RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

Dănuț Marcu

Note on the regular digraphs

Rendiconti del Seminario Matematico della Università di Padova, tome 73 (1985), p. 95-98

http://www.numdam.org/item?id=RSMUP_1985__73__95_0

© Rendiconti del Seminario Matematico della Università di Padova, 1985, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Note on the Regular Digraphs.

DĂNUT MARCU (*)

ABSTRACT - In this paper, we give two sufficient conditions, in which, the conjecture of [1] is true.

Introduction.

Our graph-theoretic terminology is standard and is based essentially on the book of Harary [3]. For a vertex v of a digraph D, we denote by id(v) and od(v) the indegree and outdegree, respectively, of v. If id(v) = od(v) = r, then we speak of the degree of v. If every vertex of D has degree r, then D is said to be regular of degree r or simply rregular. The girth of a digraph D containing directed cycles (circuits) is the length of the smallest cycle in D. For $n \ge 2$ and $r \ge 1$, g(r, n) is the minimum number of vertices in an r-regular digraph having girth n. From [1], we have

(1)
$$q(r,n) \leq r(n-1) + 1$$
,

and the following

Conjecture. For all $r \ge 1$, $n \ge 2$, g(r, n) = r(n-1) + 1.

In this paper, we give two sufficient conditions, in which, this conjecture is true.

The main results. Throughout, for any real number x, we use $\lfloor x \rfloor$ to denote the integer less than or equal to x, and all the digraphs

(*) Indirizzo dell'A.: Faculty of Mathematics, University of Bucharest, Academiei 14, 70109 Bucharest, Romania.

considered are finite, without loops or multiple edges. If D = (V, E) is a digraph with V as the vertex set and E as the edge set, then, for every $W \subseteq V$, we denote:

$$V^+(W) = \{v \in V : (w, v) \in E, w \in W\}$$

and

$$V^{-}(W) = \{v \in V : (v, w) \in E, w \in W\}.$$

THEOREM 1. Let D=(V,E) be an r-regular digraph of girth n with r>1 and n>2. If there exist a vertex $v\in V$ and the sets V_i , $W_i\subseteq V$, $i=1,2,...,\lfloor n/2\rfloor$, such that

(a)
$$V_1 = V^-(\{v\}), W_1 = V^+(\{v\}),$$

(b)
$$|V_i| = |W_i| = r$$
, $i = 1, 2, ..., \lfloor n/2 \rfloor$,

(c)
$$V_i \subseteq \left[V^-\left(\bigcup_{i < i} V_i\right) - \bigcup_{i < i} V_i\right], \ i = 2, 3, ..., \lfloor n/2 \rfloor,$$

$$(d) \ \ W_i \subseteq \left[V^+ \left(\bigcup_{j < i} W_j \right) - \bigcup_{j < i} W_j \right], \ i = 2, 3, \dots, \lfloor n/2 \rfloor \ ,$$

then g(r, n) = r(n-1) + 1.

PROOF. Obviously, from (c) and (d), we have

(2)
$$V_i \cap V_j = \emptyset, \quad i, j = 1, 2, ..., \lfloor n/2 \rfloor,$$

(3)
$$W_i \cap W_j = \emptyset, \quad i, j = 1, 2, ..., \lfloor n/2 \rfloor.$$

Now, we prove, by induction on i, that for every $1 < i < \lfloor n/2 \rfloor$ and $x \in V_i$, there exists a directed path from x to v of length < i. Obviously, by (a), that is true for i = 1, and consider it to be true for j < i - 1. Since $V_i \subseteq V - \left(\bigcup_{j < i} V_j\right)$, there exists $z \in \bigcup_{j < i} V_j$, such that $(x, z) \in E$. By induction hypothesis, the path of length < i - 1, from z to v, joined with (x, z), is a path from x to v of length < i. Similarly, for every $1 < i < \lfloor n/2 \rfloor$ and $y \in W_i$, there exists a path from v to v of length < i.

Suppose that, for some $1 \le i \le \lfloor n/2 \rfloor$, $v \in V_i$. Thus, there exists a cycle (from v to v) of length $\le i \le \lfloor n/2 \rfloor < n$, contradicting the definition of n. Hence,

(4)
$$v \notin V_i$$
, $i = 1, 2, ..., \lfloor n/2 \rfloor$.

