RENDICONTI del Seminario Matematico della Università di Padova

BOGDAN RZEPECKI

An existence theorem for bounded solutions of differential equations in Banach spaces

Rendiconti del Seminario Matematico della Università di Padova, tome 73 (1985), p. 89-94

http://www.numdam.org/item?id=RSMUP_1985_73_89_0

© Rendiconti del Seminario Matematico della Università di Padova, 1985, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 73 (1985)

An Existence Theorem for Bounded Solutions of Differential Equations in Banach Spaces.

BOGDAN RZEPECKI (*)

SUMMARY - In this note we shall give sufficient conditions for the existence of bounded solutions of the differential equation y' = f(t, y), $y(0) = x_0$ on the half-line $t \ge 0$. Here f is a function with values in a Banach space satisfying some regularity Ambrosetti type condition expressed in terms of the « measure of noncompactness α ».

Let $J = [0, \infty)$, and let $(E, \|\cdot\|)$ be a Banach space. Assume that $f: J \times E \to E$ is a function which satisfies the following conditions: (1) for each fixed $x \in E$ the mapping $t \mapsto f(t, x)$ is measurable; (2) for each fixed $t \in J$ the mapping $x \mapsto f(t, x)$ is continuous; and (3) $||f(t, x)|| \le \le G(t, ||x||)$ for $(t, x) \in J \times E$, where the function G is monotonically nondecreasing in the second variable such that $t \mapsto G(t, u)$ is locally bounded for any fixed $u \in J$ and $t \mapsto G(t, y(t))$ is measurable for each continuous bounded function y of J into itself.

Let $x_0 \in E$. By (PC) we shall denote the problem of finding a solution of the differential equation

$$y' = f(t, y)$$

satisfying the initial condition $y(0) = x_0$.

(*) Indirizzo dell'A.: Bogdan Rzepecki, Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland. We deal with the problem (PC) using a method developed by Ambrosetti [1]. This method is based on the properties of the measure of noncompactness α . The proof of our theorem is suggested by a paper of Stokes [7] concerning finite-dimensional vector differential equations.

The measure of noncompactness $\alpha(X)$ of a nonempty bounded subset X of E is defined as the infimum of all $\varepsilon > 0$ such that there exists a finite convering of X by sets of diameter $\leq \varepsilon$. For properties of α the reader is referred to [2], [3], [5].

Denote by C(J) the set of all continuous functions from J to E. The set C(J) will be considered as a vector space endowed with the topology of uniform convergence on compact subsets of J.

Let us put

$$X(t) = \{x(t) : x \in X\}, \quad X_t = \bigcup \{X(s) : 0 \le s \le t\},$$

and

$$\int_{0}^{t} f(s, X(s)) ds = \left\{ \int_{0}^{t} f(s, x(s)) ds \colon x \in X \right\}$$

for $t \in J$ and $X \subset C(J)$. Moreover, we use the standard notations. The closure of a subset A of a topological vector space, its convex hull and its closed convex hull be denoted, respectively, by \overline{A} , conv Aand $\overline{\operatorname{conv}} A$. For a mapping F defined on A we denote by F[A] the image of A under F.

The Ascoli theorem we state as follows: $X \subset C(J)$ is conditionally compact if and only if X is almost equicontinuous and $\overline{X(t)}$ is compact for every $t \in J$. We shall use also the following result due to Ambrosetti [1]: If I is a compact subset of J and Y is a bounded equicontinuous subset of the usual Banach space of continuous *E*-valued functions on *I*, then

$$\alpha\big(\bigcup \{Y(t):t\in I\}\big) = \sup \{\alpha(Y(t)):t\in I\}.$$

Our result be proved by the following fixed point theorem of Furi and Vignoli type (see e.g. [6], Theorem 2):

Let \mathfrak{X} be a nonempty closed convex subset of C(J). Let $\Phi: 2^{\mathfrak{X}} \to [0, \infty)$ be a function such that $\Phi(X \cup \{x\}) = \Phi(X)$, $\Phi(\overline{\operatorname{conv}} X) = \Phi(X)$, $\Phi(X_1) \leq \Phi(X_2)$ whenever $X_1 \subset X_2$, and if $\Phi(X) = 0$ then \overline{X} is compact, for every $x \in \mathfrak{X}$ and every subsets X, X_1, X_2 of \mathfrak{X} . Suppose

that T is a continuous mapping of X into itself and $\Phi(T[X]) < \Phi(X)$ for arbitrary subset X of X with $\Phi(X) > 0$. Under the hypotheses, T has a fixed point in X.

