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Discrete Valuation Domains

and Ranks of Their Maximal Extensions.

A. FACCHINI - P. ZANARDO (*)

The problem of measuring the size of a valuation domain .Z~ inside
its maximal immediate extension 8 led L. Salce and the second author
to the definition of two functions, the completion and the

total defect dR, from the set of the ideals of .R into the class of cardinal
numbers [8].

In this paper we prove some formulae that connect the two func-
tions eR and da . When we restrict our attention to the discrete valua-
tion domains with the ascending chain condition (a.c.c.) on prime
ideals, these formulae allow us to compute dR as a function of cR . More-
over we are able to determine all functions eR and dR that can arise
as .R ranges in the class of the discrete valuation domains of prime
characteristic p with the a.c.c. on prime ideals. This involves the
construction of rather complicated but interesting examples of rings
(Theorem 8).

There are two main differences of notation between this paper
and [8]. Firstly, we just consider the two functions cR and dR as defined
on the set of prime ideals, and not the set of all ideals; secondly, the
functions eR and dR will take only natural numbers and the symbol o0
as their values, not arbitrary infinite cardinal numbers. The reason for

these choices is twofold: on the one hand, it becomes easier to define,
understand and employ the functions c, and dR; on the other hand,

(*) Indirizzi degli AA.: A. FACCHINI : Istituto di Matematica, Informatica
e Sistemistica, Università di Udine, Via Mantica 3, 33100 Udine, Italy;
P. ZANARDO: Seminario Matematico, Via Belzoni 7, 35100 Padova, Italy.

Lavoro eseguito con il contributo del Ministero della Pubblica Istruzione,
nell’ambito del G.N.S.A.G.A.
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our formulae would not hold anymore if they were interpreted as
formulae among infinite cardinal numbers.

Recall that an ordered abelian group is discrete if the quotient
groups of successive convex subgroups are each isomorphic to the
additive group Z of integers. A valuation domain is discrete if its
value group is discrete, and is a D V’.R if its value group is isomorphic
to Z. If I~ is a field and G is an ordered abelian group, we may consider
the set KG of all mappings G - K. If we define the support of I,

for any then the set K((G)) -
Supp (f) is well-ordered by the order of G~ is a field under

the pointwise addition and the convolution product. The field is
called Hahn’s field of G over .I~, and its subring .K~G~ _ ~ f E .K~~G~ :x ~ 0
for all x E Supp ( f )~ is a valuation domain, called the long power series
ring of G over K. The field of Laurent power series and its subring of
formal power series are obtained as particular cases of this construction.

We use BY RA and to denote a valuation domain, its completion
and a maximal immediate extension of I~ respectively. Let Spec (1~)
denote the set of all prime ideals of .R, totally ordered by inclusion.
If P E Spec (R), we define the completion def ect at P, CB(P), and the
total defect at P, dB(P), as the rank of the torsion free R/P-module

(the completion of the valuation domain and the rank
of the torsion-free R/P-module respectively. Equivalently
cR(P) is the degree of the field of fractions of (RIP) A over the field of
fractions of and dR(P) is the degree of the field of fractions of

over the field of fractions of R/P. In particular, if P Q are
two prime ideals, then cR(Q) = el,(QIP); similarly for dR. Note that
for P prime and in the finite case these definitions coincide with the
technical ones of [8].

We shall view c, and dR as functions Spec (R) - N U Then
is a decreasing function, i.e., implies dB(P»dB(Q). Moreover,

= dR(~C) = 1 at the maximal ideal M of .R, and cR(P) cdR(P)
for all P E Spec (R).

Finally, in this paper denotes the injective envelope
of the R-module and an ordinal number A is the set of the ordinal
numbers less than A.

1. Computation of defects.

In our first proposition we determine the total defect of the prime
ideals of .I~ that have not an immediate successor in the ordering of
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Spec (.I~), i.e., 7 the prime ideals that are equal to the intersection of
the primes properly containing them.

