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Rings S-Radical Over PI-Subrings.

B. FELZENSZWALB - P. Misso (*)

1. A ring R is said to be radical over a subring A if, for every
x € R, there exists an integer n(x)>1 such that #"® e A. One of the
results concerning the structure of radical extensions is a result due
to Herstein and Rowen. In [5] they proved: if R is a ring with no
nil right ideals, radical over a subring 4 and A satisfies a polynomial
identity, then R satisfies the same multilinear identities. In [6] Zel-
manov showed that the conclusion still holds if we merely assume
that R is without nil ideals.

In this paper we shall be concerned with the same problem of
lifting polynomial identities in the setting of rings with involution.
If R is a ring with involution and 8 the set of symmetric elements of
R, we say that R is S-radical over a subring A if, given s € §, then
s"® e A for some integer n(s)>1.

S-radical extensions were studied in [1] where it was shown that
if R is a division ring S-radical over a proper subring A then, for all
2 € R, xx* is central in R and so, R is at most 4-dimensional over its
center.

Here we shall prove the following: let K be a prime ring with no
nil right ideals and char R+ 2,3. If R is S-radical over a subring
A and A satisfies a polynomial identity of degree d, then R satisfies
a polynomial identity (PI) and PI-deg (R)<d.

We remark that if every element in § is nilpotent then R contains
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a nonzero nil right ideal; however it is not known if R contains a
nonzero nilideal (this is tied in with a conjecture due to McCrimmon [4]).

Throughout this paper R will denote a ring with involution *, Z its
center and § = {x e R: # = 2#*} and K = {w € R: ¥ = — a*}, the set of
symmetric and skew elements respectively. Finally N= {a**: x € R}
will denote the set of norms of E.

If R is a prime ring satisfying a polynomial identity, then its ring
of central quotients, @, is a central simple algebra of dimension n?
over its center and we define PI-deg (R) = n.

2. We first prove a result of independent interest which will be
very useful in proving the main theorem, namely:

THEOREM 1. Let R be a ring with no nonzero nil right ideals. If R
is S-radical over a division ring A4, A = R then either

1) R is a direct sum of a division ring and its opposite with the
exchange involution or

2) R is simple, N CZ and dim, R<A4.

Proor. Since R is also S-radical over A N A*, we may assume
A = A* Let U = U* be a proper *-ideal of R. Since U is proper and
A is a division ring, UN A = 0. Thus UN 8§ consists of nilpotent
elements. Let se UN 8 be such that s2=0. If re R, sr -+ r*tse
eUNS, so, for a suitable n, 0 = (sr + r*s)»= (sr)* (r*s)*+ sys
for some y € B. Hence (sr)* s = 0. This shows that sR is nil and so,
sR = 0 consequently s = 0. Therefore we get UN S =0. Let x€ U,
then x 4 #* = 0 implies t = — x* € K and so 22€ UN 8§ = 0. Thus
every element in U is nilpotent of index 2. It follows that U = 0.

We have proved that R is *-simple. Since J(R), the Jacobson radical
of R, is a *-ideal and J(4) = 0, we immediately get J(R) = 0 that is
R is semisimple. Now each s € § is either nilpotent or invertible so by
([4], Theorem 2. 3. 4) R is one of the following types:

(i) a division ring,

(ii) a direct sum of a division ring and its opposite with the
exchange involution,

(iii) the 2 x2 matrices over a field F, or

(iv) a commutative ring with trivial involution.
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If the first case occurs, by the result of Chacron and Herstein [1] we
are done. In case (ii) or (iii) we are obviously done. In case (iv) R is
radical over a division ring and so by ([2], Theorem 1.1) R is a field.
This completes the proof of the theorem.

‘We now state our main theorem.

THEOREM 2. Let R be a prime ring with involution of characteristic
# 2,3 which is S-radical over a subring A. If R has no nonzero nil
right ideals and A satisfies a polynomial identity of degree d, then R
satisfies a polynomial identity and PI-deg (R)<d.

The proof of theorem 2 requires several lemmas; we first make a
few preliminary remarks and then state and prove the required lemmas.