THEOREM. Let h, L be functions of J into itself such that h is nondecreasing with h(0) = 0 and h(t) < t for t > 0, and L is measurable and integrable on compact subsets of J with $\sup \left\{ \int_{0}^{t} L(s) ds : t \in J \right\} \leq 1$. Suppose that the scalar inequality

$$g(t) \ge ||x_0|| + \int_0^t G(t, g(s)) ds$$

has a bounded solution g existing on J; denote by Z_0 the set of all $x \in E$ with $||x|| \leq r_0 = \sup \{g(t) : t \in J\}$. Assume, moreover, that for any t > 0, $\varepsilon > 0$ and $X \subset Z_0$ there exists a closed subset Q of [0, t] such that mes $([0, t] \setminus Q) < \varepsilon$ and

$$\alpha(f[I \times X]) \leq \sup \{L(s) \colon s \in I\} \cdot h(\alpha(X))$$

for each closed subset I of Q.

Then (PC) has at least one solution y defined on J and $||y(t)|| \leq g(t)$ for $t \in J$.

PROOF. Denote by X the set of all $x \in C(J)$ such that $||x(t)|| \leq g(t)$ on J and

$$||x(\sigma) - x(\tau)|| \leq \left| \int_{\sigma}^{\tau} G(s, r_0) \, ds \right|$$

for σ , τ in J. The set \mathfrak{X} is a closed convex bounded and almost equi continuous subset of C(J).

Let us put

 $\Phi(X) = \sup \{ \alpha(X(t)) : t \in J \}$ for a subset X of X. Obviously $\Phi(X) < \infty$, $\Phi(X_1) < \Phi(X_2)$ for $X_1 \subset X_2$, and $\Phi(X \cup \{x\}) = \Phi(X)$ for $x \in X$. Since

$$(\overline{\operatorname{conv}} X)(t) = (\overline{\operatorname{conv}} \overline{X})(t) \subset \overline{(\operatorname{conv}} X)(t) \subset \overline{\operatorname{conv}} (X(t))$$
,

80

$$\alpha\big((\overline{\operatorname{conv}} X)(t)\big) \! < \! \alpha\big(\overline{\operatorname{conv}(X(t))}\big) = \alpha\big(X(t)\big)$$

for $t \in J$. Hence

$$\sup \left\{ \alpha \big(\overline{\operatorname{conv}} X \big)(t) \big) \colon t \in J \right\} \! \leqslant \! \sup \left\{ \alpha \big(X(t) \big) \colon t \in J \right\} \, ,$$

and consequently, $\Phi(\overline{\operatorname{conv}} X) = \Phi(X)$. If $\Phi(X) = 0$ then $\overline{X(t)}$ is compact for every $t \in J$; therefore Ascoli's theorem proves that \overline{X} is compact in C(J).

To apply our fixed point theorem we define the continuous mapping T as follows: for $y \in C(J)$,

$$(Ty)(t) = x_0 + \int_0^t f(s, y(s)) \, ds$$
.

Modyfying the reasoning from [7] we infer that $T[\mathfrak{X}] \subset \mathfrak{X}$.

Let X be a subset of X such that $\Phi(X) > 0$. To prove the theorem it remains to be show that $\Phi(T[X]) \leq h(\Phi(X))$.

To this end, fix t in J. Let $\varepsilon > 0$, and let $\delta = \delta(\varepsilon) > 0$ be a number such that

$$\int_A G(s, r_0) \, ds < \varepsilon/2$$

for each measurable $A \,\subset [0, t]$ with mes $(A) < \delta$. By the Luzin theorem there exists a closed subset B_1 of [0, t] with mes $([0, t] \setminus B_1) < \delta/2$ and the function L is continuous on B_1 . Furthermore, by our comparison condition, there exists a closed subset B_2 of [0, t] such that mes $([0, t] \setminus B_2) < \delta/2$ and

$$\alpha(f[I \times X_t]) \leq \sup \{L(s) : s \in I\} \cdot h(\alpha(X_t))$$

for each closed subset I of B_2 .

