbb{A}^n_k in \mathbb{P}^n_k . Let be \tilde{V} , \tilde{W} the projective elosures of V, W and V_{∞} , W_{∞} respectively the intersections of \tilde{V} and \tilde{W} with the hyperplane at infinity π_{∞} . We have

$$\dim V_{\infty} \leqslant 2m$$
, $\dim W_{\infty} \leqslant 2m-1$.

Let us identify π_{∞} with \mathbb{P}_{k}^{n-1} . Since by assumption it is $m \leq \frac{1}{3}(n-1)$, we have

$$\dim (V_{\infty} \cup W_{\infty}) + (m-1) \leq 2m + m - 1 = 3m - 1 \leq n - 2;$$

this means that in π_{∞} we can surely find a linear subspace $S_{\infty}^{(m-1)}$, of dimension m-1, which does not interect $V_{\infty} \cup W_{\infty}$. Now we can state the following

LEMMA 1. With the previous notations, any linear subspace $S^{(m)}$ of dimension m in A_k^n , such that $S^{(m)} \cap \pi_{\infty} = S_{\infty}^{(m-1)}$, cannot meet $\mathcal{F}^{(m)}$ in more than one point; moreover, if it meets $\mathcal{F}^{(m)}$ in one point P, it cannot be tangent in P to $\mathcal{F}^{(m)}$.

Proof. Suppose P', P'' two distinct points of $\mathcal{F}^{(m)}$ and that there exists an $S^{(m)}$ such that P', $P'' \in S^{(m)} \cap \mathcal{F}^{(m)}$, with $S^{(m)} \cap \pi_{\infty} = S^{(m-1)}_{\infty}$; then the chord l of $\mathcal{F}^{(m)}$ through P', P'' is contained in $S^{(m)}$, so that \tilde{l} meets $S^{(m-1)}_{\infty}$ and cannot meet by consequence V_{∞} which is disjoint from $S^{(m-1)}_{\infty}$: this is absurd because $\tilde{l} \subset \tilde{V}$. Next suppose $P \in S^{(m)} \cap \mathcal{F}^{(m)}$, and that $S^{(m)}$ is tangent in P to $\mathcal{F}^{(m)}$; then every straight line l of $S^{(m)}$ throught P is tangent in P to $\mathcal{F}^{(m)}$: again this leeds to an absurd, because

$$l \in S^{(m)} \cap W \Rightarrow \emptyset = S^{(m-1)}_{\infty} \cap W_{\infty} \supset \tilde{l} \cap \pi_{\infty} \neq \emptyset$$
.

Now choose n-m hyperplanes $\pi_1, ..., \pi_{n-m}$ in \mathbb{A}_k^n , so that

$$\tilde{\pi}_1 \cap \ldots \cap \tilde{\pi}_{n-m} \cap \pi_{\infty} = S_{\infty}^{(m-1)}$$

and, calling Λ a linear automorphism of A_k^n such that

$$\Lambda(\pi_i) = \{X_i = 0\} \quad (i = 1, ..., n - m)$$

let

$$(\circ) \quad \begin{cases} x_1' = F_1'(u_1, \ldots, u_m) \\ \vdots \\ x_n' = F_n'(u_1, \ldots, u_m) \end{cases} \qquad (\circ \circ) \quad \begin{cases} u_1 = G_1'(x_1', \ldots, x_n') \\ \vdots \\ u_m = G_m'(x_1', \ldots, x_n') \end{cases}$$

be the biregular parametric representation of the m-flat Λ ($\mathcal{F}^{(m)}$) that we obtain from (*) and (**) above by applying Λ . Calling $\tilde{\Lambda}$ the extension of Λ to \mathbb{P}^n_k , we have of course that:

- (1) $\Lambda(V)$, $\Lambda(W)$ are the varieties containing the chords and the tangents of $\Lambda(\mathcal{F}^{(m)})$;
- (2) $\Lambda(V)_{\infty} = \widetilde{\Lambda}(V) \cap \pi_{\infty} = \widetilde{\Lambda}(V_{\infty}), \text{ and } \Lambda(W)_{\infty} = \widetilde{\Lambda}(W_{\infty});$
- (3) $\tilde{A}(S_{\infty}^{(m-1)}) = \tilde{S_{0}^{(m)}} \cap \pi_{\infty} = (S_{0}^{(m)})_{\infty}$, where

$$S_0^{(m)} = \{X_1 = \ldots = X_{n-m} = 0\};$$

- $(4) \left(\Lambda(V)_{\infty} \cup \Lambda(W)_{\infty} \right) \cap (S_0^{(m)})_{\infty} = \emptyset;$
- (5) The above Lemma 1 holds substituting respectively $S^{(m)}$, $\widetilde{S^{(m)}}$, $S^{(m-1)}$, $F^{(m)}$ with $\Lambda(S^{(m)})$, $\widetilde{\Lambda}(\widetilde{S^{(m)}})$, $(S_0^{(m)})_{\infty}$, $\Lambda(\mathcal{F}^{(m)})$.

