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On the Integral Representation of the Solution
to the Stokes System.

ALBERTO VALLI (*)

1. Introduction.

In this paper we want to present in a detailed form the methods
and the calculations which permit to obtain the representation for-
mulas for the solution to the Stokes system

The method which we shall follow is well-known since the second
half of the nineteenth century, and is called the Green’s method.
It was already applied to the Stokes system long time ago (indeed,
always for g = 0; in this case (1.1) describes the stationary «slow
motion of an incompressible homogeneous viscous fluid), y and one
can find in several papers the calculations which lead to the representa-
tion formulas. However, despite these numerous results, the situa-
tion doesn’t appear really clarified, at least for a reader which is not
a specialist in this field.

In fact, excepting for the case g = 07 T = 0, for which the formnlas

(*) Indirizzo dell’A.: Dipartimento di Matematica, Università di Trento,
38050 Povo (Trento), Italy.
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are effectively well-known (see [25]; [17]; [32] pag. 162, 281; [15]
pag. 65; [29]; [28]; [5]; [2] pag. 272; but formulas ( 25 ) 2 in [32], pag. 281
and (31) in [14] are not correct), the relations obtained for f = 0,
g = 0 don’t seem to be exact, and moreover they are usually stated
in the literature without proof, simply by replacing the fundamental
singular solutions with the Green’s functions, which nevertheless do
not satisfy all the properties required by the calculations performed.

For instance, the formula for v(x) in [25], [32] pag. 162, 281, [2]
pag. 271 and [16] is given in terms of and while the correct

expression needs Gk and 6~ (compare with § 3, (3.4) and (3.18); to
our knowledge, formula (3.4) was obtained for the first time by
Oseen [27], pag. 27). Moreover the problem of finding a representation
for p(x) seems to be completely not clarified, since it is apparent that
the formulas given in [25], [32] pag. 162, 281 are not correct (check
the sketch of the proof given there, and compare the result with
§3, (3.28) or (3.24); in the book of Oseen a formula for the pressure
p(x) is not obtained, excepting when S~ is a ball; see [27], pag. 106).
To our knowledge, the (general)) case f ~ 0, g # fl, ~ ~ 0 is consi-
dered only in the paper [5], but equation (26) obtained there is not
correct (put for instance f = Vg, 99 = 0 in that formula).

In our presentation we want to follow closely the classical methods
introduced for the Stokes system by Odqvist [25] (and reproduced
also in the book of Ladyzhenskaya [15]), despite this procedure is

not the most direct one for getting the representation formula for
p(x). However, we give also an alternative proof which is more natural
(see Remark 3.3), and we analyse in detail the relations between
these two approachs (see Remark 3.4) (1). ,

One must observe moreover that the calculations employed to
get (3.4) and (3.24) are quite simple (as we already said, the way for
obtaining (3.19) or (3.28) is a little more complicated). It is appro-
priate to recall again that in this paper we obtain expected results
by classical methods, following the approach given by the Green’s
method to get the representation formulas. Nevertheless, we repeat
that these formulas don’t seem to have been yet explicitly presented
in a correct way in the current literature.

Let us spend now some words about the Green’s method (and
its application to Stokes system), which is one of the most classical

(1) Nevertheless, it is clear that the approachs presented here don’t ex-
haust all the possible methods to get the representation formula,s.
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methods for showing the existence of a solution to partial differential
equations. It is well-known that it consists essentially in these steps:
(i) write a Green’s formula, obtained by considering the differential
operator and its adjoint and by integrating by parts in the domain D;
(ii) find the fundamental singular solution of the adjoint equation;
(iii) insert this solution in the Green’s formula, getting in this way
a representation for any regular solution of the equation. This repre-
sentation formula usually contains an integral on the boundary 3D
which doesn’t depend explicitly on the data of the problem. Hence

one is led to determine a Green’s function, that is a fundamental
solution whose value on 3D makes this additional term to be zero.

