RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA # P. C. CRAIGHERO A result on m-flats in A_k^n Rendiconti del Seminario Matematico della Università di Padova, tome 75 (1986), p. 39-46 http://www.numdam.org/item?id=RSMUP_1986__75__39_0 © Rendiconti del Seminario Matematico della Università di Padova, 1986, tous droits réservés. L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. ## NUMDAM Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ### A result on m-flats in A_k^n P. C. CRAIGHERO (*) RIASSUNTO - In questa nota si dimostra che ogni varietà $V^{(m)}$ di \mathbf{A}_k^n , che sia isomorfa ad \mathbf{A}_k^m , con $m \leq 1/3(n-1)$, è la trasformata di un sottospazio lineare $S^{(m)} \subset \mathbf{A}_k^n$ mediante un automorfismo globale $\Phi \colon \mathbf{A}_k^n \to \mathbf{A}_k^n$ il quale risulta prodotto di automorfismi lineari e triangolari. Come conseguenza di ciò si ha il fatto che ogni linea di \mathbf{A}_k^n , con $n \geq 4$, risulta elementarmente rettificabile. ### Introduction. Let k be an algebraically closed field of characteristic zero. An automorphism $\Phi: \mathbf{A}_k^n \to \mathbf{A}_k^n$ which is the product of linear and triangular automorphisms is called tame. A variety $\mathcal{F}^{(m)}$ which is isomorphic to \mathbf{A}_k^m , will be called an m-flat. A 1-flat is called a line. Two varieties V', V'' such that there exists an automorphism $\Phi: \mathbf{A}_k^n \to \mathbf{A}_k^n$ with $\Phi(V') = V''$, will be called equivalent. An m-flat which is equivalent to a linear subspace $S^{(m)}$ of \mathbf{A}_k^n will be called shortly linearizable. A linearizable 1-flat will be called rectifiable. If an m-flat $\mathcal{F}^{(m)}$ is transformed into a linear subspace by means of a tame automorphism of \mathbf{A}_k^n , we say that $\mathcal{F}^{(m)}$ is tamely linearizable. In Chapter 11 of [1], p. 413, Prof. Abhyankar raises the following interesting Question: is it true that in A_k^n , with $n \ge 3$, there are *m*-flats which are not equivalent? (*) Indirizzo dell'A.: Istituto di Matematica Applicata, via Belzoni 7, 35100 Padova (Italy). This question is exactly the same as to ask the following: is it true that in A_k^n , with $n \ge 3$, there are m-flats which are not linearizable? In this paper we give a partial answer to this last question by showing in Theorem 1) that, if $m \leqslant \frac{1}{3}(n-1)$, any m-flat in A_k^n is tamely linearizable. This has the interesting consequence that any line in A_k^n , with $n \geqslant 4$, is tamely rectifiable, which corners down the possibility for a line not to be rectifiable in A_k^3 , so that Conjecture 1), p. 413 in [1], can be true only for n=3 (in A_k^2 every line is tamely rectifiable, as a consequence of the well known Theorem of Abhyankar and Moh [2]). On the other hand, in A_k^3 , there are examples of rigid lines which are very difficult to rectify, namely the $$C_n$$: $(t + t^n, t^{n-1}, t^{n-2})$ for $n \ge 5$ (see Conjecture 3), [1], p. 414). However in a previous work [3], we managed to rectify just C_5 , by means of an automorphism which, according to a Conjecture of M. Nagata (see [4], p. 47), should not be tame (we recall that, for $n \ge 3$, it is not yet known whether a non tame automorphism of A_k^n exists). Let us consider in A_k^n , an arbitrary m-flat $\mathcal{F}^{(m)}$, with $m \leq \frac{1}{3}(n-1)$ (of course it will be $n \geq 4$). $\mathcal{F}^{(m)}$ admits a biregular parametric representation by polynomials: $$(*) \begin{cases} x_1 = F_1(u_1, ..., u_m) \\ \vdots \\ x_n = F_n(u_1, ..., u_m) \end{cases} , \qquad (**) \begin{cases} u_1 = G_1(x_1, ..., x_n) \\ \vdots \\ u_m = G_m(x_1, ..., x_n) \end{cases}$$ with $F_1, ..., F_n \in k[X_1, ..., X_m]$ and $G_1, ..., G_m \in k[X_1, ..., X_n]$. Let us call a straight line a *chord* of $\mathcal{F}^{(m)}$ if it meets $\mathcal{F}^{(m)}$ in at least two distinct points. The union of all the chords of $\mathcal{F}^{(m)}$ is contained in the (unirational) algebraic variety V, whose parametric representation is $$\begin{cases} y_1' = F_1(u_1, ..., u_m) + \lambda [F_1(v_1, ..., v_m) - F_1(u_1, ..., u_m)] \\ \vdots \\ y_n' = F_n(u_1, ..., u_m) + \lambda [F_n(v_1, ..., v_m) - F_n(u_1, ..., u_m)] \end{cases}$$ where $u_1, ..., u_m, v_1, ..., v_m$, λ are algebraically independent over k. Of course dim $V \leq 2m + 1$. It can be shown that V contains also the union of all the tangent straight lines to $\mathcal{F}^{(m)}$, which is contained in the variety W whose parametric representation is $$\left\{egin{aligned} y_1'' &= F_1(u_1,\,...,\,u_m) \,+\, \lambda_1 \left[rac{\partial F_1}{\partial X_1} ight] + ... \,+\, \lambda_m \left[rac{\partial F_1}{\partial X_m} ight] \ dots \ y_n'' &= F_n(u_1,\,...,\,u_m) \,+\, \lambda_1 \left[rac{\partial F_n}{\partial X_1} ight] + ... \,+\, \lambda_m \left[rac{\partial F_n}{\partial X_m} ight] \end{aligned} ight.$$ where $u_1, ..., u_m, \lambda_1, ..., \lambda_m$ are algebraically independent over k, and $[\partial F_i/\partial X_j]$ means $\partial F_i/\partial X_j$ calculated in $(u_1, ..., u_m)$. Anyway, even without proving that $W \subset V$, we have dim $W \leq 2m$. Let us embed canonically \mathbb{A}^n_k in \mathbb{P}^n_k . Let be \tilde{V} , \tilde{W} the projective elosures of V, W and V_{∞} , W_{∞} respectively the intersections of \tilde{V} and \tilde{W} with the hyperplane at infinity π_{∞} . We have $$\dim V_{\infty} \leqslant 2m$$, $\dim W_{\infty} \leqslant 2m-1$. Let us identify π_{∞} with \mathbb{P}_{k}^{n-1} . Since by assumption it is $m \leq \frac{1}{3}(n-1)$, we have $$\dim (V_{\infty} \cup W_{\infty}) + (m-1) \leq 2m + m - 1 = 3m - 1 \leq n - 2;$$ this means that in π_{∞} we can surely find a linear subspace $S_{\infty}^{(m-1)}$, of dimension m-1, which does not interect $V_{\infty} \cup W_{\infty}$. Now we can state the following LEMMA 1. With the previous notations, any linear subspace $S^{(m)}$ of