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REND. SEM. MaTt. UN1v. PADOVA, Vol. 74 (1985)

Blocking Sets of 16 Points in Projective Planes
of Order 10 - III.

JURGEN BIERBRAUER

1. Introduction.

Let IT = (%, £) be a finite projective plane with point-set § and
line-set £, and B a blocking set of I7, i.e. $c T and

gNB#£A0£gN(F—B) for all get.
It is convenient to introduce some notation:

£:= {g:ge£’ {gn‘%l = i}7 a; = |£il7 a = Itl""au
Li(P)= {g: Pegely}, a,P)= |L(P)], a(P) = 'EIa:i(P)

for every ¢ >0, Pe §;

gr={X:Xeg, X¢ B}. Elements of £, are called i-lines, elements
of £, are tangents, elements of £ — £, are «lines of $». The « strength »
of gef is defined as st(g) =|gN B|. If geL—£,, gN B = {4, B,
0, ...}, we also write g = [4, B, C, ...].

Let now II have order 10, ge £, X e g*. As X is on 11 lines and
each of these lines contains elements of 3B, we get |B|>11 and |g N B|<
<|B| — 10. If further X € he L, h = g, then the same counting argu-
ment shows si(g) + st(h) <|B| — 9.

(*) Indirizzo dell’A.: Mathematisches Institut der Universitdt, Im Neuen-
heimer Feld 288, 69 Heidelberg, Rep. Fed. Tedesca.
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By counting (1) all the lines, (2) the flags (P,g), Pe B, g€k,
P eg, (3) pairs of points of B, we get the following equations:

(1) Y a, =111

=1

(2) Z i“i = 11"%' 1]

i1

@ 2()e=(%)

Consideration of the left sides shows (1/2)(|B| — 10)((2) — (1)) >(3).

The right sides show then |$|>15. It might be noted that the
gsame kind of argument suffices to prove Bruen’s fundamental Theo-
rem [4]:

THEOREM (Bruen). If $ is a blocking set of a projective plane
of order n, then |B|>n + 1% + 1. Equality holds exactly for Baer
gubplanes. O

The case |$B| = 15 (n = 10) has been ruled out by Denniston [6]
with the help of a computer-program (see also [56])-

From now on let |[$| = 16. We restate the result of the above
counting arguments:

LeMMA (I). (i) a; = 0 for ¢ > 6.
(i) It {g,h} L, g~ h, si(g) + st(h) >7T, then gNhe B.

The case a; % 0 was ruled out in [1, 2, 3] with the help of a computer-
program. Here we study the case ag = 0.

THEOREM. Let 3B be a blocking set of 16 points in a projective
plane IT = (7, £) of order 10. Then one of the following holds:

(i)a; =6,a, =4, a; =17, a, =15.

Consider the linear space (%, ') with parameters a; = 6, a, = 4,

5
a; =11, a, =3, where £ = |J £}, L= {f1, ..., fe}) La= {01y ..., va},
iz2
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ﬁ:’a = {d;, d:’w seey d;l}’ Q; = {zu 7Y 23}7

B = {P,} u{d;, B;, C;,D;, R;: i =1,2,3},
fr=[R,, 4,, B:, C,, D;] v, =[Py, A,,4,, 4,]
fo = [Ry, Ay, By, C,, D,]  v,= [Py, By, B,, B,]
fs = [R., 4,, B,, C3, D;] wv,=[P,, C,, C,, C;]
f.=[R,, 4s, Bs, C,, D,] v,= [Py, D,,D,, D,
fs = [Rs, As, Bs, Cs, D]
fo = [Rs, As, By, C,, D;]
d; = [R,, Ry, R;] d, = [Ry, A;,C,;] d; = [R,, B;, D]
dy = [R,,A,,B,] d; =[R,,C,, D] ds=[Ry,A,,D,]
d; = [Rs, By, 0,] dy = [4,, Bs, C,] dy = [4,, 0y, D]
dy = [4,, B,, D]  dy, = [B,, Cs, D,]
2, = [Py, Rl 2,= [Py, R,] 23= [Py, Rs].
Then £, = £, £, = £, £,0L;, £, £;, and £, — £, arises by replacing
each of the four 3-lines in £, — £, by three 2-lines. The sysrmmetry-

