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On Dedekind Domains in Infinite Algebraic Extensions.

NICOLAE POPESCU - CONSTANTIN VRACIU (*)

SUMMARY - The aim of this note is to prove the following result: Let A be
a Dedekind domain with quotient field .F’, and K an algebraic extension
of .K. Let W be a set of discrete valuations of rank one on $, and
O = ~x: x E K such that w(x) ~ 0 for all w E W~. Then 0 is a Dedekind
domain whose quotient field is .g, if and only if for every maximal ideal P
of .~. the set ~V(p) _ E W such that w extend the valuation on F
defined by P~, is finite. In such a way we can give various examples of
Dedekind domains in infinite algebraic extensions.

1. The theory of Dedekind domains was created as a generalisa-
tion of results concerning the rings of integers in finite extensions of
the rational field, obtained mainly by Dedekind.

We shall say that a field g has a classical ideal theory relative
to a Dedekind domain A, if A is a proper subring of .K is its

quotient field. It is clear that not every field has a classical ideal

theory (for example the finite fields and algebraically closed fields).
The aim of this work is to make some remarks on the Dedekind

domains in infinite algebraic extensions of a field .F’ which has a clas-
sical ideal theory. Since the theorem which we shall prove has a

general character, the main applications of this theorem concerne
infinite ’ algebraic extensions of rational numbers.

In [3] are defined so-called Stiemke fields. In a Stiemke field,

(*) Indirizzo degli AA.: N. PoPEscu: Department of Mathematics, Na-
tional Institute for Scientific and Technical Creation, Bd. Pheii 220, 79622
Bucharest, Romania; C. YRACIU : University of Bucharest, Faculty of Mathe-
matics, Str. Academiei nr. 14, Bucharest, Romania.
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there exist a classical ideal theory relative to a smallest Dedekind
domain. On the other hand we can define infinite extensions of ra-
tional numbers which have a classical ideal theory relative to a

smallest Dedekind domain but these fields are not Stiemke fields

(Example 3). Moreover (Example 1) we show that there exist infinite
extensions of rational numbers which do not contain a smallest De-
dekind domain.

Another question is relative to residue class fields of a Dedekind
domain. We show (Example 1) that in some infinite extensions of
the field of rational number there exist Dedekind domains A with

property that A/P. is a finite field for every maximal ideal .P of A.
On the other hand (Example 2) we may define Dedekind domains A
whose field of quotients is an infinite algebraic extension of rational
numbers and such that A contains infinitely (or finitely) many max-
imal ideals P such that A/P is finite, and in the same time infinitely
(or finitely) many maximal ideals P such that Alp is an infinite field.

2. Let A be a Dedekind domain and .F’ its quotient field. De-

note ~ the set of all maximal ideals of A. For every denote

2·p the valuation on .F’ associated with P.
The set TT = is called the set of the valuations of F which

define A.
Let .K be an algebraic extension of I’’. Assume that for every

maximal ideal P of ,4 there exists a non-empty set W(P) of non-
equivalent (rank-one and discrete) valuations on g which extend the
valuation vp. Let W = U W(P). For every denote 0v the

PEM

valuation ring of v in K, and let Pf) be the maximal ideal of 0". Let
us denote

THEOREM. The hypotheses and notations are as above. The fol-

lowing assertions are equivalent:

a) The ring 0 is a Dedekind domain whose quotient field is K.

b) For every P E M, the set W(P) is finite.

PROOF. a) =&#x3E; b). Let There exists a non-zero element
such that vp(a) =1= o. Thus one has :
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The hypothesis 0 Dedekind domain shows that the set in the right
of the above inclusion is finite, i.e. W(F) is finite.

b) ~ a). We shall show that conditions I-IV in [3], p. 95 are
accomplished (see also (I ]) .

(I). Let and 0r = 0 r1 F(x). Let Ax be the integr,,il clo-
sare of A in .Z’(x). It is clear that 0,,. Since is a finite
extension of .F’, one sees that is the quotient field of .Az hence
of Ox . This means that = ab--1, where a., b E Ox . Therefore the

quotient field of 0 is K.

(II). Let x be a non-zero element of .K. The inclusion 0z
shows that Ox is also a Dedekind domain. Hence the set of E W
such that v(r) # 0 must be finite.

(III). Let v1, v2 E W, "’2. This means that there exist x E K
such that v1(x) =1= v2(x). Since 0&#x3E; = F(x) r1 0 is a Dedekind domain,
there exist E Ox such that v,(a) &#x3E; 0 and = 0.

(IV). We must show that every prime non-zero ideal of 0 is
maximal. Denote by D the set of all finite subsets of .K. It is clear
that K = U F’(S), where is the smallest subfield of .K which

SED

contains F and S. For every S E D, denote Os = O n F(S), and AS
the integral closure of A in F(S). Since and As is
obviously a Dedekind domain it follows that Os is also a Dedekind
domain. One has

Now let I be an ideal of 0 and n OS . Then I s is an ideal
of Os and as above I = U Is. Furthermore, let P be a non-zero

Sc-D

prime ideal of 0, and I an ideal of 0 such that P c I and P # I.
Since P is non-zero, there exists an element 81 E D so that PSI =1= 0.
Also for any S E D one has Psc Is, and the condition ..P ~ I, implies
that there exists such that Iss. Let ~S = 81 U 82. Since

C =7~ ~c Ps one sees that Pa is a non-zero prime ideal of Os . On the
other hand, the condition PS2* Is2, means that Ps=l=Is, hence Is= Os.
Therefore the ideal Is, hence also I, contains the identity element
of 0 i.e. I =: 0. This proves that P is a ma,ximal ideal of 0.