This method was applied in the first three decades of the century
also to the Stokes system (1.1) (indeed, as we already said, for g = 0).
In 1896 Lorentz [19] (reproduced in [20], pag. 23-42) found the funda-
mental tensor

which satisfies for a figed x E R3

and for a fixed y e R3

Here and in the sequel we adopt the Einstein convention about sum-
mation over repeated indices; 6,i is the Kronecker’s symbol; Vx
and mean that the differentiation is taken in the first three varia-
bles or in the second three variables, respectively; ~(x - y) is the
Dirac delta «function ». One sees in particular that
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where

is the fundamental solution for - J.

By writing the Stokes system in the following way

the adjoint is given by

and the fundamental Lorentz tensor satisfies in this notation

where ek is the unit vector directed along the k-th coordinate axis
(we write the index denoting the component of a vector over the vector
itself).

By means of this fundamental tensor it is easy to get representa-
tion formulas for the solution of (1.1) (see § 2, (2.8) and (2.9)). By
looking at these formulas, it is clear that, if one wants to express v
in terms of Q, f , g and solely, one needs to find a fundamental
solution (Gk, Gk) which satisfies Gk)(x, y) = (6(x - y)ek 0~ and
such that Gk takes value zero for y E This can be done by solving
the problem

(here x is a fixed point in and by choosing (Gk, Gk) === (Uk - gk, I
However, it is clear from the divergence theorem that, for
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solving (1.12), it is necessary that

where n(y) is the unit outward normal vector to 8Q in y.
This condition is obviously satisfied, by (1.4)2’ but one has to

prove that it is also sufficient for having the solution of (1.12).
In 1908 Korn [11] (see also [12]) showed, by a method of successive

approximations, the existence of a unique solution to (1.1) (with
g = 0, div f = 0; however, for Stokes problem this last condition
is not restrictive). He assumed that the data of the problem were
regular enough, and that the (necessary) condition

was satisfied. In particular, he showed the existence of a solution
to (1.12), that is the existence of the Green’s functions

In 1928-1930 Odqvist [24], [25] (see also the contribution of

Fax6n [8], Villat [32], chap. IV, V, IX) proved the same result by
following the Green’s method that we have explained up to now.
Moreover, he studied the properties of the functions gk and g; , solu-
tions of (1.12) (more precisely, he considered the functions h~ and hk ;
see §3, (3.13) and (3.14)), obtaining in this way representation for-
mulas for the solution to (1.1) (with g = 0) depending only on the data
4ii, f, W (2) (3).

(2) However, as we said, these formulas seem to be correct only for

f 0, T= 0.
(3) Another method for proving the existence theorem (always for g = 0)

was introduced by Crudeli [7], who however completed the calculations only
when Q is a ball. Lichtenstein [18] extended the result to any regular boun-
ded domain Q c R3. Other partial results about this problem were proved
by Boggio [3] (S~ a ball); Oseen [27] (explicit construction of the Green’s
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It is appropriate to observe now that the Gieen’s method gives
indeed a representation formula for a regular solution which we sup-
pose to exist. Hence, for completing the argument, one has also to
show in some way that the solution does exist, for instance by verify-
ing directly that the functions expressed by the formula that we have
obtained really satisfy the equation. (This procedure is usually called
the «synthesis of the solution »: see for instance Krzyzanski [13],
pag. 239). We shall perform these calculations in § 4, proving in this
way the existence theorem in the regular case by a difect approach.

Some remarks are now appropriate.

1) The case g # 0, which was not considered in the classical
papers, since it has not a clear physical meaning, it is interesting
for the study of compressible problems, both in the stationary and
in the non-stationary case (see Matsumura-Nishida [21]; Valli [31]).

2) The existence theorem is well-known also by a variational

approach, and anyway the « general case f 0 0, g ~ 0, g~ ~ 0 can be
reduced to the case f ~ 0, g = 0, ~ = 0 by a standard argument
(see for instance Temam [30], pag. 23, 31). Moreover a regularity
theory can be developed by means of the a-priori estimates of Catta-
briga [5] (see also §4, Remark 4.6). Hence one can perform the syn-
thesis of the solution also in this way (see for instance, in another
context, the procedure adopted by Folland [9], pag. 109-112, 342-345).
However, we think that a simple proof by a direct argument is inter-
esting on its own.