dimension m in A_k^n , such that $S^{(m)} \cap \pi_{\infty} = S_{\infty}^{(m-1)}$, cannot meet $\mathcal{F}^{(m)}$ in more than one point; moreover, if it meets $\mathcal{F}^{(m)}$ in one point P, it cannot be tangent in P to $\mathcal{F}^{(m)}$. Proof. Suppose P', P'' two distinct points of $\mathcal{F}^{(m)}$ and that there exists an $S^{(m)}$ such that P', $P'' \in S^{(m)} \cap \mathcal{F}^{(m)}$, with $S^{(m)} \cap \pi_{\infty} = S^{(m-1)}_{\infty}$; then the chord l of $\mathcal{F}^{(m)}$ through P', P'' is contained in $S^{(m)}$, so that \tilde{l} meets $S^{(m-1)}_{\infty}$ and cannot meet by consequence V_{∞} which is disjoint from $S^{(m-1)}_{\infty}$: this is absurd because $\tilde{l} \subset \tilde{V}$. Next suppose $P \in S^{(m)} \cap \mathcal{F}^{(m)}$, and that $S^{(m)}$ is tangent in P to $\mathcal{F}^{(m)}$; then every straight line l of $S^{(m)}$ throught P is tangent in P to $\mathcal{F}^{(m)}$: again this leeds to an absurd, because $$l \in S^{(m)} \cap W \Rightarrow \emptyset = S^{(m-1)}_{\infty} \cap W_{\infty} \supset \tilde{l} \cap \pi_{\infty} \neq \emptyset$$. Now choose n-m hyperplanes $\pi_1, ..., \pi_{n-m}$ in \mathbb{A}_k^n , so that $$\tilde{\pi}_1 \cap \ldots \cap \tilde{\pi}_{n-m} \cap \pi_{\infty} = S_{\infty}^{(m-1)}$$ and, calling Λ a linear automorphism of A_k^n such that $$\Lambda(\pi_i) = \{X_i = 0\} \quad (i = 1, ..., n - m)$$ let $$(\circ) \quad \begin{cases} x_1' = F_1'(u_1, \ldots, u_m) \\ \vdots \\ x_n' = F_n'(u_1, \ldots, u_m) \end{cases} \qquad (\circ \circ) \quad \begin{cases} u_1 = G_1'(x_1', \ldots, x_n') \\ \vdots \\ u_m = G_m'(x_1', \ldots, x_n') \end{cases}$$ be the biregular parametric representation of the m-flat Λ ($\mathcal{F}^{(m)}$) that we obtain from (*) and (**) above by applying Λ . Calling $\tilde{\Lambda}$ the extension of Λ to \mathbb{P}^n_k , we have of course that: - (1) $\Lambda(V)$, $\Lambda(W)$ are the varieties containing the chords and the tangents of $\Lambda(\mathcal{F}^{(m)})$; - (2) $\Lambda(V)_{\infty} = \widetilde{\Lambda}(V) \cap \pi_{\infty} = \widetilde{\Lambda}(V_{\infty}), \text{ and } \Lambda(W)_{\infty} = \widetilde{\Lambda}(W_{\infty});$ - (3) $\tilde{A}(S_{\infty}^{(m-1)}) = \tilde{S_{0}^{(m)}} \cap \pi_{\infty} = (S_{0}^{(m)})_{\infty}$, where $$S_0^{(m)} = \{X_1 = \ldots = X_{n-m} = 0\};$$ - $(4) \left(\Lambda(V)_{\infty} \cup \Lambda(W)_{\infty} \right) \cap (S_0^{(m)})_{\infty} = \emptyset;$ - (5) The above Lemma 1 holds substituting respectively $S^{(m)}$, $\widetilde{S^{(m)}}$, $S^{(m-1)}$, $F^{(m)}$ with $\Lambda(S^{(m)})$, $\widetilde{\Lambda}(\widetilde{S^{(m)}})$, $(S_0^{(m)})_{\infty}$, $\Lambda(\mathcal{F}^{(m)})$. Now let us consider the linear subspace $$S^{(n-m)} = \{X_{n-m+1} = \dots = X_n = 0\}$$ and let $$\Psi \colon \mathbb{A}^n_k \to S^{(n-m)}$$ be the projection of A_k^n on to $S^{(n-m)}$ from $(S_0^{(m)})_{\infty}$. We call $$\psi \colon A(\mathcal{F}^{(m)}) o S^{(n-m)}$$ the restriction of Ψ to $\Lambda(\mathcal{F}^{(m)})$. We can state the following **Lemma 2.