As a consequence of the above Theorem one has the following result.
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COROLLARY ([3], Ch. IV, Theorem 5). Let A be a Dedekind do-

main, F its quotient field and K an algebraic extension of .K. Let V
be the set of all valuations of F which define A and denote W the
set of all prolongations of all elements of V’ to .K. The following
assertions are equivalent:

1 ) The ring 0 --- n 0~ is a Dedekind domains.
wEW

2) Every has a finite number of prolongations to g, and
every element of W is a discrete valuation.

A field K which verifies the equivalent condition of the Corollary
is called a Stiemke field with respect to the pair (A, .~’) (see [3],

Also, [3], pag. 111 gives an example of a Stiemke field with
respect to the pair (~, Q), where Z is the ring of integers and Q the
field of rational numbers. It is easy to see that every Stiemke field
with respect to a pair (A, .~) can be constructed as in [3], Lemma 31,
pag. 111.

On the other hand, using the ideas of [3] (Lemma 31, pag. 111)
we can define various examples of Dedekind domains.

In what follows let pi , p2 , ... , p n ... be the increasing sequence of
prime numbers; denote vn the valuation on Q defined by pn.

EXAMPLE 1. We shall define an infinite algebraic extension
of Q such that the prolongation to g of any valuation v on Q, is a
discrete valuation.

, 

For every natural number nt we may define an algebraic number
field Kn such that:

ii) For every the valuation vi has at least pro-

longations to 

Suppose that is already constructed, and let Wi , ... , Wr be the
set of all prolongations to gm of the first n + 1 valuations .. , 

Let .~ be the integral closure of Z in K . There exists for every j,
a monic polynomial Pi(X) E B[X] of degree t,vo and such

that the image of in the residue class field associated with w; ,
has two distinct roots. By the Chinese Remainder Theorem there
exists then an irreducible polynomial p(X) of degree two, p(X) E B[X]
such that (mod where P; is the prime ideal of B
associated with 1~~. Let be generated by a root of p(.X ) .
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Each valuation wj determines in precisely two prolongations.
We let I~ = U It is easy to see that every valuation of K

n

is discrete and its residue class field is finite. Also it is plain that
every valuation vn of Q has infinitely many prolongations to K.

Let A be the integral closure of Z in According to the above
theorem one sees that A is not a Dedekind domain. On the other
hand according to the above theorem we can define infinitely many
Dedekind domains l4 n , n E N, such that .K is the quotient field of An
for all n.

EXAMPLE 2. We shall define an infinite algebraic extension K
of Q, such that there exist on .K infinitely many discrete valuations,
whose residue class field is infinite, and also infinitely many discrete
valuations, whose residue class field is finite. In this way, according to
the above theorem we can define examples of Dedekindian domains A
such that .~1 contains infinitely (or finitely) many maximal ideals P
such that AlP is an infinite field, and also infinitely (or finitely) many
maximal ideals P’ such that A~P’ is a finite field.

We wish to construct K as the join U ~ of finite extensions
such that: 

2) For every I  k  n, the valuation v2k has at least 2(n - ~; + 1)
prolongations to 2~.

3) For the valuation V2k-l has at the most
2k --1 prolongations to .Kn.

Let us assume that Kn has been defined such that above condi-
tions are accomplished. WOe shall define By the Chinese Re-
mainder Theorem, there exists a monic polynomial f(X) in B[x] (B
being the ring of integers in of degree two such that for every
1 ~ ~ ~ n -~- 1, the image of f (X ) is irreducible in the residue class
field of all prolongations of t’2k-l and that the image of f(X) has two
distinct roots in the residue class field of all prolongations of Let

us define where a is a root of f (X ).

EXAMPLE 3. Now we shall define an infinite algebraic extension K
of Q such that every valuation on Q has finitely many prolongations
to g which are discrete (of course, generally a valuation on Q has
another set, eventually infinite, of prolongations to g which are not
discrete).
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For any natural number n we shall define an extension Kn of Q
such that

1) Knc and = 2.

2) The valuation vn has a prolongation wn to such that wn
has only a prolongation to for all and this prolongation is
unramified.

3) If us , ... , u8 are other prolongations of vn to Kn, then these
valuations are totally ramified in for all 

Let us assume that has been defined such that above conditions
are accomplished. We shall define For that let wi, be the ex-
tension of at K~, which satisfies the above condition 2) and
let us choose an prolongation of v.+, to Kn. Furthermore let

U1, ..., Un be all the prolongations of to Kn which are
distinct of w,,..., Denote by B the ring of algebraic integers
of .Kn . According to the Chinese Remainder theorem we can define a
monic polynomial, of degree two f (X ) E such that the image
of f (X) over the residue field of wi, + 1 is irreducible and
its image over the residue field of all ui, is the square of an
irreducible polynomial. It is clear that f (X) is irreducible over .K~
and thus we define Kn+l = where a is a root of f (X ) . It is

plain to show that above conditions 1)-3) are accomplished. Let

K = U Kn. The field K is an infinite extension of Q and every valua-
n&#x3E;1

tion Vn of Q has only one prolongation to K which is discrete.

According to the above Theorem the ring A = n Q- is the smallest
M&#x3E;1

Dedekind domain of .g, and obviously K is not Stiemke field.
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