PROPOSITION 1. Let R be a valuation domain and let P be a prime
ideal such that P = r1 {(Q: Q &#x3E; P, Q a prime ideal in .R~. Then d(P) _
- c(P) ~ sup ~d(Q) : Q &#x3E; P, Q a prime ideal in .R~.

PROOF. The equality holds trivially if one of the factors on the
right hand side of the equation is oo, because c c d and d is a decreasing
function. Therefore we may suppose that c(P)  oo and the set

{d(Q): Q &#x3E; P, Q E Spec (1~)~ has a largest element n which is a natural
number; moreover, factoring out the prime ideal P, we may suppose
P = 0. If R ^ and denote the completion and a maximal immediate
extension of I~, and K, I~(.R ^ ), denote the fields of fractions
of .l-~, R ^ and 8 respectively, then the equation [K(8) :K] = [K(S):

may be w ritten as Therefore
we must show that sup~dR(Q) : Q =1= 0, Q E Spec (1~)~, i.e.,
that rank.- ,~’ = sup Q =1= 0, Q E Spec (1~)~. Since R/Q "-/
~ for 0, we may suppose I~ complete.

Now n is the largest rank, i.e., there exists a prime ideal L ~ 0
such that for all prime ideals Q, 0 ~ Q C L. We
must prove that rankRS = n. Let s,, ... , sn be n elements of S such
that their images si -~- L~S’ in are linearly independent over .R/Z.
Then it is easy to prove that their images Q~’ in are linearly
independent over jR/Q whenever (this is also true if Q = 0).
Let us prove that the linearly independent subset {s1, ..., sn} of S
is maximal. If s is any element of ~S’, the set {s + Q87 s, -]- QS, ... ,
8n + is linearly dependent over whenever Q # 0
and and therefore as for some 

i 
.

Hence for all Q # 0. Since Q E
i ;

E Spec (R) Q # 0} is a basis of neighbourhoods of 0 for the valuation
topology on ~S’, it follows that in the topological vector space K(S)
over the topological field X, the set S is contained in the closure of
the vector subspace E Ksi. But the closure of a subspace is a subspace,

;

and therefore Ksi is dense in K(S). Since .Ksi has dimension n
; ;

and every finite dimensional subspace of a topological vector space
over a complete topological field is a closed set [1, § 5, n. 2, Cor. of
Prop. 4], the vector space has dimension n. Hence

rankRS == n. 0 i



146

When the prime ideal P has an immediate successor Q in Spec (.Z~),
i.e., when the set of all the prime ideals of .R properly containing P
has a least element Q, we are able to prove a similar formula when
the residue ring is a DVR. As we prove in the next lemma,
the exact formula is d(P) = c(P) .d(Q).

This equality does not hold in general if the valuation domain
is not a DVR, not even if .R has rank 1, i.e., the prime ideals

of 1~ are only 0 and the maximal ideal ~. To see this, take for .R any
complete valuation domain of rank 1 which is not maximal. Then

&#x3E; 1 and c(O) = d(M) = 1.
In the proof of the next lemma we shall need the following remark:

if .R is any valuation domain, I an ideal in .R, ~S’ a maximal immediate
extension of .R and ..I~, K(S) denote the fields of fractions of .R, S,
respectively, then and HomR (K, K(S)/IS) are isomorphic R-
modules. To see this, apply the functor HomR (.K, -) to the exact
sequence

and obtain the exact sequence

In this sequence Hom, (.K, = 0 because has no nonzero divisible

submodules, Homa (K, g(~’) ) ~ g(~’), and Ext’ (.g, Ext’ (K Q ~S’,
IS) = 0, because is a flat R-algebra and is a maximal valuation
domain [4, Th. A3 and Th. 51].

LEMMA 2. be a valuation domain and let P  Q be prime
ideals in .R. If is a DVR, then d(P) = c(P) ~ d(Q).