Now let us consider the linear subspace

$$S^{(n-m)} = \{X_{n-m+1} = \dots = X_n = 0\}$$

and let

$$\Psi \colon \mathbb{A}^n_k \to S^{(n-m)}$$

be the projection of A_k^n on to $S^{(n-m)}$ from $(S_0^{(m)})_{\infty}$. We call

$$\psi \colon A(\mathcal{F}^{(m)}) o S^{(n-m)}$$

the restriction of Ψ to $\Lambda(\mathcal{F}^{(m)})$.

We can state the following

Lemma 2. With the previous notations, ψ is an isomorphic embedding.

PROOF. ψ is a finite mapping (see [5], Th. 7, p. 50). Of course

 $\mathfrak{X}=\Lambda(\mathcal{F}^{(m)})$ is a smooth variety. ψ , by construction, is injective, because, if P_1 , P_2 are two distinct points of $\Lambda(\mathcal{F}^{(m)})$ such that $\psi(P_1)=$ $=\psi(P_2)=Q\in S^{(n-m)}$, then the two subspaces $S_1^{(m)}$ and $S_2^{(m)}$ projecting P_1 and P_2 from $(S_0^{(m)})_{\infty}$ would coincide with $S_Q^{(m)}$, projecting Q from $(S_0^{(m)})_{\infty}$: this $S_Q^{(m)}$ would then contradict Lemma 1 (modified according to (5) above). By this same Lemma the differential mapping of ψ in P, $d_P\psi\colon\theta_{P,\mathfrak{X}}\to\theta_{\psi(P),S^{n-m}}=S^{(n-m)}$, where $\theta_{P,\mathfrak{X}}$ is the tangent space in P to the variety \mathfrak{X} , is an isomorphic embedding for every $P\in\mathfrak{X}=$ $=\Lambda(\mathcal{F}^{(m)})$. Indeed, in our case, $d_P\psi$ is exactly the restriction of Ψ to $\theta_{P,\mathfrak{X}}$, and since, by Lemma 1, we have, $\forall P\in\mathfrak{X},\ \theta_{P,\mathfrak{X}}\cap(S_0^{(m)})_{\infty}=\emptyset$, then $d_P\psi$ is injective: suppose in fact P_1 , P_2 two distinct points of $\theta_{P,\mathfrak{X}}$, and suppose $d_P\psi(P_1)=d_P\psi(P_2)$; this implies $S_{P_1}^{(m)}=S_{P_2}^{(m)}=S^{(m)}$, so that the straight line $l(P_1,P_2)$ is contained in $S^{(m)}\cap\theta_{P,\mathfrak{X}}$, which is absurd because we would find $(\tilde{\theta}_{P,\mathfrak{X}}\cap(S_0^{(u)})_{\infty}=\emptyset$, as above, by Lemma 1)

$$\emptyset = \tilde{\theta}_{P,\mathfrak{X}} \cap (S_0^{(m)})_{\infty} = \tilde{\theta}_{P,\mathfrak{X}} \cap \tilde{S}^{(m)} \supset \tilde{l}(P_1, P_2) \cap \pi_{\infty} \neq \emptyset$$
 .

Beeing a linear injective mapping between linear subspaces of A_k^n , $d_p\psi$ is an isomorphic embedding. Now we can apply the Lemma in [5], Ch. 2, p. 124, and conclude that ψ is an isomorphic embedding.

COROLLARY 1. With the notations of Lemma 2, the affine variety $\psi(\Lambda(\mathcal{F}^{(m)}))$ is an m-flat.

PROOF. Obvious: $\psi(\Lambda(\mathcal{F}^{(m)}))$ is isomorphic to $\Lambda(\mathcal{F}^{(m)})$, which is an m-flat, via ψ .

REMARK 1. The isomorphism (which we call again ψ)

$$\psi \colon \Lambda(\mathcal{F}^{(m)}) \to \psi \big(\Lambda(\mathcal{F}^{(m)}) \big)$$

has a regular inverse, that is, ψ^{-1} is given by polynomials.