group of (B,L') is @ = {0y, 0,<0, T =~ X,;, where g, = H(A‘, C)
(B:, Dy), =t

g, = (4, B;)(4,, B;)(4s, Bs)(Cy, D,)(C,, D,)(Cs, Ds) ,
o = (Ry, Ry, R3)(4,, Cs, D;)(4,, Cy, Dy)(43, C,, D,)(B,, B,, By)
T = (R,, R3)(4,, C,)(4,, C,)(As, C3)(By, By)(Dy, D) .

(ii) a3 =6, a,= b5, a; =4, a, = 18.

Consider the complement (3B, L’) of an oval in PG(2,4). Then
(B, £') has parameters a, = 6, a, = 5, a; = 10, a, = 0 and is uniquely
determined:

5
g’ :.Usﬁéa f'; = {fu ---:fs}’ ﬁi = {’017 ey '05}7

f—; == {d;, ceey d;o}, $ = {‘PO} U {Ai, B,‘, Ci, .D,‘, Ei: i == 1, 2, 3},
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fi=1[4,, By, C,, Dy, E] v, =[Py, 4,, 4,, A;]
f. = [4., B,, C,, D,, E,] v,= [P,, B, B,;, Bg]
fs = [4,, By, Cy, Dy, Bs] v = [P,, Cy, C,, Cs]
fo=[4,, Bs, C3, Dy, E,] v,= [P,, Dy, D,, Ds]
fs = [4s;, By, Cs, Dy, B,]1 v, = [P,, E,, E,, E;]
fe = [4s, Bs, C,, D,, E;]
d; =[4,,B,;,D,] d,=1[4,,C;, B d;=[4,,B,, (]
d; = [4,,D,, B, d;=1[4;,B,,E,] ds=[4,,0,, D]
d; = [By, Cy, D,] dy=[B,, D, E;] dyq=[B,, C,, E]
diy = [Cy, Ds, E,].
Then £, = £, £, = £;, £,c€;, and £, arises by replacing each of the
six 3-lines in £, — £, by three 2-lines.
The symmetry group of (B, £') is G¢'= (¢, a) =~ X;, where
¢ = (4., Bs, 0y, Dy, Ey)(4,, By, C,, D,, E,)(4;, B,, Cs, Dy, E,) ,
% = (A,, A,)(B,, Bs)(C:, Dy)(Cs, Dy)(Cs, Do) (B, By) .

As the lines of £; correspond to the secants of the oval in PG(2, 4)
and as G' has six orbits on the 4-sets of the set of secants, we get six
isomorphism-types for ($, £), with respective symmetry-groups Z, X 2,
D87 247 Zz; Z27 Zz'

In the statement of the Theorem we have extended our notation
for the parameters of a blocking set to the linear spaces (B, £') in an
obvious way. The following paragraph is dedicated to the proof of
the Theorem.

2. Proof of the Theorem.

We use the notation of the introduction. Further every point
X € § — Bwillbe called « of type (3, j, k, ...) »if the lines of B through X
are an i-line, a j-line, a k-line, .... The only types which can occur
are (5,2), (4,3), (4,2,2), (3,3,2), (3,2,2,2), and (2,2,2,2,2). We
have |B| =16, a, = 0 for ¢ > 5. Consider the equations (1), (2), (3)
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as given in the introduction. We shall use equations (4) and
(B), where (4)=(3)—(2)+ (1), (B)=2(2)—2(1)— (3), precisely
(4) a3 + 3a,+ 6a; =55 (B) a,+ a, = 10 + 2a;.

By Lemma (I), g Nhe B if either ge£,, si(h)>3 or {g, h}CL,.

Agssume a; = 0. Then a,>15 by (4) and (B). Counting along
a line v € £, we see that there is a point P e $ such that a,(P) = 5.
By (I) then a, = a4,(P) = b, a contradiction.

As every point of f*, fef,, has type (5,2), we see that a,>6.
If a; = 1, then a,>15 because of a,>6, and we get the same contra-
diction as before.

