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On the Automorphism Group of Planes
of Figueroa Type.

U. DEMPWOLFF (*)

1. Figueroa constructed in [2] a new class of finite projective
planes. This construction was generalized by Hering and Schaeffer
in [3] and in [1] it was pointed out, that this construction yields
infinite planes too. While Hering and Schaeffer determined the auto-
morphism group in the finite case we like to do this for the infinite
planes.

2. Let X be a cyclic Galois extension of degree 3 of the field F.
Represent the points by P = (xl, X2’ the

Define partitions and where

(respectively Ci) iff X3) = i.
Then J 1 = ( 9i,1, Ll) is a subplane isomorphic to PG(2, F) and
B = PGL(3, F) induces on J respectively on J 1 collineations by

and y E B.
If S E there is precisely one line s E E, such and Bs = Bs
(and vice versa). This defines a map It which interchanges and ~3.
Moreover there are precisely two points 82 E S n llt with Bs =
- Bs~ = Bs~ . For s E define

and is a nondesargue-

(*) Indirizzo dell’A.: Universitat Kaiserslautern, Mathematik Erwin-

Schrbdinger Str., D-6750 Kaiserslautern.
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sian projective plane for &#x3E; 2. Set G = Aut (T*) - We like to

verify:

PROPOSITION. G fixes the subplane and G= Z X A, where 

. REMARK. G has index 2 in the group of correlations (see [3]).

PROOF. By [2, 3] we may assume that = oo.

Let .g be the subgroup of C~ which fixes ~’1:

(1) H contains a subgroup

This follows precisely as in [3].

(2) H = A X Z.

Let If be the normal subgroup of .g which fixes ~1 pointwise.
Take (P, g) E R1 X C1 and pick a perspectivity z E B(P, g) . For 0 E M
we have 1. Thus M centralizes B. Suppose
g E C* - ~1 is a line fixed by 0 E M. Then all points of g r1 3t2 are
fixed by 0 as they all lie on exactly one line of C1: Thus 3t2 is point-
wise fixed and we have # = 1.

Thus M acts fixed-point-free on U j{,3. In particular for S e j{,3
acts faithful and semiregular on the three fixed points S, 81, S,

of Bs . Thus if = Z.

(3) Let 6~1 be the subgroup of G which fixes and C2. Then C~1 = H.

For convenience we use for the moment a coordinate transforma-
tion and identify points in 1lt; (lines in Ei) with «Xl’ X2’ x3)~ (respec-
tively iff)

where IT 3 x e IT denotes a Galois automorphism of order 3 (see
also [1, 2, 3]).

Suppose H C G1. Let yEGI-H and set £’ = £1y,
and T’= (Jt’, C’). By our assumption r1 = ø, t’ r1 ~1 = 0.
We may assllme 8* G £’ for 8 = ~(1, 0, 0)t) and pick P = «1, a, b
E - As is transitive on s r1 and .g~ is transitive on g n 
g n 3t2 f or g E ~1, we have that H’. is transitive on s * where ~’ _
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y-lHy. Thus V = ((0,1, 0)&#x3E; and U = :(0, 0,1)~ lie in Then
P- U lie in £2 forcing norm(a) = norm(b) = 1. Thus tJt’ contains

all points «1, a, a) with 0 # a E ~’, a3 ~ 1, and 0 ~ 1 + 2a3 - 3a2.
Then g = «(0, -1,1)t~ E £2 contains more then one point of :1t’, a

contradiction.
From now on we make the assumption H C G.

(4) G is flag-transitive 

By (3) we may assume that G is transitive on the lines of ~*. Pick
m E ~2 and a nontrivial elation z~ in G of the form 7: E G(P, m).

Case 1. P E 3t1. Suppose for all r E £1’ P E r we have (r n 3t1)7:
Then í E H, a contradiction. Thus there is an r E £1’

and a TErn 3t1 with So is transitive on r

and we are done.

Case 2. P E R2 U Set {C} = m r1 Choose T E -it1 - {0},
such that Suppose Then take an elation

1 ~ ~ E G( C, C ~ T ) . With i-lai we are in case 1. Suppose 
Pick an elation Then i-tai has axis in £1

and center in The dual argument of case 1 proves the assertion.

(5) G - H contains an Elation with axis and center in ~1.

By (4) it is obvious that we can find a homology 1 ~ 1 G G(M, g)
with and Pick such that 
Then r normalizes G(C, g). If H( C, g) is not r-invariant, we are
done. Suppose r normalizes H(C, g) . Then 7: acts fixed point free
by conjugation on H(C, g) . Take N E g’ n .it1, 7 N ~ C. Now H(N, g)
acts transitive by conjugation on H(C, g). Thus we find z’ E g)
such that e = -r’-r centralizes e is not a homology
as otherwise its center would be a-invariant. As e fixes we have
e E G(C, g). Take Q E (g U g’). Then Qrc- (g U g’) and Qe
lies on (Qr) - M. Now (Qi’). M E £2 and g’ i s the line of ~.1 containing M.
Thus Qp E 3t2 and we are done.

(6) Pick a as in (5). We may assume that a moves the points of 3t as
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We may assume that a = «1, 0, is the axis and C = «(0, 1, 0)~
is the center of a and that X = «1, 0, 0)~ is moved onto X’= «1, 0, 0))~
for some Pick gEL1, g ~ X - C. For YE g, Y:A 0,
we have Yu = n g, where R = X - Y r1 a. Clearly Ya, .1~, and Y
lie in 3t1 U Thus Yo = Yo(8) by the definition of P*. In parti-
cular u acts like o(0) on the lines of L1 through C. Suppose b E L2’

Take L1 Ya
is determined by the image of T - Y under a. Hence Ya = 

too.

Take now an arbitrary m E L1 U L2. Then

As C* r1 £3 = 0, cr leaves £*3 invariant. Thus ff1 is d-invariant and
the final contradiction.
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