For completing the review on the results about representation
formulas, we want to recall also that Bogovskii [4] has obtained an
explicit formula for a solution of

in terms of the datum g. However, he doesn’t utilize Green’s func-

functions for a ball, pp. 25-28, 97-106; see also [26]); Modjtah6di [23] (SZ a
ball; see also Villat [32], pp. 257-267). For other informations about these

classical results, see Berker [2], pp. 262-276.
In a much more generale context, Colautti [6] proved the existence of

the solution and obtained a representation formula in the case g = 0, g~ = 0.
The methods employed by this last author seem to be the most fruitful with
regard to numerical approximations.
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tions, and among the family of solutions that he finds in general none
satisfies d v - Vp = 0.

At the end of this introduction we remark that in the sequel we
shall assume that S~ is a bounded connected open subset of R3, and
its boundary aS? is a regular manifold, say aS2 E C3. Consequently,
the functions y) and gk(x, y) defined in § 3, (3.3) satisfy gk(x, ~ ) E
E E for each x E ,52, 0  1  1. (We denote
by e N, 0  I  1 the usual H61der’s spaces, and 
or ~&#x3E;2013ly the usual Sobolev’s spaces).

Finally, we shall use freely the properties of the Dirac delta «func-
tion » 3(r - y) : however all the calculations can be developed in a
classical way by deleting from S~ a small ball B~(x) of center x and
radius s, and by taking the limit as E - 0+.

2. Green’s formulas.

By setting

one obtains at once (see also Odqvist [25]; Ladyzhenskaya [15], pag. 53)

where n is the unit outward normal vector to and (v, p), (u, q)
are smooth functions.

By setting
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and choosing in (2.1) (ui, q) _ (uk, qk) for each k = 1, 2, 3, one gets
easily by (1.10) that for 

By proceeding as in [25], [15] and observing that

one also gets for 

up to an additive constant.

Moreover, by (1.10) one has

one gets

Hence we can write the Green’s formulas in this way:
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(of course, (2.9) is satisfied up to an additive constant).

REMARK 2.1. Formula (2.9) for p(x) can be obtained also by
choosing in (2.1) q) - (qi, 0) (see Villat [32], page 134, 160).

Furthermore, we can choose also (ui, q) - (qi, - ~), that is the

solution of

The matrix

is the fundamental solution for both the operators L$ and .Lx.

3. Green’s tensor.

Construct now the Green’s tensor by setting

where gk and gk are the solution of
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for As we already said, the existence of gk, gk follows from
well known results (see for instance Ladyzhenskaya [15], pag. 60),
since

Moreover, gk(x, y) is defined up to an additive function of x. It is

easily verified that Gk and Gk satisfy .Lv(Gk, Gk)(x, y) = (3(tc - y)ek, 0).
Hence we can repeat the same calculations performed in § 2 by choosing
in (2.1) q) - (Gk, Gk), and we obtain

Hence

This is Green’s representation formula for the solution of (1.1).
We can obtain an analogous formula for p(x). First of all we need

to show that
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This is easily proved for x, y eQ, x 7/-, y by choosing in (2.1)

moreover for x E 8Q, y e o we set y) = 0. Obviously, one has
also

Now calculate L1vk(x) from (3.4): by using the results that we have
already proved in § 2, we get

where we have choosen a suitable y) in such a way that it is

regular in x, for instance by requiring that

Moreover, by y) _ y) (where we have defined S(x, y) _
r (y, x)), one has
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Hence

Finally

hence

Remark that from. (3.9) we have that y) is continuous
in KXD, 1~ any compact set contained in Q.

From (3.4) and (3.10) we can write
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Moreover from (3.9) one has

since V1
Hence

up to an additive constant.

Define now

and
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It is verified at once that f or y E SZ

hence these functions correspond to

(see Ladyzhenskaya [15], pag. 65), y or to

(see Odqvist [25]).
We can rewrite (3.4) and (3.12) in this form (see also (3.28), (3.24)):

REMARK 3.1. One can verify that in general the third term in
(3.19) cannot be deleted. In fact, take S2 =  1}, f = 0,
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It is easily seen that the solution is given by

and indeed

as one can verify directly by using the relations

On the other hand, if one gets at
once that

and in this case the third term in (3.19) does not give a contribution.