Assume a; = 2. The equations show a,>12, hence a, | a,>14.
Let {v,,v,}Ct,, P=w0,Nwv,. Then (I) yields 14<a, + a,<9 +
-+ a4(P) + a5(P). It follows a,(P)=5, hence a, = a,(P) by (I),
contradiction.

Assume a; = 3. Our equations read a, + a, = 16, a, + 3a, = 37.
Because of a,>6 we get 9<a,<12. Clearly then a,(P) -+ a4;(P)<<b
for every P € $B. Choose P e B such that a,(P) >1. Then a, + a,<
<9 + a,(P) + a5(P)<13, hence a,€ {9,10}.

Assume there is P e $ such that a,(P) = 4. If a,(P) = a,(P) =1,
let Re $ such that RPef,. Clearly a,(R) = ay(R) = 0 by (I). As
every 3-line through R must contain a point @ € $ with ay(@) <1,
we get a;(R)<3. Thus a,(R)>9, a contradiction.

Thus we have a4(P)=0, ay(P)=3. Let {R;:i=1,2,3} =
{R:P#Re®B, RPef,}. Then a,(R,) =0 like above, i=1,2,3.
If ay(R;) =0, we get the contradiction a(R,)>11. As R,R; ¢,
(¢4 9), it follows ay(R;) =1, ¢ =1,2,3 and consequently a,(R,)>5.
As a,(R;) =0, we get a,>5 -+ 6 =11, thus a, > 10, contradiction.
We have a,(P)<3 for every Pe $ under the above assumption. By
counting along v € £,, we get a, = 9, hence a, = 10, a, = 6. It follows
a,(P) € {0,3} for every Pe B. If Pe B, a,(P)+#0, then a,(P)=0
(as @, =6). Let N ={N:Ne®B, a,(N) =0}, Ne N=~0.

If a,(N) =+ 0, then a,(N) = 0, hence 15 = 2a,(N) + 4a,(N), contra-
diction. Thus a,(N) = 0. As a,(N)<3, we get a(N)>11, contradic-
tion as before. We have proved a,>4. Assume a;<< 6. Equation (4)
shows a, = 1(mod. 3) especially a;= 0. Let def,. Because of (I)
there is P € d N $ such that ay(P) = 3. It follows ay(P) = a,(P) =1,
consequently a; — a;(P)<2, a,<5, contradiction.

We have a; € {4, 5, 6}.

HypoTHESIS 1. a, = 4.
Then a, + 3a, = 31, a, + a, = 18. As a,>6, we get a,<12, by
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(4) a;<10. Hence a,>7. It follows a,(P) + a4(P) <4 for every P e B.
Let a,(@) > 1. Then a, + a;<9 + a,(Q) + a5(@) <13, thus a,<9.
Assume a,(P) = 4, ay(P) = ay(P) =1, let PRef,, Re $. Then

ay(R) = a(B) = 0. If d=[R,Q,,@.]€L,, then a;(Q,) + a5(Q,) = 4.

Thus as(R)<3. It follows a(R)> 11, a contradiction.

Assume a,(P) = 4, ay(P) =3, let {R,:1=1,2,3} ={R: P+# Re
€ B, PRef,}. Wehavea,(R,) =0, R,R, €8, UL,,i5j. If ay(R;) = 0,
then we get a contradiction like before because of a,(R;)<3. Thus
we have without restriction a;(R,) =2, a,(R,) = a5(R;) = 1. Let
i€{2,3}. Clearly a,(R;,)<3, thus a,(R;)>5.

Assume z= R,R e€f,. If X e€z* ayX)+#0, then X has type
(4,2,2). As ay(R,) = a,(R;) =0, we get a,>1-+2X4 -+ a,>16,
thus a,>10, contradiction. We have E,R, €f,. Because of (I) we get
d=[R,, R,, B,]€f,. As a,(R,)>5, a,(R;)# 0, we get a,>5 + 6 =
=11, thus @,>8. On the other hand a,<|d*| = 8. Thus a, =8,
a; =17, a,=11 and further a,(R;) = a,(R,) =3. Let {f} = L;(R.),
QefN B, Q£ R,. As a;# a,(Q), clearly a(Q)>5. Counting along f,
we get a>|f*| + 4Xx4 + a(R,) = 31, contradiction as a = 30.