Define:

$$A = A_1 \cup A_2, \quad B = [0, t] \backslash A,$$

where $A_i = [0, t] \setminus B_i$ for i = 1, 2. Since L is uniformly continuous on B, for any given $\varepsilon' > 0$ there exists $\eta > 0$ such that $t', t'' \in B$ and $|t' - t''| < \eta$ implies $\alpha(X_i)|L(t') - L(t'')| < \varepsilon'$. For a positive integer $m > t/\eta$, let $t_0 = 0 < t_1 < ... < t_m = t$ be the partition of the interval [0, t] with $t_j = m^{-1}t + t_{j-1}$ (j = 1, 2, ..., m). Moreover, let $I_j = [t_{j-1}, t_j] \setminus A$ and let s_j be a point in I_j such that $L(s_j) = \sup \{L(s): s \in I_j\}$.

92

An existence theorem for bounded solutions etc.

By the integral mean-value theorem, for $x \in X$ we have

$$\int_{B} f(s, x(s)) ds = \sum_{j=1}^{m} \int_{I_{j}} f(s, x(s)) ds \in \sum_{j=1}^{m} \operatorname{mes} (I_{j}) \operatorname{conv} \left(\left\{ f(s, x(s)) : s \in I_{j} \right\} \right) \subset \\ \subset \sum_{j=1}^{m} \operatorname{mes} (I_{j}) \operatorname{conv} \left(f[I_{j} \times X_{t}] \right).$$

Thus

$$\begin{aligned} \alpha(T[X](t)) &\leq \alpha \left(\int_{A} f(s, X(s)) \, ds \right) + \alpha \left(\sum_{j=1}^{m} \max\left(I_{j} \right) \overline{\operatorname{conv}} \left(f[I_{j} \times X_{t}] \right) \right) \leq \\ &\leq 2 \cdot \sup \left\{ \left\| \int_{A} f(s, x(s)) \, ds \right\| : x \in X \right\} + \sum_{j=1}^{m} \max\left(I_{j} \right) \alpha(f[I_{j} \times X_{t}]) \leq \\ &\leq 2 \cdot \int_{A} G(s, r_{0}) \, ds + \sum_{j=1}^{m} \max\left(I_{j} \right) L(s_{j}) h(\alpha(X_{t})) < \varepsilon + h(\alpha(X_{t})) \int_{B} L(s) \, ds + \\ &+ \sum_{j=1}^{m} \int_{I_{j}} h(\alpha(X_{t})) |L(s_{j}) - L(s)| ds < \varepsilon + h(\alpha(X_{t})) + \varepsilon' t \, , \end{aligned}$$

and therefore $\alpha(T[X](t)) \leq \varepsilon + h(\alpha(X_t))$. Since

$$\alpha(X_t) = \sup \left\{ \alpha(X(s)) : 0 \leqslant s \leqslant t \right\} \leqslant \Phi(X) ,$$

we obtain $\alpha(T[X](t)) \leq \varepsilon + h(\Phi(X))$; as ε is arbitrary, this implies $\alpha(T[X](t)) \leq h(\Phi(X))$. Hence $\Phi(T[X]) \leq h(\Phi(X))$, and consequently T has a fixed point in \mathfrak{X} . The proof is complete.

REFERENCES

- A. AMBROSETTI, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova, 39 (1967), pp. 349-360.
- [2] G. DARBO, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova, 24 (1955), pp. 84-92.
- [3] K. DEIMLING, Ordinary Differential Equations in Banach Spaces, Lect. Notes in Math. 596, Springer-Verlag, Berlin, 1977.

- [4] M. FURI A. VIGNOLI, On α-nonexpansive mappings and fixed points, Rend. Atti Acc. Naz. Lincei, 18 (1977), pp. 195-198.
- [5] R. H. MARTIN jr., Nonlinear Operators and Differential Equations in Banach Spaces, John Wiley and Sons, New York, 1976.
- [6] B. RZEPECKI, Remarks on Schauder's fixed point principle and its applications, Bull. Acad. Polon. Sci., Sér. Math., 27 (1979), pp. 473-480.
- [7] A. STOKES, The application of a fixed-point theorem to a variety of nonlinear stability problems, Proc. Nat. Acad. Sci. USA, 45 (1959), pp. 231-235.
- [8] S. SZUFLA, On the existence of solutions of differential equations in Banach spaces, Bull. Acad. Polon. Sci., Sér. Math., **30** (1982), pp. 507-515.

Manoscritto pervenuto in redazione il 20 dicembre 1983.