PROOF. If one of the factors on the right hand side of the equation
is oo, the equality holds trivially. Therefore we may suppose c(P)  o0

and d(Q)  oo and, factoring out the prime ideal P, we can suppose
P = 0, so that .R~ is a DVR. The remark preceding the statement
of the lemma, applied to the rings R and .R~ and their common ideal Q,
gives Hems (K, and Homa 
where ~S’, ~’’ are maximal immediate extensions of .R, RQ respectively.
Moreover = [3] and because
S is a flat R-algebra (so that every injective S-module is also injective
as an R-module) and every element of S is the product of an element
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of R and a unit of S. Hence But has
Goldie dimension d(Q)  00 [8, Cor. 3.4] and all nonzero cyclic .R-sub-
modules of are isomorphic to It follows that 

Similarly because dRQ(Q) = 1.
Therefore Hom,, (K, and .g(~")  HomRQ (K,

But [9, Prop. 5.6], and 
HomRQ (K, We conclude that the R-modules

and K(,8’ )d(Ql are isomorphic. But rankRK(S) = rankRS = d(O),
and = d(Q) ’ c(0) because S’ is a maximal immediate
extension of I~Q and .RQ is a D V:R, so that S’ is the completion of both I~Q
and R. Hence d (0) = d(Q) ’ c(0). C1

When the valuation domain .l~ is discrete, Lemma 2 applies to any
prime ideal P with an immediate successor Q, so that d(Q) = sup ~d(L) :
L &#x3E; P, L a prime ideal in 1~~. Thus combining Proposition 1 and
Lemma 2 we obtain

THEOREM 3. Let R be a discrete valuation domain and let P be a prime
nonmaximal ideal of .R. Then d(P) = c(P). sup{d(Q): Q &#x3E; P, Q a prime
ideal in .R~. D

Theorem 3 enables us to compute d as a function of c for the discrete
valuation domains with the a.c.c. on prime ideals. These domains
were studied in [10], y under the name of totally branched valuation
domains, in relation to the structure of their modules.

COROLLARY 4. Let .R be a discrete valuation domain with the a.c.c.
on prime ideals. Then {c(Q): Q&#x3E;P, Q E Spec (.R)~ f or all

prime ideals P in l~; in particular the mapping c determines the mapping d.

PROOF. Since .R has the a.c.c. on prime ideals, the set Spec (R)
is well-ordered under reverse inclusion, i.e., Spec (R) = for

some ordinal 0153 where if We must prove that

d(P03BC) u II c(PA). Induction on a. If fl = 0, Po is the maximal ideal
A  03BC

of R, and d(Po) = c(Po) = 1. If fl -,u’+ 1 the conclusion follows

from Lemma 2. If ,u is a limit ordinal, either ~C’  p ==
’I ,~, 

oo, in which case the result holds trivially,
is bounded, in which case

. and the result

follows by the inductive hypothesis and Proposition 1. C7
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The formula of Corollary 4 may not hold for an arbitrary discrete
valuation domain, not even if it has the d.c.c. on prime ideals. This is
shown by the following example, where we construct a discrete valua-
tion domain with Spec (.1~) order isomorphic -[- 1, c(P) = 1 for
all P E Spec (1~), and d(O) =1= 1.

EXAMPLE 5. Let S~ be the first uncountable ordinal and let Z"
be the lexicographic product of Q copies of Z, that is, Z-0 is the direct
product of 101 copies of Z ordered lexicographically, which means
that if one views the elements of ZD as functions S~ -&#x3E; Z, then for f,
g E f  g if and only if f («)  where a = min (fl : fl  D7 ~
~ g(fl)). Then there exists a valuation domain R with value group ZD
(and therefore with Spec (R) order isomorphic to S~ -[- 1), which is
not maximal, but such that .R/P is a complete valuation domain for
all P E Spec (R).