We have a,(P) <3 for every P e $ under Hypothesis 1.

Assume a, = 9. Counting along vef, shows a,(P)€{0,3} for
every Pe B. Set Mo = {M: M € B, a,(M) = 3}, N = B — M. Clearly
|AG] = 12.

Let {f,,f,}cf. Then f,Nf,eN. As a; =4 = |N)|, there is
N € N such that a;(N)=3. Let fef, —£;(N). Then |[fN N|>3,
thus a,<3|f N M|<6, contradiction.

We have a,€ {7, 8}.

Assume @, = 8. Then a; = 7, a, = 11, hence a = 30.

It a(P) =1, a(P)=3, let {R,,R,} = {R: Re B, PRef,N L.
Then a,(R;) = 0, R, R, € £, U £,. Thus a,(R,) + a,(R,) = 3. If ay(R,) =
=0, then a,(R,) =3 and by (I) a;(R,)<1. It follows a,(R,)>11.
Thus B — {R,} is a blocking set, contradiction.

Without restriction we have ay(R,) =1, ay(R,) =2. Let {f} =
= £;(R,). Counting along f and observing that £,(Q) = £, for every
QefN B, we get 30 = a>|f*| + 4 X4 + a(R,) = 22 + a(R,). Thus
a(R,)<8. However a,(R,) <3, thus a,(R,)>5 and clearly then a(R,)>9,
contradiction. We have proved the following: if P € 3, a,(P) + a,(P) >
> 3, then a,;(P)>2 and a,(P) + a,(P) = 4.

Set b, = [{P: Pe B, ay(P) + ay(P) =i}, i<4. As a; + a, =12,
we have 6b, 4- 3b, + b, = 66. As b,<6, it follows b, = 6, b, = 10.
Counting incidences we get six points P with a,(P) = a,(P) = 2, eight
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points P with a,(P) =1, a4(P) = 2, and consequently two points P

with a,(P) = 3. This conflicts with (Z‘) = 28 and Lemma (I).

‘We have a, = 7, a, = 10, a, = 8 under Hypothesis 1.
11
As a; + a;=11 and (9 )z 55 > 16 X3 = 48, there is Pe $ such

“

that a,(P) + ay(P) = 4. Further a(P)>5. Let Re $ such that
PRet, Ut,. Clearly ay(R) = 0. If a,(R) = 1, then a,(R)<3 by (I),
hence a,(R)>5. This yields a contradiction by counting @, along
fe L, (R). We already know a,(P)<3. If a,(P) = 1, a,(P) = 3, we have
{R,,R} ={R:Re®, PRef,uUfl,}. As R R,ef,UL;, we have
a,(R,) + as(R,) = 3, by the above without restriction a,(R,)= 3,
a,(R,) = 0. It follows from (I), that a,(R,)<1, hence a(R,)>14,
contradiction.

Let ay(P) = ay(P) = 2. Clearly a,(R) =2, ay(R) =0, ay(R)<2.
It follows a,(R) >3. By counting along f € £,(R), we get a,>3 4 6 = 9,
contradiction. It is clearly impossible that a,(P) << 2. Thus we have
excluded Hypothesis 1.

HYPOTHESIS 2. a; =35.

We have a, 4 3a, = 25, a, + a; = 20.

Assume @ (P) + a5(P) =5, PeB. Then ayP)=05=aqa,, a;=
= a, = 10.

Clearly a4(@)<2 for every Qe B —{P}. Set B,={Q:Qe B,
a5(Q) = i}, b, = |B,|, i<2. By counting along veL,, we get |B, N
No|l=2, |B,Nv|=1, hence b, =10, b, =5. Let fef;. Then
lfO Bo| =4, |[f 0 B,| =1. It follows £, = {[Qu Q.]:Q.€ B, Q, # Qz}-

The set £ = {P }N B, is a 6-arc. The secants of A are the lines
in £,N £,, and these form a dual blocking set of cardinality 15, which
is impossible.