REMARK 3.2. Observe that the relation

in general does not hold. In fact, it follows from (3.20) and (3.3)1 that

for each x E S2. Hence in (3.8) the last two terms disappear,
and consequently the same happens for the third and the fifth term
in (3.19). This contradicts Remark 3.2.
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REMARK 3.3. As we observed in Remark 2.1, we can obtain (2.9)
in a direct way by choosing (ui, q) - 6), where - 6) =
= (0, 3) . Hence, if we find the solution (li, 1) of

surface measure of oS2), y and we put

by choosing in (2.1) (ui, q) - (Li, L) we can repeat the same calcula-
tions, and we get easily (up to an additive constant)

Observe that (3.24) is formally quite similar to (3.4).
Remark also that the solution of (3.21) exists since

Though formula (3.24) looks simpler than (3.19), y we prefer to use
this last in the following arguments, since in the classical paper of
Odqvist [25] the author studies in great detail the behaviour of the
Green’s functions H,, and .H~ while Li and L are not considered.
(If S~ is a ball, see however Oseen [27], pag. 103-106).

REMARK 3.4. We want to precise some properties of .L$ and L which
are useful to clarify the relations between (3.19) and (3.24). By choosing
in (2.1) va(z) --- ~(z) _ - = = L(y, z) one
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gets

by choosing ul and q as before and
one obtains

Here one utilizes (4.14) and the relation

which can be proved by extending n(z) in 17 and by using the divergence
theorem.

Relations (3.25) and (3.26) make it possible to simplify for-
mula (3.19). In fact, by (3.25) and by assuming that (3.7) holds,
we have

Consequently, by using the divergence theorem and (2.2)

On the other hand
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and

Hence by (3.11) and by Fubini’s theorem we get that

We can thus rewrite the formula for p(x) in this way

Moreover, by assuming that

we get
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Hence, if we assume that (3.7) and (3.29) hold, Fubini’s theorem
gives at once that the representation formulas (3.28) and (3.24) are
exactly the same.

4. The synthesis of the solution to the Stokes system.

We want to prove now that, if we assigne f, g and (p, smooth func-
tions satisfying

then v and p given by (3.18) and (3.28) are the solution of

From (4.2)2 and (4.2)3 one sees that condition (4.1) is obviously neces-
sary for the existence of the solution.
We begin by verifying (4.2 ) 2.

LEMMA 4.1. One has that

(i) for any y E Q, y) is constant in x E S2;
(ii) for any x E S2, y) is constant in y E S~.

Moreover, by (3.7) one gets that these constants are equal to zero.

PROOF. One has only to recall that for x E Q, y E S~

and moreover by (3.3),

Since, for a fixed y) is regular in x E Q, one ob-
tains (i).
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Finally

Hence for any x E D we can write

for a certain function A (x) ; on the other hand by (3.7)

LEMMA 4.2. The function v(x) given by (3.18) satisf ies

for any x E Q.

PROOF. By direct calculation. One has by (3.17)2

Moreover

Finally, from (3.17)2
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Now we want to verify that v assume the boundary confition, that is

One sees easily that

are continuous functions on Q, since for x, y E S~, x ~ y one has

as it is proved in Odqvist [25] (see also Ladyzhenskaya [15], pag. 68;
Miranda [22], pag. 25).

On the other hand

LEMMA 4.3. For any yo E 8Q we have

PROOF. By (3.7) and (3.25) we have for x E SZ

Hence, by the properties of Ek we get for each x yo E 8Q
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Hence for x we can extend gk(x, y) up E 8Q in a continuous

way, by setting

LEMMA 4.4. The f unetion v(x) given by (3.18) satisfies

f or any xo E 8Q.