To see this, let I~ be a field and let R be the subring of 
consisting of all the long power series of with countable

(well-ordered) support. It is obvious that .R is a valuation domain
and that is a proper immediate extension of .R. This implies
that ZO is the value group of .R and that R is not maximal. More-
over for every ordinal $  S~ the canonical isomorphism of ordered
groups implies that is canonically
isomorphic to for every prime non maximal ideal P* of 
and this ring isomorphism induces a ring isomorphism RIP - .I~
for every prime non maximal ideal P of .R. Therefore in order to prove
that is complete for all P E Spec (R) it is sufficient to prove that .R
is complete. This is an easy exercise. C7

In the next section we will consider and completely solve the pro-
blem of determining the functions e.R that can arise from discrete
valuation domains .R of nonzero characteristic with the a.c.c. on

prime ideals. For these rings Corollary 4 yields the function d.
Since the construction in the next section is rather complicated,

we now give an example of a discrete valuation domain of nonzero
characteristic with a finite number of prime ideals and (almost) arbi-
trary completion defects on these primes. This example is based
on an idea of Nagata’s [6]. For an example of a DVR of characteristic
zero with c(O) = 2 see the example of Terjanian in [7].

EXAMPLE 6. Let p lco~ - 1 ~ .. , ~ I be a finite sequence of

powers of a prime number p. We construct a discrete valuation domain
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of dimension n, with prime ideals Po &#x3E; ... &#x3E; Pn = 0 such that
for i = 0, ... , n.

We first recall Nagata’s example [6, Example B 3.3, p. 207]: if

~ is a field of characteristic p, x is an indeterminate over .~, 
- oo and then there exists a field K’ such that I~ ~ .gp~~x~~ c I~’ ~
c k~~x~~ and [X((.r)):J~’] = pa. Here K -Kp((x)) is the compositum of
the subhelds K and KP((x)) of K((x)). (Nagata’s example is only for a = 1,
but a slight modification of his arguments yields our version).

Now fix a field ~o of characteristic p such that [I~o : ~o] _ 00,
and let ... , xn be algebraically independent indeterminates over Ko .

By induction on i it is now immediate to construct fields K1, I ..gn
such that and .

Remark that if = oo then = oo, and
since  00, it follows that ~Hi : l~~ 1 ~~xi~~~ = oo; but

K$  .g~ ~~~~i~~, so that in particular [-Ki: Kj’] = 00. Hence the inductive
step is given by Nagata’s example.

Set Vi = Ki r1 so that Yi is the valuation ring of the valua-
tion induced on Ki by the usual rank one valuation of 

Since the completion of Vi is Now set

the ring .R is an iterated « D + M construction &#x3E;&#x3E; (see [2]). Since
the Yi’s are DVR, 1~ is a discrete valuation domain of rank n with
prime ideals Po &#x3E; P1 &#x3E; ... &#x3E; Pn = 0, where Pi = Xi+l + Yi+2 +
+ ... + gtn Vn for 0 c i c n - 1. Moreover .R/Pi is naturally isomorphic
to .Ko + Xl Vl + ... + xi Yi, so that in particular gi is the field of

fractions of .R/Pi and the set is a basis of neighbour-
hoods of zero in the valuation topology of .R/Pi . But then the comple-
tion of is isomorphic to the completion of Vi, which is 
Hence c(Pi) = rank,, = as we wanted. D

2. A theorem of realization.

In this section we shall construct a discrete valuation domain
with the a.c.c. on prime ideals (and thus with Spec(R) well-ordered
by reverse inclusion) with arbitrary order type for and arbi-

trarily fixed function eR. We make our construction in Theorem 8.
First we need a remark.
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REMARK 7. If the valuation domain .R has characteristic p =F 0,
then d(P) is either o0 or a power of p for every prime ideal P of R.