** With the previous notations, ψ is an isomorphic embedding. PROOF. ψ is a finite mapping (see [5], Th. 7, p. 50). Of course $\mathfrak{X}=\Lambda(\mathcal{F}^{(m)})$ is a smooth variety. ψ , by construction, is injective, because, if P_1 , P_2 are two distinct points of $\Lambda(\mathcal{F}^{(m)})$ such that $\psi(P_1)=$ $=\psi(P_2)=Q\in S^{(n-m)}$, then the two subspaces $S_1^{(m)}$ and $S_2^{(m)}$ projecting P_1 and P_2 from $(S_0^{(m)})_{\infty}$ would coincide with $S_Q^{(m)}$, projecting Q from $(S_0^{(m)})_{\infty}$: this $S_Q^{(m)}$ would then contradict Lemma 1 (modified according to (5) above). By this same Lemma the differential mapping of ψ in P, $d_P\psi\colon\theta_{P,\mathfrak{X}}\to\theta_{\psi(P),S^{n-m}}=S^{(n-m)}$, where $\theta_{P,\mathfrak{X}}$ is the tangent space in P to the variety \mathfrak{X} , is an isomorphic embedding for every $P\in\mathfrak{X}=$ $=\Lambda(\mathcal{F}^{(m)})$. Indeed, in our case, $d_P\psi$ is exactly the restriction of Ψ to $\theta_{P,\mathfrak{X}}$, and since, by Lemma 1, we have, $\forall P\in\mathfrak{X},\ \theta_{P,\mathfrak{X}}\cap(S_0^{(m)})_{\infty}=\emptyset$, then $d_P\psi$ is injective: suppose in fact P_1 , P_2 two distinct points of $\theta_{P,\mathfrak{X}}$, and suppose $d_P\psi(P_1)=d_P\psi(P_2)$; this implies $S_{P_1}^{(m)}=S_{P_2}^{(m)}=S^{(m)}$, so that the straight line $l(P_1,P_2)$ is contained in $S^{(m)}\cap\theta_{P,\mathfrak{X}}$, which is absurd because we would find $(\tilde{\theta}_{P,\mathfrak{X}}\cap(S_0^{(u)})_{\infty}=\emptyset$, as above, by Lemma 1) $$\emptyset = \tilde{\theta}_{P,\mathfrak{X}} \cap (S_0^{(m)})_{\infty} = \tilde{\theta}_{P,\mathfrak{X}} \cap \tilde{S}^{(m)} \supset \tilde{l}(P_1, P_2) \cap \pi_{\infty} \neq \emptyset$$. Beeing a linear injective mapping between linear subspaces of A_k^n , $d_p\psi$ is an isomorphic embedding. Now we can apply the Lemma in [5], Ch. 2, p. 124, and conclude that ψ is an isomorphic embedding. COROLLARY 1. With the notations of Lemma 2, the affine variety $\psi(\Lambda(\mathcal{F}^{(m)}))$ is an m-flat. PROOF. Obvious: $\psi(\Lambda(\mathcal{F}^{(m)}))$ is isomorphic to $\Lambda(\mathcal{F}^{(m)})$, which is an m-flat, via ψ . REMARK 1. The isomorphism (which we call again ψ) $$\psi \colon \Lambda(\mathcal{F}^{(m)}) \to \psi \big(\Lambda(\mathcal{F}^{(m)}) \big)$$ has a regular inverse, that is, ψ^{-1} is given by polynomials. REMARK 2. For every point $P(y_1, y_2, ..., y_n) \in \mathbb{A}_k^n$, we have, by the choice of $(S_0^{(m)})_{\infty}$ and $S^{(n-m)}$, $$\Psi(y_1, ..., y_n) = (y_1, ..., y_{n-m}, 0, ..., 0)$$ so that ψ and ψ^{-1} will have equations of the following type $$egin{aligned} \psi(y_1,\,...,\,y_n) &= (y_1,\,...,\,y_{n-m},\,0,\,...,\,0) \ & orall (y_1,\,...,\,y_n) \in \varLambda(\mathcal{F}^{(m)}) \;, \ & \psi^{-1}(z_1,\,...,\,z_{n-m},\,0,\,...,\,0) &= igl(H_1(z_1,\,...,\,z_{n-m}),\,...,\,H_n(z_1,\,...,\,z_{n-m}) igr) \ & orall (z_1,\,...,\,z_{n-m},\,0,\,...,\,0) \in \psi\bigl(\varLambda(\mathcal{F}^{(m)})igr) \end{aligned}$$ and where (see Remark 1)) $H_1, ..., H_n$ are suitable polynomials $\in k[X_1, ..., X_{n-m}]$: consequently we have (6) $$F'_i(u_1, ..., u_m) = H_i(F'_1(u_1, ..., u_m), ..., F'_{n-m}(u_1, ..., u_m))$$ $(i = 1, ..., n)$ and, by (oo) above, we also have (7) $$u_i = G'_i(H_1(F'_1, ..., F'_{n-m}), ..., H_n(F'_1, ..., F'_{n-m}))$$ $(i = 1, ..., m)$ where we write shortly F'_i for $F'_i(u_1, ..., u_m)$. Now we can prove the following THEOREM 1. Every m-flat $\mathcal{F}^{(m)} \subset \mathbb{A}_k^n$, with $m \leqslant \frac{1}{3}(n-1)$, is tamely linearizable. PROOF. Let Λ be a linear automorphism such that the conditions for validity of Lemma 2, and Remark 1 and 2 are fulfilled, with the same notations, and consider the automorphism where Φ and χ are following tame automorphisms $$\varPhi = \begin{pmatrix} X_1 \\ \vdots \\ X_{n-m} \\ X_{n-m+1} - H_{n-m+1}(X_1, ..., X_{n-m}) + G'_1(H_1(X_1, ..., X_{n-m}), ..., H_n(X_1, ..., X_{n-m})) \\ \vdots \\ X_n - H_n(X_1, ..., X_{n-m}) + G'_m(H_1(X_1, ..., X_{n-m}), ..., H_n(X_1, ..., X_{n-m})) \end{pmatrix}$$ $$\chi = \begin{pmatrix} X_1 - F'_1(X_{n-m+1}, ..., X_n) \\ \vdots \\ X_{n-m} - F'_{n-m}(X_{n-m+1}, ..., X_n) \\ \vdots \\ X_{n-m+1} \\ \vdots \end{pmatrix}$$ with obvious meaning of the notations $F_i(X_{n-m+1}, ..., X_n)$. We find, by (7) and (6) above $$egin{align} \chi \circ arPhi \circ arLambda(\mathcal{F}^{(m)}) &= \chi \circ arPhi egin{pmatrix} F_1'(u_1, \, ..., \, u_m) \ dots \ F_n'(u_1, \, ..., \, u_m) \end{pmatrix} = \ &= \chi egin{pmatrix} F_{n-m}'(u_1, \, ..., \, u_m) \ dots \ H_1 \ dots \ H_2 \ dots \ H_1 \ dots \ H_2 H_2 \ dots \ H_2 \ dots \ H_2 \ dots \ H_2 H_2$$ which means that $\chi \circ \Phi \circ \Lambda$ transforms our $\mathcal{F}^{(m)}$ into the linear subspace $$S_0^{(m)} = \{X_1 = \dots = X_{n-m} = 0\}$$ and our theorem is proved. In particular we can state the following remarkable COROLLARY 2. Any line of A_k^n , with $n \ge 4$, is tamely rectifiable. PROOF. Apply Theorem 1 to 1-flats in A_k^n , with $n \ge 4$: we have $1 \le \frac{1}{3}(n-1)$, so that any 1-flat of A_k^n , with $n \ge 4$, is tamely linearizable, which is our statement according to the nomenclature in the introduction. ### REFERENCES - [1] S. S. ABHYANKAR, On the semigroup of a meromorphic curve (Part 1), Intl. Symp. on Algebraic Geometry (Kyoto, 1977), pp. 249-414. - [2] S. S. ABHYANKAR T. T. Moh, Embeddings of the line in the plane, Journal fur die reine und angewangte Mathematik, Band 276, pp. 148-166. - [3] P. C. CRAIGHERO, About Abhyankar's conjectures on space lines, Rendiconti del Seminario Matematico di Padova, to appear. - [4] M. NAGATA, On automorphisms of K[X, Y], Lecture in Mathematics (Kinokunija, Tokio, 1972). - [5] I. SHAFAREVICH, Basic Algebraic Geometry (Springer-Verlag, Berlin, 1977). Manoscritto pervenuto in redazione il 6 luglio 1984.