In what follows A c R will be rings satisfying the hypotheses of the
theorem and f(X,, ..., X;) will be a multilinear polynomial identity of
degree d satisfied by A. Moreover we assume, as we may, that A = A*.

We remark that, by a theorem of Giambruno [3], either S C Z(R)
or Z(A)C Z(R). In the former case R satisfies the standard identity
of degree 4 and there is nothing to show. Hence, we shall always
assume that Z(A) C Z(R). In particular since R is prime, every nonzero
element in Z(A) is regular in R.

‘We begin with

LEmMMA 1. If A is a domain then R is PI.

ProOF. By ([4], Theorem 1.4.2) we have that Z(4)= 0. If we
localize A and R at Z(A) we get rings with induced involution A4,,
R, respectively. Then R, has no non-zero nil right ideals and is S-radical
over A,. Moreover, since A is a domain, by ([4], Theorem 1.3.4),
A, is a division algebra. From theorem 1 we get that either 4, = R,
or § = S(R,) C Z(R,). In any case R,, and so R, is PI.

LeEMMA 2. If R is PI then Pl-deg (R)<d.

Proor. By ([4], Theorem 1.4.2), Z(R)+ 0. Hence, since Z(R) is
S-radical over Z(A), Z(A)+# 0. If we localize R at Z(R) and A at
Z(A)C Z(R), we get rings R,, A, respectively. Then, by ([4], Theo-
rem 1.4.3), R, is a finite dimensional central simple algebra with induced
involution which is S-radical over A4,. Moreover, 4, satisfies the poly-
nomial identity f(X,, ..., X;). Thus, in order to complete the proof of
the lemma, we may assume that R is a finite dimensional central simple
algebra. Therefore, R = D,, the ring of n X » matrices over a division
ring D, and the involution * is either symplectic or of transpose type.
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Suppose first that * is symplectic. Then D is a field, moreover,
since S8 ¢ Z(R), n > 2. Let e¢; be the usual matrix units in R. For
€D and ¢>1odd, the elements

€11+ €22

€11+ €22+ (€1 + €1pa0)

and

€11 -+ €22 + (€iy I €5,:44)

lie in A since they are symmetric idempotents. Hence a(¢;; + €:,4,),
(€3 + €5,111) € A and multiplying these elements first from the left
and then from the right by e,, | ¢,, we conclude that

1) De,;+ De; g5+ Deyy+ Dey; €A (6>1 odd) .
Similarly, since for ¢ > 2 even the elements
€11+ €20 + (61— €;_1,9)
€1+ 625 + (€3 — 65,5_4)
are symmetric indempotents, we obtain
(2) De,; + De;_y 5+ De;y+ Dey; €A, (1>2 even).

From (1) and (2) since €;; + e,5 € A, it follows that De;; C A for all i, j.
Thus 4 =R and we are done.

Suppose now that * is of transpose type, that is, there exists an
invertible diagonal matrix C = diag {e,, ..., ¢,} € D, with ¢;= ¢ €D
such that (;)* = O(a};) - for all (x,;) € D,. In this case e; (i =
=1,...,n) is a symmetric idlempotent and so lies in A.

We claim that for every e,; there exists 0 % a = «;; € Z, the center
of D, such that «-¢;; € A. Since A is a subringand e;;€ 4 (¢ = 1, ..., n),
it is enough to show that this holds for ¢, ;,, and é,,,; (¢ = 1, ..., n —1).

Moreover, since * restricted to the diagonal 2 x2 block De;; |
+ Deéy,in + Deiyy,i + Deyya,i,4 is still an involution of transpose type,
in order to prove the claim, we may assume that R = D,.

Now, since D is S-radical over A N D, it follows by [1] that either
8(D)SZ or DC A. Moreover, by [3], since e, ¢ Z, there exists s€§
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such that, for some %, ¢;,s*~ s*¢;; and s*e€ A. In particular ¢ =
= (a Z is not a diagonal matrix, say b 0.

If S(D)Cc Z, then C = (8‘ ;)) € Z, and * induces an involution on Z,.

2
Thus, in this case we may assume that s € Z,. Hence ¢;,8%¢,, = bej, € A
and (be,)* = b'e, € A with b, b'e Z.

On the other hand, if D C A, be,, = €,;5%¢,,€ A and e, € A. Hence
0267165 = €}, € A and e, lies also in A. Thus the claim is established ; in
other words, there exist 0 = a;; € Z such that «;;e,;€ A3, § = 1, ..., n).

