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An Existence Theorem for Bounded Solutions

of Differential Equations in Banach Spaces.

BOGDAN RZEPECKI (*)

SUMMARY - In this note we shall give sufficient conditions for the existence
of bounded solutions of the differential equation y’= f (t, y), y(0) = zo on
the half-line t &#x3E; 0. Here f is a function with values in a Banach space
satisfying some regularity Ambrosetti type condition expressed in terms
of the « measure of noncompactness ce».

Let J = and let (E, ~~ ’ 11) ) be a Banach space. Assume that
is a function which satisfies the following conditions:

(1) for each the mapping t H f (t, x) is measurable; (2) for
each fixed t E J the mapping x - f (t, x) is continuous; and (3) x) ~~ c

Il x 11) for where the function G is monotonically
nondecreasing in the second variable such that t H G(t, u) is locally
bounded for any fixed u E J and t H G(t, y(t)) is measurable for each
continuous bounded function y of J into itself.

Let xo E E. By (PC) we shall denote the problem of finding a
solution of the differential equation

satisfying the initial condition y(o) = xo.

(*) Indirizzo dell’A.: Bogdan Rzepecki, Institute of Mathematics, A. Mi-
ckiewicz University, Matejki 48/49, 60-769 Poznan, Poland.
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We deal with the problem (PC) using a method developed by
Ambrosetti [1]. This method is based on the properties of the measure
of noncompactness oc. The proof of our theorem is sugested by a paper
of Stokes [7] concerning finite-dimensional vector differential equations.

The measure of noncompactness of a nonempty bounded subset
X of E is defined as the infimnm of all 8 &#x3E; 0 such that there esists a
finite convering of .X by sets of diameter 8. For properties of x the
reader is referred to [2], [3], [5].

Denote by C(J) the set of all continuous functions from J to E.
The set C(J) will be considered as a vector space endowed with the
topology of uniform convergence on compact subsets of J.

Let us put

and

for t E J and X c C(J). Moreover, we use the standard notations.
The closure of a subset A of a topological vector space, its convex
hull and its closed convex hull be denoted, respectively, by A, conv A
and conv A. For a mapping lç’ defined on A we denote by F[A] the
image of A under F.

The Ascoli theorem we state as f ollows : X c C(J) is conditionally
compact if and only if X is almost equicontinuous and .X (t ) is compact
for every t E J. We shall use also the following result due to Ambro-
setti [1) : If I is a compact subset of J and Y is a bounded equicontinuous
subset of the usual Banach space of continuous E-valued functions on I,
then

Our result be proved by the following fixed point theorem of Furi
and Vignoli type (see e.g. [6], Theorem 2):

Let X be a nonempty closed convex subset of C(J). Let 0: 2~ -~
- [0, oo) be a function such that ~x~~ = X) =
- c ~(X2) whenever Xl c X2, and if = 0 then X is
compact, for every x E X and every subsets X~, Xl, X2 of Suppose
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that T is a continuous mapping of 3C into itself and  16(X)
for arbitrary subset X oi 3C with &#x3E; 0. Under the hypotheses,
T has a fixed point in ~.

THEOREM. Let h, .~ be fonctions of J into itself such that h is

nondecreasing with h(0) = 0 and h(t)  t for t &#x3E; 0, and L is measurable
t

and integrable on compact subsets of J with sup t E J}  1.
Suppose that the scalar inequality 0

has a bounded solution g existing on J; denote by Zo the set of all
x E E with = sup {g(t): t E J}. Assume, moreover, that for any
t &#x3E; 0, ~ &#x3E; 0 and X c Zo there exists a closed subset Q of [0, t] such
that mes ([0, t~BQ)  e and

for each closed subset I of Q.
Then (PC) has at least one solution y defined on J and Ily(t) Il  g(t)

for t E J.

PROOF. Denote by 3C the set of all x E C(J) such that Il  g(t)
on J and

for J, r in J. The set 3C is a closed convex bounded and almost equi
continuous subset of C(J).

Let us put
çb(X) = sup t E J} for a subset X of X. Obviously

~(X)  oo, 16(Xi)  ~(X2) for .Xl c X2, and U {x}) = for

x E X. Since

so
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for t E J. Hence

and consequently, (l)(X). If (l)(X) = 0 then X(t) is com-
pact for every t E J; therefore Ascoli’s theorem proves that X is compact
in C(J).

To apply our fixed point theorem we define the continuous mapping
T as follows : for y E C(J),

Modyfying the reasoning from [7] we infer that 
Let X be a subset of 3C such that &#x3E; 0. To prove the theorem

it remains to be show that  

To this end, fix t in J. Let e &#x3E; 0, and let ô _ b(e) &#x3E; 0 be a number
such that

for each measurable A c [0, t] with mes (A)  ~. By the Luzin theorem
there exists a closed subset B, of [0, t] with mes ([0, t]BBI)  à/2 and
the function .~ is continuous on B¡. Furthermore, by our comparison
condition, there exists a closed subset B2 of [0, t] such that
mes ([0,  Ô/2 and

for each closed subset I of 1~.
Define:

where A == [0, t]BB for i = 1, 2 . Since .~ is uniformly continuous on
B, for any given E’ &#x3E; 0 there exists q &#x3E; 0 such that t’, t" E B and

implies a(X t) - L(t") C 8’. For a positive integer
m &#x3E; let to = 0 C t1  ...  tm = t be the partion of the interval [0, t]
with t j = + (j = 1, 2, ... , m) . Moreover, let Il = 
and let 8j be a point in Ij such that L(s;) = sup ~Z(s) : s E Ij}.
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By the integral mean-value theorem, for x E .X we have

Thus

and therefore 8 -E- h(a(Xt)). Since

we obtain a( T [~] (t) ) c ~ --~- h( S~(X ) ) ; as e is arbitrary, this implies
oc(T[XI(t»  Hence  and consequently T
has a fixed point in X. The proof is complete.
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