Similarly, we have

(5)
$$v \notin W_i, \quad i = 1, 2, ..., \lfloor n/2 \rfloor.$$

Suppose that, for some $1 \le i \le \lfloor n/2 \rfloor$ and $1 \le j \le \lfloor (n-1)/2 \rfloor$, $V_i \cap W_j \ne \emptyset$. Let then $t \in V_i \cap W_j$. Thus the union of the path from t to v (of length $\le i$) with the path from v to t (of length $\le j$) is a cycle of length $\le i + j \le \lfloor n/2 \rfloor + \lfloor (n-1)/2 \rfloor = n-1 < n$, contradicting the definition of n. Hence,

(6)
$$V_i \cap W_j = \emptyset, \quad i = 1, 2, ..., \lfloor n/2 \rfloor, \quad j = 1, 2, ..., \lfloor (n-1)/2 \rfloor.$$

Thus, from (b) and (2)-(6), we have $g(r, n) \ge r[n/2] + r[(n-1)/2] = r[[n/2] + [(n-1)/2]] = r(n-1)$, and, by (1), the theorem is proved (Q.E.D.).

THEOREM 2. Let D = (V, E) be an r-regular digraph of girth n with $r \ge 1$ an $n \ge 2$. If $r(\lfloor n/2 \rfloor - 1) < n$, then g(r, n) = r(n - 1) + 1.

PROOF. Let $v \in V$ arbitrary chosen, and $V_1 = V^-(\{v\})$, $W_1 = V^+(\{v\})$. Suppose that, for every $j < i \le \lfloor n/2 \rfloor$, we have constructed the sets V_i , W_i satisfying (b)-(d).

Thus, because V_i 's are pairwise disjoint and of cardinality r, we have

$$\left|\bigcup_{i < i} V_i \right| = \sum_{j=1}^{i-1} |V_j| = r(i-1)$$
 , i.e., $\left|\bigcup_{i < i} V_i \right| \leqslant r(\lfloor n/2 \rfloor - 1) < n$.

Hence, the subdigraph of D, induced by $\bigcup_{j < i} V_j$ (the subdigraph of D whose vertex set is $\bigcup_{j < i} V_j$ and whose edge set is the set of those edges of D that have both ends in $\bigcup_{j < i} V_j$), does not contain cycles. But, according to [3], if a digraph has no cycles and which fails to consist only of isolated vertices, then it contains a transmiter (a vertex with positive outdegree and zero indegree) and a receiver (a vertex with positive indegree and zero outdegree). Hence, there exists $x \in \bigcup_{j < i} V_j$, such that $V^-(\{x\}) \cap \left(\bigcup_{j < i} V_j\right) = \emptyset$. Obviously, $V_i := V^-(\{x\})$ satisfies (b) and (c). Similarly, we can construct W_i . In this way, we come in the hypothesis of the theorem 1, and, therefore, we have g(r, n) = r(n-1) + 1 (Q.E.D.).

COROLLARY 1. [1]. For the following values of r and n, the conjecture is true:

$$r=1$$
 and n arbitrary $(n \ge 2)$,

r arbitrary $(r \geqslant 1)$ and n = 2, 3.

PROOF. It follows from the theorem 2 (Q.E.D.).

COROLLARY 2. [2]. The conjecture is true for r=2 and arbitrary $n(n \ge 2)$.

PROOF. It follows from the theorem 2 (Q.E.D.).

COROLLARY 3. The conjecture is true for the following values of r and n:

$$r=3, n=4, 5, 7.$$

$$r=4, \quad n=5.$$

PROOF. It follows from the theorem 2 (Q.E.D.).

REFERENCES

- [1] M. BEHZAD, G. CHARTRAND C. E. WALL, On minimal regular digraphs with given girth, Fund. Math., 69 (1970), pp. 227-231.
- [2] M. BEHZAD, Minimal 2-regular digraphs with given girth, J. Math. Soc. Japan, 25 (1973), pp. 1-6.
- [3] F. HARARY, Graph theory, Addison-Wesley, Reading, Mass., 1969.

Manoscritto pervenuto in redazione il 23 gennaio 1984.