Now, if D C A, then clearly D, = A and there is nothing to prove.
Therefore we may assume that S(D)CZ and so PI-deg (D,)<2n.

Let f be the multilinear identity for A of degree d. If d << 2n, then

f(0ta1 €11y 1210y Can €20, ...) = 0,

a contradiction. Hence d>2n>PI-deg (D,) and the lemma is proved.

Lemma 3. If R satisfies a generalized polynomial identity (GPI),
then R is PI and PI-deg (R)<d.

ProoF. Suppose that R is not a PI ring. Then, by a theorem of
Montgomery ([4], Corollary to Theorem 2.5.1), for every positive
integer n, R contains a *-subring R which is a prime PI ring with
PI-deg (R™)>mn. But R™ ig S-radical over R""N A and R® N A
gatisfies the polynomial identity f(X,, ..., X;) of degree d. By Lemma 2,
d>Pl-deg (R™)>n, for every positive integer n, a contradiction.
Thus R is PI and by Lemma 2, PI-deg (R)<d.

We are finally able to prove our main theorem.

ProOF oF THEOREM 2. Since, by assumption, S¢ Z(R), by ([4],
Theorem 2.2.1), either 8 containg non-zero nilpotent elements or the
involution is positive definite, that is xa*= 0 in R forces x = 0.

Suppose first that there exists s 0 in § with s2=0. If xe R,
let n(x, $)>1 be such that (sz + x*s)»=9 e A and let 4, be the subring
of R generated by all (sx)"=9, x € R. Then R, = s R is radical over
A,. Now, if be 4,, say

b= (s2:)"s(sm;)™s ... (52;,)™e
then, since s2= 0,

bs = 3 (sws, + 8)"a(sw, + m: 8)™s ... (8%, + T, 8)™e+s = a8
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where a € A. From this it easily follows that if b,,...,b;€ 4, then
(by ... bs) s = (ay ... @) 8 where a,,...,a;,€ A. Hence,

f(B1y eeey ba) s = z oo boqyy «-» bo@) 8
= z 0o Qo(1) +o0 Qo(a) S

:f(au -"7ad)3 == 0 .

In other words A, satisfies the polynomial identity f(X,, ..., X4) X4,4.

Let R,= R,/N(R,) where N(R,) is the nil radical of R,. Since R
has no non-zero nil right ideals, neither does R,. Moreover, R, is
radical over A4,, the image of 4, in R,. Since A4,, and so 4,, satisfies
(X, ey X3) Xy by [5], R, also satisfies f(X,, ..., X3) X4,;. Therefore R
satisfies a GPI and by Lemma 3 the result follows.

Suppose now that * is positive definite. We proceed by induction
on the degree of the multilinear polynomial identity f(X,, ..., X4)
satisfied by A.

Since * is positive definite, A is semiprime. Moreover, since the
center of a prime ring is a domain, Z(4) C Z(R) is also a domain. But
in a semiprime PI-ring, every ideal hits the center non trivially ([4],
Corollary to Theorem 1.4.2), therefore A is prime.

If A has no non-zero nilpotent elements, then A is a domain and
we are done by Lemma 1. Hence we may assume that there exists
a# 0 in A with a2= 0.

Let R'= aRa*; then R’ is a *-subring of R, S-radical over 4'=
= aRa* N A, and, since * is positive definite, R’ is a prime ring.

Let

f(X1y eory Xa) = Xgb( Xy, ooy Xaa) + 9(Xy, .0y Xy)

where X; never appears as first variable in any monomial of g. Since
at=0, if #,, ..., 05, € A" and ;€ A, we have

0 = af(Byy eoey Ba_y,y Xa) = ABGM( X1, «ovy Ta_y)

Hence aAdh(x,...,%;_;) = 0 and, since @40, the primeness of A
forces h(wzy,...,%s_;) =0. In other words A’ satisfies h(xy,..., %4_y).
By our induction hypothesis, R’ is PI. From this we get that R
satisfies a GPI. By Lemma 3, the result follows.
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