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On the Existence of Projective
and Quasi-Projective Covers.

JUTTA HAUSEN (*) - JOHNNY A. JOHNSON (**)

1. Introduction.

It is worth noting when, for a module theoretical property P,
the conditions

( f gP) : Every finitely generated R-module has property P;

and

(lgP) : Every 1-generated (i.e. cyclic) R-module has property P;

are, in fact, equivalent. As is well known, the property P, of possessing
a projective cover is an example of this occurance.

Hyman Bass [2] introduced the semi-perfect rings as the class of
rings satisfying (lgP1). He proved the equivalence of (lgPi) with

and other ring-theoretical properties (cf. [1, p. 304, 27.6]).
Further characterizations of the class of semi-perfect rings of the form
( f gP) were obtained by Jonathan Golan [6, 7] and Anne Koehler [10].
We collect their results.

THEOREM 1.1 (Bass [2], Golan [6, 7], Koehler [10]). The following
properties of the ring .R are equivalent. 
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(i) Every finitely generated R-module has a projective cover.

(ii) Every finitely generated R-module has a quasi-projective
cover.

(iii) Every finitely generated quasi-projective R-module is quasi-
perfect.

(iv) Every finitely generated R-module has a quasi-perfect cover.

(v) .R is semi-perfect.

In this note we show that the replacement of « finitely generated »
by « 1-generated », well known to be valid in (i), is also valid in (iii)
and (iv), and that «finitely generated &#x3E;&#x3E; may be replaced by « 2-
generated » in (ii). We will prove

THEOREM 1.2. The following properties of the ring .R are equivalent.

(i) R is semi-perfect.

(ii) Every 2-generated R-module has a quasi-projective cover.

(iii) Every 1-generated quasi-projective R-module is quasi-
perfect.

(iv) Every 1-generated R-module has a quasi-perfect cover.

Koehler showed that a ring .R is semi-simple artinian if and only
if every finitely generated R-module is quasi-projective. Along the
same lines we prove

THEOREM 1.3. The ring R is semi-simple artinian if and only if
every 2-generated R-module is quasi-projective.

Neither in Theorem 1.3 nor in (ii) of Theorem 1.2 is it possible to
replace « 2-generated » by « 1-generated ». This prompts us to consider,
in Section 3, y the class of qpc-rings (rings whose cyclic modules have
quasi-projective covers), and Koehler’s class of q*-rings (rings all of

whose cyclic modules are quasi-projective). We give a characterization
of those submodules K of a ring .R for which .R/g is quasi-projective.
This leads to a new description, y in terms of the ring arithmetic, of
the classes of q*-rings and qpc-rings which may prove useful in the
future.

An example is given to show that the class of qpc-rings properly
contains the class of q*-rings.
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2. Proof of the reduction theorems.

Throughout, .R is a ring with identity and all modules are unital
left R-modules. A module is n-generated if, as R-module, it is generated
by a subset of cardinality at most n. Thus, 1-generated equals cyclic.
Mappings are written on the right.

For the definition of quasi-projective and quasi-perfect modules
see [13] and [7]. We use Rangaswamy and Vanajals definition of

quasi-projective covers [12]. Since it is only the existence of quasi-
projective covers that we are concerned with, the difference in terminol-
ogy between [13, 6, 4] and [12] can be ignored.

PROOF OF THEOREM 1.2. It suffices to derive (i) from each of the
other conditions. To show that (ii) implies (i), let M be a cyclic R-
module. Then R @ M is 2-generated and thus, has a quasi-projective
cover. By Golan [8, p. 339, 2.2(2)] M has a projective cover. This

being true for every cyclic R-module proves .R to be semi-perfect by
definition. Assume (iii). Then .1~ is supplemented, and a result of
Friedrich Kasch and Erika Mares states that every epimorphic image
of .R has a projective cover [9, p. 526, SATZ]. Hence .R is semi-perfect.
Likewise, if (iv) is valid, there exists a quasi-perfect cover Q ~ .R
of B. Then R - Q fker Jr being projective with ker ~c small in Q implies
ker n = 0 and .1~ ,-...J Q. Since Q is supplemented, so is .R, and the proof
is again completed by [9, p. 526, SATZ].

PROOF OF THEOREM 1.3. Let S be a submodule of .R and assume
that every 2-generated .R-module is quasi-projective. Then 

is quasi-projective and [8, p. 339, 2.2(1)] implies that is projective.
Hence is a direct summand. This being true for every submodule
S of .I~ shows .1~ to be semi-simple [1, p. 115, 13.9]. The proof is com-
pleted by Koehler [11, p. 656, 2.1].

3. Quasi-projective cyclic modules.

Since we regard R as a left .R-module, the R-endomorphisms of R
are precisely the right multiplications with elements of .Z~. Consequently,
for two left ideals K and L of .1~ with K C .~,
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is an R-module homomorphism if and only if there exists such
that Kr C .~ and (x + K) ç = xr + L for all x E .R. Hence r E (L:K)
where we define

Since we have 1 + (~:j5’) c (L: K). These remarks essentially
prove the following characterization of submodules .g of .R with .R/K
quasi-projective.

PROPOSITION 3.1. Let K be a submodule of .R. Then is quasi-
projective if and only if, for all submodules .~ of .R, whenever K S L,
then (.~ : g) _ -~ -I- 

Immediate consequences are the following facts. The first one is
well known (cf. Fuchs and Rangaswamy [5], Golan [7]).

COROLLARY 3.2. Let S be a submodule of .R. In each of the fol-

lowing cases .R/S is quasi-projective.

(i) ~’ is a two-sided ideal of .R.

(ii) ~’ is a maximal submodule of R.

(iii) R/S has order pq where p and q are (not necessarily distinct)
primes.

Another illustration of the usefulness of 3.1 is a short and trans-

parent proof of a result by Wu and Jans [13].

PROPOSITION 3.3. If K is a small submodule of Rand is quasi-
projective, then .g is a two-sided ideal of I~.

PROOF. Let r E .R. By 3.1 we have

so that r = kr with k and Koe C .g. Hence

and 1- k is a unit in .R since .g is small. It follows that
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which implies

We obtain the following characterization of q*-rings.

THEOREM 3.4. The ring .R is a q*-ring if and only if, for each pair of
submodules .K and .~ of .R, whenever K C L, then (1:~) = ~ -~- (K: K).

Combining 3.2 and 3.3, it is immediate that a local ring (cf. [3, p. 35])
is a q*-ring if and only if every submodule contained in the radical is a
two-sided ideal (cf. Koehler [10, p. 312, 2.1]).

We turn to cyclic modules with quasi-projective covers. If

is a quasi-projective cover then it is easy to see that there is a sub-
module K of .R with K C S such that

is a quasi-projective cover where n is the natural map. Thus we have
THEOREM 3.5. The ring .I~ is a qpc-ring if and only if, for each

submodule S of .Z-~, there exists a submodule .g of .R such that 1) K C S,
2) is small in and 3) for every submodule .~ of .R, whenever

then (L: K) = L + (K: ).
To demonstrate that not every qpc-ring is a q*-ring we give the

following

EXAMPLE (Koehler [10]). For n an integer, let and 
be the congruence classes containing n modulo 4 and modulo 2, y
respectively. Let

with addition defined componentwise and multiplication given by
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Koehler has shown that .R is not a (left) q*-ring. The radical of .R is

In order to show that .R is a qpc-ring, let S be a submodule of .R such
that RfS is not quasi-projective. By 3.2, ~S’ has order 2. One verifies
that then S C N. Hence S is small and is a projective cover
of 
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