This follows from some exercises of § 8, Ch. 5 of Bourbaki’s book [1]:
factoring out the prime ideal P of .R we may suppose P = 0, and we
must prove that if is finite, then it is a power of p. Here,
as usual, K(S) and K are the field of fractions of a maximal immediate
extension S of R and the field of fractions of R, respectively. By
Bourbaki’s exercise 6 c), 8 is an Henselian ring. By [11, Cor. 1 of
Th. 9] the restriction of the valuation of to every subfield of

of finite codimension is Henselian, because 8 has prime charac-
teristic. Therefore is Henselian, and by Bourbaki’s exercise 9 a)
(Ostrowski’s Theorem) [I~(S) :K] is a power of p, because 8 is an
immediate extension of .I~ and therefore the ramification index and
the residual degree are both equal to one.

We are ready to prove our theorem. For the terminology about
p-basis and p-independence we refer the reader to Matsumura’s
book [5].

THEOREM 8. Let a ordinal number, l: « + 1 - N U 
a mapping with l(O) = 0 and p a prime number. Then there exist a discreet
valuation domain .R and an order antiisomorphism « + 1 - 
Â ~ Pa,, such that p~~~&#x3E; f or every A ,x.

PROOF. Let Ga be the free abelian group with basis A  0153}.
Regard the elements of Ga as functions « --~ Z that vanish almost

everywhere. If f , g E Ga, set f  g if f(A)  g(A) v.here A _

f (,u) -=1= g(,u)}. Then Ga is a totally ordered group
and its convex subgroups are, for all 

for every ,u ~ ~,, ,u C «~ .
Fix a field k of characteristic p such that the dimension [K:Kp]

of K as a vector space over KP is greater or equal to max ~o},
where is the cardinality of 0153. Let B be a p-basis of K over Kp

(see [5]); B has cardinality &#x3E; max {|a|, N0}.
Let denote Hahn’s field. Recall that the elements of K((Gi))

may be viewed as formal series of type 1 where cg E .K, X9 is
a symbol for each g E and eg = 0 for all g but a well-ordered subset
of Gx - We may suppose that .

If A  there is a canonical ring homomorphism .K~G~~ --~
-+ defined by for every

Since the set B contains distinct elements
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n, ~), indexed p, n, m, where A, p are ordinal numbers 
and 

Fix since the set  v} is a well ordered subset
of 6~ the field K((G,)) contains the elements

indexed by A, n, v, with and 

CLAIM 1. Fix The set Av = ~ f (~,, n, v) : v C ~, c a, 
is a subset of K((Gv))

which is p-independent over .K~~~G~~~.
PROOF. It is sufficient to prove that every element of Ay does

not belong to the subfield of generated by and all the
other elements of Fix lo with and we will prove
that f(Âo, no, v) does not belong to the subfield .F of K((Gv)) generated
by KP((G,)) and v)}. The elements of .F are long power
series with coefficients in p, n, m) : v C ~, C a, ,u  v, n, 

B~b(~o~ ~~ no,  v, ~~b~~~ ~~ n, m): 
and the coefficients of are ~b(~, ,u, no, m) : ,u C v,
Since the b(A, p, n, m)’s are in B, which is p-independent

over the coefficients of f(Âo, v) do not belong to the field generated
by the coefficients of the elements of F. Therefore f(Âo, no, 

Similarly This

proves Claim 1. 0

Let C, be a subset of K((G,)) such that A, r1 Cv and Bv = Av U Cv
is a p-basis of over Kp((Gv)).

CLAIM 2. Fix v, ~ with $  The set D,, _ ~ f (~,, n, v) : 
n e N) is a subset of K((G,)) p-independent over the

compositum of the fields and 

PROOF. Fix and no E N. It is sufficient to prove that the

element f(Âo, no, v) E Dv does not belong to the subfield of K((G,,))
generated by and no, v)~.