REMARK 2. For every point $P(y_1, y_2, ..., y_n) \in \mathbb{A}_k^n$, we have, by the choice of $(S_0^{(m)})_{\infty}$ and $S^{(n-m)}$,

$$\Psi(y_1, ..., y_n) = (y_1, ..., y_{n-m}, 0, ..., 0)$$

so that ψ and ψ^{-1} will have equations of the following type

$$egin{aligned} \psi(y_1,\,...,\,y_n) &= (y_1,\,...,\,y_{n-m},\,0,\,...,\,0) \ &orall (y_1,\,...,\,y_n) \in \varLambda(\mathcal{F}^{(m)}) \;, \ & \psi^{-1}(z_1,\,...,\,z_{n-m},\,0,\,...,\,0) &= igl(H_1(z_1,\,...,\,z_{n-m}),\,...,\,H_n(z_1,\,...,\,z_{n-m}) igr) \ &orall (z_1,\,...,\,z_{n-m},\,0,\,...,\,0) \in \psi\bigl(\varLambda(\mathcal{F}^{(m)})igr) \end{aligned}$$

and where (see Remark 1)) $H_1, ..., H_n$ are suitable polynomials $\in k[X_1, ..., X_{n-m}]$: consequently we have

(6)
$$F'_i(u_1, ..., u_m) = H_i(F'_1(u_1, ..., u_m), ..., F'_{n-m}(u_1, ..., u_m))$$
 $(i = 1, ..., n)$

and, by (oo) above, we also have

(7)
$$u_i = G'_i(H_1(F'_1, ..., F'_{n-m}), ..., H_n(F'_1, ..., F'_{n-m}))$$
 $(i = 1, ..., m)$

where we write shortly F'_i for $F'_i(u_1, ..., u_m)$.

Now we can prove the following

THEOREM 1. Every m-flat $\mathcal{F}^{(m)} \subset \mathbb{A}_k^n$, with $m \leqslant \frac{1}{3}(n-1)$, is tamely linearizable.

PROOF. Let Λ be a linear automorphism such that the conditions for validity of Lemma 2, and Remark 1 and 2 are fulfilled, with the same notations, and consider the automorphism

where Φ and χ are following tame automorphisms

$$\varPhi = \begin{pmatrix} X_1 \\ \vdots \\ X_{n-m} \\ X_{n-m+1} - H_{n-m+1}(X_1, ..., X_{n-m}) + G'_1(H_1(X_1, ..., X_{n-m}), ..., H_n(X_1, ..., X_{n-m})) \\ \vdots \\ X_n - H_n(X_1, ..., X_{n-m}) + G'_m(H_1(X_1, ..., X_{n-m}), ..., H_n(X_1, ..., X_{n-m})) \end{pmatrix}$$

$$\chi = \begin{pmatrix} X_1 - F'_1(X_{n-m+1}, ..., X_n) \\ \vdots \\ X_{n-m} - F'_{n-m}(X_{n-m+1}, ..., X_n) \\ \vdots \\ X_{n-m+1} \\ \vdots \end{pmatrix}$$

with obvious meaning of the notations $F_i(X_{n-m+1}, ..., X_n)$. We find, by (7) and (6) above

$$egin{align} \chi \circ arPhi \circ arLambda(\mathcal{F}^{(m)}) &= \chi \circ arPhi egin{pmatrix} F_1'(u_1, \, ..., \, u_m) \ dots \ F_n'(u_1, \, ..., \, u_m) \end{pmatrix} = \ &= \chi egin{pmatrix} F_{n-m}'(u_1, \, ..., \, u_m) \ dots \ H_1 \ dots \ H_2 \ dots \ H_1 \ dots \ H_2 \ H_2 \ dots \ H_2 \ dots \ H_2 \ dots \ H_2 \ H_2$$

which means that $\chi \circ \Phi \circ \Lambda$ transforms our $\mathcal{F}^{(m)}$ into the linear subspace

$$S_0^{(m)} = \{X_1 = \dots = X_{n-m} = 0\}$$

and our theorem is proved.

In particular we can state the following remarkable

COROLLARY 2. Any line of A_k^n , with $n \ge 4$, is tamely rectifiable.

PROOF. Apply Theorem 1 to 1-flats in A_k^n , with $n \ge 4$: we have $1 \le \frac{1}{3}(n-1)$, so that any 1-flat of A_k^n , with $n \ge 4$, is tamely linearizable, which is our statement according to the nomenclature in the introduction.

REFERENCES

- [1] S. S. ABHYANKAR, On the semigroup of a meromorphic curve (Part 1), Intl. Symp. on Algebraic Geometry (Kyoto, 1977), pp. 249-414.
- [2] S. S. ABHYANKAR T. T. Moh, Embeddings of the line in the plane, Journal fur die reine und angewangte Mathematik, Band 276, pp. 148-166.
- [3] P. C. CRAIGHERO, About Abhyankar's conjectures on space lines, Rendiconti del Seminario Matematico di Padova, to appear.
- [4] M. NAGATA, On automorphisms of K[X, Y], Lecture in Mathematics (Kinokunija, Tokio, 1972).
- [5] I. SHAFAREVICH, Basic Algebraic Geometry (Springer-Verlag, Berlin, 1977).

Manoscritto pervenuto in redazione il 6 luglio 1984.