PROOF. One has, from (3.17)3 and Lemma 4.3:

The third term in (3.18) requires some more calculations.
First of all

Take the second term into account. We can find two regular func-
tions 0 and x W2’2(S~), x e W~,2(,~)) such that
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(see for instance Odqvist [25], Ladyzhenskaya [15], pag. 79; remark
however that for proving (4.15) it is enough to extend 99 in SZ as a
C2(Q)-function, and then use the properties of H) and Hk as

in (4.8), (4.9)).
Hence we can write

The first integral can be written in this way, by integrating by parts
and by using (4.11 ), (3.7):

Hence we have

On the other hand for

In fact for ,



108

and moreover, as is regular in y near and up to 8Q,

The thesis follows from (4.8), (4.9), (4.13) and (4.14).
Observe that in particular we have proved

We are now in a position to prove that v and p given by (3.18), (3.28)
satisfy (4.2)1:

LEMMA 4.5. The f unetions v(x) and p(x) given by (3.18) and (3.28)
satisfy

f or any x E S2.

PROOF. We have already proved that (see (3.8))

On the other hand, from
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Furthermore, by (3.7)

Finally, from Fubini’s theorem, (3.30) and (3.26), by extending 99
in D as a C2(Q)-function ip, we get

From (4.3), (4.7) and (4.16) it is clear now that condition (4.1 )
is sufficiente for having that v and p given by (3.18), (3.28) are the
solution of (4.2) (p unique up to an additive constant).

REMARK 4.6. By a variational approach (which was used for the
first time by Leray [17]; see for instance Temam [30], pag. 23, 31)
one can prove an existence and uniqueness theorem for (4.2). On
the other hand, by means of the a priori estimates of Agmon-Douglis-
Nirenberg [1] for general elliptic systems, one gets regularity results
in Sobolev’s and Holder’s spaces (see also [30], pag. 33). More precise
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a priori estimates for the Stokes system were proved by Cattabriga [5],
and these estimates, combined with the existence theorem of varia-
tional type that we have recalled before, give the optimal result for
f E v E f ~ E a.~ E Om+2, m = maX (~C, 0),
1~ ~ -1, 1 C s C -~- ~. A theorem which gives existence, uniqueness
and regularity in Sobolev’s spaces with s = 2 and in H61der’s spaces is
proved (among many other results) in Giaquinta-Modica [10], without
using potential theory.

REMARK 4.7. The representation formulas (3.18) and (3.28) hold
also for f E E E (g and 99 satisfying (4.1)).
In fact, set (v, p) to be the solution of (4.2) with these data (by choosig p
in some way, for instance f p(x) dx = 0). By the results of Catta-

il

briga [5] we have v E p E_ and we can approximate
v, p in these spaces by Vn E OOO(Q), pn E OOO(Q). Define

We can write vn and pn in term of (3.18), (3.28) (pn up to an addi-
tive constant cn). By classical result on singular kernels (see for

instance Miranda [22], pag. 27), y estimates (4.6) give that each term
in (3.18) (evaluated for In, gn, pn), converges in L8(Q) to the corres-
ponding term in f, g, p. Hence (3.18) hold almost everywhere in Q.
The same calculations can be performed for the first, the second and
the fourth term in (3.28). The third and the fifth term converges
pointwise in since for any fixed y) is in for

any r E [1, + oo[ and the terms integrated in q converge in 
Hence also (3.28) holds almost everywhere in S~ (up to an additive
constant).

REMARK 4.8. If we choose Gk(x, y) and L(x, y) (see (3.23)) in such
a way that

then by (3.25) and (3.26) we have
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Define now the Green’s tensor for L* by

consequently the Green’s tensor for is given by

These tensors satisfy respectively and

y) _ ~(x - y) I, I - identity matrix.
By (3.5), (4.18) and (4.19) one has moreover

(tA --- transpose matrix of A)

and consequently Lx(tG) = = Hence one observes

at once that the functions

( . --- matrix product)

formally satisfy L(V, P) == ( f, - g).
If one observes that (4.21) gives the first two terms of (3.4) and

(3.24) (or (3.28)), it is clear that we have already proved this result
in Lemma 4.2 and Lemma 4.5. The compatibility condition (4.1)
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does not play any r61e at this level, while it is crucial, as we have
already seen, to verify the boundary condition for v (see (4.7)). Finally, y
remark that if one chooses Ok and L in a way which is different from
(4.17), then in general condition (4.1) is necessary also for proving
that 4w - Vp = f , div v = g.
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