We have a,(P) + a,(P)<4 for every Pe 3.

Assume a,(P) = 4. If ay(P) = ay(P) =1, let £,(P) = {[P, R]},
L4(P)={[P, 8y, 8,]}. Clearly a,(R)= a5(R)=0. As a5(8,) + a,(8;) =5,
further a,(R)<1, thus a,(R)>13, contradiction.

Thus a,(P)= 3, £,(P) = {[P, R.]:1=1,2,3}, ayR;) =0, RR, e
ef, Ul 1#£4. If ay(R,) = 3, we have without restriction a,(R,)<1,
by (I) a,(R,) <1, thus a,(R,)>9 and B — {R,} is a blocking set, contra-
diction. We have without restriction a,(R,) = a,(R,) = 2, a,(R,;) = 1.
Counting along fef£;(R;), we get a>|f*|+ 4X4 4 a(R;) = 22 +
+ a(R;). As a,(R;)<3, we get a(R;)>9, hence a>31.

Let N ={Q:Qe B —{P}, QPef,, a,Q) =1} As a,Q)<2 for
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every @ € B, we have [v N\ N°| =1 for every v € £,(P), thus |N| = 4.
As a>31, we have a,>6. Let v'ef,— £,(P). Then [N N|=3
because of (I) and a; = 5. Thus a, — a,(P)<1, a,<5, contradiction.
We have proved: a,(P)<3 for every Pe $H under Hypothesis 2.
Assume ay(P) = a,(P) = 2 (hence a,(P) =1). Let {[P, R]} = £,(P).
Then a,(R) =0, ay(R)=3. Let {f,,fo} = L(P), {fs;fs, [s} = Ls(R),
{v,, v} = C4(P), 80t {S;:9=1,2} ={8: 8ef. N B,a,(8)=1,i=1,2}.
Clearly £, = £,(P) U £4(81) N L£4(8,), 8,8, €L, UEL,.
The basic equations show a,<8. By (I) we have

5011

“

Set

(M) =Y (a5(M) —2|— a4(M)), for every MC B .
MeM

Assume first a, = 8. Then a,(8;) = a,(8,) = 3, ¢(f. — {P}) <15,
o(v; — {P})<18. Thus

78:(“5;“4)<6+3+2><15+2><18=75,

contradiction. Assumea,=7. Without restriction a,(S;) =3, a,(S,) =2.
Then ¢(f, — {P}) <13, ¢(f, — {P}) <12, ¢(v; — {P}) <15, i=1,2. Thus
66<6 4+ 3 4+ 13 + 12 4 2 X 15 = 64, contradiction.

Thus @, <6. Let de£;. Ifd N {R, §8,, 8,} %~ 0, then d = [R, §,, S,].
Consideration of f, and f, shows because of (I) that a; — a,(R)<6.
Thus a;<7. It follows a, = 7, a, = 6, a, = 13.

Assume first a,(8;) = 3, a4(8,) = 1. Then ¢(f, — {P}) <11, ¢(f, —
—{P})<10, ¢(vi—{P})<12, i=1,2, thus 55<54, contradiction.
We have a,(8,;) = a,(8,;) = 2, ¢(f: — {P}) <10, ¢(v; — {P}) <13, 55 <55.
Thus we have equality all the way. Set N ={N:Ne B — {P},
PNef,, aN)=3}. Wehave [n;\ N|=2,i=1,2, and a,(@) =1
for every Qe B, QP € £,, @ ¢ N°. This is impossible as [v N N| =2
for every ve L\ L4(P), hence a, — a,(P)<2. L

Let ay(P) = 1, a,(P) = 3, Pe %, {R,, R,} = {R: P% Re $, PRe
€8, UL, {f} = L(P), {v1,0,, 00} = L,(P). Then a,(R,) =0, R R, ¢
¢ £, hence a,(R,) + a,(R,) = 4. If a,(R,) = 3, then a,(R,) = 1, by (I)
a,(R,) <1, hence a(R,) =11 and B — {R,} is a blocking set, contra-
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diction. Thus ay(R,) = a;(R,) =2. Let B, ={Q:Qe B, a;(Q) +

+ ay(Q) = i}. a
If Q€ By, then ay(Q) = 1. Thus |B,|< (2‘)/3.
If a, =8, we get the contradiction

78:(a5;a‘)<9x6+7x3:75.