By way of contradiction, suppose that f(Âo, no, v) E 
v)l). Then there is a finite subset ~S’ of such

that By Claim 1 BE is a

p-basis of Therefore there is a finite subset B~
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of B~ such that In particular,

But the canonical isomorphism of ordered groups 

Now the set Aç n B’ is finite, and the set p, no, 77e) : $  p C v,
is infinite. Therefore r1 B~ for suitable

and Since is a p-basis of

it follows that Therefore

f(Ao, no, v) ft 1I’, contradiction. This proves Claim 2. El

We now construct a family of fields satisfying the follow -
ing conditions:

b) if then and 

n (the homomorphisms n’tt have been defined in the fourt h

paragraph of the proof of this theorem);

c) if n e N and v  A then f(Â, n, v) e Kv;

d) if K; is the completion of K" in the topology induced by the
valuation topology of I~~~Gv~~, then 

The construction is by transfinite induction on For v = 0,
we set Xv = .K. Then the four conditions a)-d) are trivially satisfied
(note that = 0).

Case o f a non-limit ordinal. Suppose v + 1 c a and suppose that
has been defined and satisfies properties a)-d) . Consider

the field compositum of fields. The

elements n, ’V + 1 ) e + 1 ~x~ are p-independ-
ent over L, because they are p-independent over 
(Claim 2). Moreover the elements -)- 1) belong to the closure
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of ~L in the topological field (i.e., they belong to the comple-
tion LA of L), because
is the limit of the sequence

which is contained in ..K~~g~.gp~~G~+1~~ = .L, because n, v) E K, by
the inductive hypothesis, and E .g~~(G~,+1~~.

Therefore there exists a p-basis of .L^ over L with f(Â, n,
v -~- 1 ) E .w + 1 for all Set

Let us show that j6~+i satisfies the required properties:

a) and c) are trivial.

b) Obviously Since - for every
it is sufficient to prove that

On the other hand, since is the completion of
.L r1 their proper homomorphic images are canonically
isomorphic, and, 7 in particular, 1 r1 = r1

From this we obtain that _

. Thus it remains to proves

and for this it is sufficient to show that contains the image
of the other inclusion being trivial. Now

and is canonically isomorphic to

.K~ Gy" ((x,), X an indeterminate. If we indentify and 

~~X ~ via this canonical isomorphism, then by a ) .
Therefore

This proves Property b).
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d) Since is a p-basis of L~ over L, it is obvious that
Moreover so that KV+l is dense

in LA; since L ^ is complete, we conclude that = LA.

’ 

Case o f a limit ordinal. Suppose v  « is a limit ordinal and suppose
that {2~:~~} has been defined and satisfies properties a)-d) .

Consider the fields K§ = and the closure of
iv

K; in K((G,)). Since by Property a), it follows that

If and n E N, the series is the limit 

,u  v~ in the topological field K((Gv)). But I(Â, n, p) e Kp, by Property c),
and thus it follows that n, p) e .Ky for all,u  v, so that f(Â, n, v) e L’B
Therefore D,, _ ~ f (~,, n, v) : ~, ~ v, Let us check that 2~
is p-independent over L : otherwise, a finite subset Po of Dv would
be p-dependent over Since is

finite, there would exist such that .F’o is p-dependent over
Therefore Dv would be p-dependent over 

and this contradicts Claim 2.
Since D,, is a subset of L ^ p-independent over L, there exists a

p-basis E, of LA over L containing D, . Set

so that K, is a subfield of .L^.
Let us show that gy satisfies properties a)-d).

a) is obvious, y because

b) It is clear that
contains
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we obtain

By the inductive hypothesis, y for every 2 such that 03BC  2  v,
we have

This proves b).

d) We have remarked that 1~ == Since B, is a p-basis of Z
over L, it is clear that = This proves d).

Thus the construction of the family is complete.
Set .R = Kex n so that .R is a valuation domain. We prove

that .Z~ is the valuation domain required in the statement of the theorem.
Since by properties a) and b), the extension

of valuation domains is immediate, so that .1~ is discrete
with value group The prime ideals of .R

are the kernels of the restrictions to 1~ of the canonical homomorphisms
-* therefore BIPA - = KÂ r1 by Pro-

perty b). This gives = for all by Property d).
The desired conclusion follows. 0
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