Assume a, = 7. We have [v N B, = 3 for every ve£,. This shows
|Ba| = 7, BaCcv,Uv, Uv;. Hence of — {P}) =12, ¢(v; — {P}) = 15,
4 =1,2,3, thus

66 — (“5;“’4): 6+-1-+1+12 +3x15 =65, contradiction.

Assume a,= 6. If vef,, then [vN B,| =2 because of a, = 6 and
a, + a; =11. It follows |v N By| =2. Thus ¢(v, — {P}) =12, i =
=1,2,3. As ay+ a;=11, we get o(f — {P}) = 11. This implies
If N Bs| = 3, |f N B,| = 1. Especially |B,| = 4 and £, = {RS: {R, 8} c
c B,}. We have to be more precise. Let B(i,j) = {Q: Q € B, a,(Q) = 4,
a,(@) = j}. Then |jvN B(1,3)| =2, [pN B(1,2)]=|vN B(2,1)| =1
for every vetf,. It follows

o ()] et s
Qev; LV LYy

Further

S (“5;Q)): 5, thus 3 (“5(2F )): 5.
Qé¢f—{P} Fef—{P}

This yields |[f N $(3,0)| =1, [f N B(2,1)| =2, |f N B(1,1)| = 1.

This is impossible as, by the above, there is no v € £, such that
»N B, 1)~ 0.

Assume a, = 5. If |B,|>1, {P,P'}CB,, then clearly PP’ €¥,,
without restriction PP’ = v,. Further £, = £,(P) U £,(P’'), hence
a,(Q)<2 for every Qe B — {P, P'}. Especially |B,| = 2.

We have ¢(v, — {P}) = 10, ¢(v, — {P}) =9, i = 2, 3, hence ¢(f —
—{P}) = 9. As Q € B, but a,(Q)<2 for every Qe v, — {P}, i = 2,3,
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we get a;(Q) %= 0. It follows

as(@)\ _ as(F)) _
Qé.fz:(P)( 2 )_ 5 thusFeg(P}( 2 ) 5

More precisely we have |f N $3(3,0)| = |[f N $B(1,0)| =1, |[f N B(2,
1)|=2, o, N B(2,1)| = |o, N B(1,1)| =1, lv. N B(1, 2)| = 2, [v: N
N B(2,1)|=1,i=2,3. Let vely(P'), v#v,. Then vNfe B(2,1),
vN v, e B(,2),¢=2,3. Let now {g} = £,(P’). Then g Nfe B(3,0),
gnNnv, e JB(21), ¢+ =2,3. Counting along g, we get a, = 6, contra-
diction.

We have 3, = {P}. It follows ¢(v; — {P}) =9, ¢ =1,2,3. Thus
¢o(f — {P}) = 10, which is impossible.

‘We have a, < 5, thus a, + a, 1+ a,>22. However, this is impossible
because there is a triangle of 5-lines, implying a; + a, + a;<21 by (I).
We have proved a,(Q) + 4,(@) <3 for every @ € $ under Hypothesis 2.
Counting along v € £,, we get a; + a,<9, thus a,<4, a contradiction
like before. Hypothesis 2 has been ruled out.

Thus a;= 6.

We have a; = 6, a; + 3a, = 19, a, -+ a, = 22.

HYPOTHESIS 3. a,(Q) + a,(Q)<4 for every @ € $.

LeMmA. Under Hypothesis 3, the following hold for every P € $B:
(i) If ay(P) + a4 P) = 4, then a,(P)>3.
(ii) If a4(P) s~ 0, then ay(P) = 2.
ProoF. (i) Clearly a,(P)>2. If a,(P) = ay(P) = 2, then a,(R) = 4,
where {[P, R]} = £,(P), contradiction.
(ii) Let def;, Ped N B. If ay(P)= 3, then a,(P) = a,(P)=1, thus

a; — a5(P) <2, contradiction. Assertion (ii) follows now from (). O

We continue under Hypothesis 3. Let B, = {Q: Q€ B, a4(Q) +
+ ay(@) = i}-

If a, = 6, then for every v e £, we have [v N\ B,|>3. This shows
a,>7 by part (i) of the Lemma, contradiction.

Assume a, = 5. The same argument shows [v N $B,| = 2 for every

vel,. Thus |B,|>4. However ]334|<(‘;‘)/3 = 10/3 by (i), contradic-
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tion. We have a,<4. Assume there is Pe B such that a,(P) =1,
a,(P) = 3. If a, = 4, then B, = {P} by (i). There is a line ve L, —
— £4(P). This yields the contradiction a, + a,<9.

Thus ay =3 and £, = £,(P). Clearly |[v;N By| =2, |v;N B,| =
=1, ¢=1,2,3 where £, = {v;,v,,v;}. Let L(P)={f}, QefN B,
@ %= P. Assume a4(Q) = 1. By (ii) we have a,(@) = 0. As a,(Q) = 0,
we get a,(@) = 11, a contradiction. Thus |[fN By| =1, |[fN B,| = 3,
and we can count:

36:(%;“‘):6+7><3+6—|—3+1:37, contradiction .

We have proved: if Pe $,, then a,(P) = 4, under Hypothesis 3.
Assume B, = @. Counting along v € £, shows a,<3. Let first a, = 3.
If a(P)s£0, then Pe B;. Assume a,(P)=3. Then a(P)=0,
by (ii) a4(P) = 0, hence a,(P) =6. Let tef,(P). Then a,X)*=0
for every X €t*, hence a,>6 -+ |t*| = 16, contradiction. Thus there
is P € B such that a,(P) = 2, a,(P) = 1. By (ii) we have a,(P) = 0,
a,(P) = 5. If tef,(P), there is at most one point X €¢* such that
a4(X) = 0. Hence 12 = a,>5 + |t*| — 1 = 14, contradiction.

Thus a,<2. If a,<< 2, then a; 4 a, 4+ a;>23, which is impossible
by (I) as there is a triangle of 5-lines.

We have a, = 2, a; =13, a, = 9. Let £, = {v,, v,}, P =10, Nv,.
As ay(P) +~ 2, we have a,(P) = 0 by (ii). If a;(P) = 1, then a,(P) =5
and consequently a,>11, contradiction. Thus ay(P) = 0, a,(P) = 9.
We get a contradiction like above by considering ¢ € £,(P).

We have a,<4 and B, 0 under Hypothesis 3. As every point
Pe B, satisfies a,(P) =4, necessarily B, = {P,}, a, =4, a,=1,
a, = 15. Then (3B, £,) is like in case (i) of the Theorem. As a4(Q)<<3
for every @ € B — {P,}, we get a;(Q) = 2 for every @ € B — {P,}.

Further a,(P,) = 0 by (ii) of the Lemma, hence a,(P,) = 3. Clearly
then (B, £; U £, U £,(P,)) is like in (i) of the Theorem and it is easily
seen, that we have case (i) of the Theorem.

We can henceforth assume, that Hypothesis 3 is not satisfied.
Let P, € $ such that a,(P,) = 5. Then clearly a, = 5, a, = 4, a, = 18.
As a;(Q) <2 for every Q € B — {P,}, we get a;(Q) = 2 for every Q € $ —
— {P,}. It is easily seen, that (B, £, U £,) is uniquely determined and
can be chosen like in case (ii) of the Theorem. Further it is easy to
check, that (B, £) arises in the way descrived in the Theorem out
of a uniquely determined linear space ($,£’) with 16 points and 21
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lines as given in the statement of the Theorem. Again it is easy to
see, that (B, L) can be completed in exactly one way to yield PG(2, 4).
The five «new » points form an oval in PG(2,4), together with P,
they form a hyperoval. The proof of the Theorem is complete.
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