RENDICONTI del Seminario Matematico della Università di Padova

JUTTA HAUSEN JOHNNY A. JOHNSON

On the existence of projective and quasiprojective covers

Rendiconti del Seminario Matematico della Università di Padova, tome 73 (1985), p. 49-54

http://www.numdam.org/item?id=RSMUP_1985_73_49_0

© Rendiconti del Seminario Matematico della Università di Padova, 1985, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 73 (1985)

On the Existence of Projective and Quasi-Projective Covers.

JUTTA HAUSEN (*) - JOHNNY A. JOHNSON (**)

1. Introduction.

It is worth noting when, for a module theoretical property P, the conditions

(fgP): Every finitely generated *R*-module has property *P*;

and

(1gP): Every 1-generated (i.e. cyclic) *R*-module has property *P*;

are, in fact, equivalent. As is well known, the property P_1 of possessing a projective cover is an example of this occurance.

Hyman Bass [2] introduced the semi-perfect rings as the class of rings satisfying $(1gP_1)$. He proved the equivalence of $(1gP_1)$ with (fgP_1) and other ring-theoretical properties (cf. [1, p. 304, 27.6]). Further characterizations of the class of semi-perfect rings of the form (fgP) were obtained by Jonathan Golan [6, 7] and Anne Koehler [10]. We collect their results.

THEOREM 1.1 (Bass [2], Golan [6, 7], Koehler [10]). The following properties of the ring R are equivalent.

(*) The first author was partially supported by a University of Houston, University Park Research Enabling Grant.

(**) Indirizzo degli AA.: Department of Mathematics, University of Houston, University Park, Houston, Texas 77004.

- (i) Every finitely generated *R*-module has a projective cover.
- (ii) Every finitely generated *R*-module has a quasi-projective cover.
- (iii) Every finitely generated quasi-projective *R*-module is quasiperfect.
- (iv) Every finitely generated R-module has a quasi-perfect cover.
- (v) R is semi-perfect.

In this note we show that the replacement of «finitely generated » by «1-generated », well known to be valid in (i), is also valid in (iii) and (iv), and that «finitely generated » may be replaced by «2generated » in (ii). We will prove

THEOREM 1.2. The following properties of the ring R are equivalent.

- (i) R is semi-perfect.
- (ii) Every 2-generated R-module has a quasi-projective cover.
- (iii) Every 1-generated quasi-projective *R*-module is quasiperfect.
- (iv) Every 1-generated R-module has a quasi-perfect cover.

Koehler showed that a ring R is semi-simple artinian if and only if every finitely generated R-module is quasi-projective. Along the same lines we prove

THEOREM 1.3. The ring R is semi-simple artinian if and only if every 2-generated R-module is quasi-projective.

Neither in Theorem 1.3 nor in (ii) of Theorem 1.2 is it possible to replace «2-generated » by «1-generated ». This prompts us to consider, in Section 3, the class of qpc-rings (rings whose cyclic modules have quasi-projective covers), and Koehler's class of q^* -rings (rings all of whose cyclic modules are quasi-projective). We give a characterization of those submodules K of a ring R for which R/K is quasi-projective. This leads to a new description, in terms of the ring arithmetic, of the classes of q^* -rings and qpc-rings which may prove useful in the future.

An example is given to show that the class of qpc-rings properly contains the class of q^* -rings.

2. Proof of the reduction theorems.

Throughout, R is a ring with identity and all modules are unital left R-modules. A module is *n*-generated if, as R-module, it is generated by a subset of cardinality at most n. Thus, 1-generated equals cyclic. Mappings are written on the right.

For the definition of quasi-projective and quasi-perfect modules see [13] and [7]. We use Rangaswamy and Vanaja's definition of quasi-projective covers [12]. Since it is only the existence of quasiprojective covers that we are concerned with, the difference in terminology between [13, 6, 4] and [12] can be ignored.

PROOF OF THEOREM 1.2. It suffices to derive (i) from each of the other conditions. To show that (ii) implies (i), let M be a cyclic R-module. Then $R \oplus M$ is 2-generated and thus, has a quasi-projective cover. By Golan [8, p. 339, 2.2(2)] M has a projective cover. This being true for every cyclic R-module proves R to be semi-perfect by definition. Assume (iii). Then R is supplemented, and a result of Friedrich Kasch and Erika Mares states that every epimorphic image of R has a projective cover [9, p. 526, SATZ]. Hence R is semi-perfect. Likewise, if (iv) is valid, there exists a quasi-perfect cover $\pi: Q \to R$ of R. Then $R \simeq Q$. Since Q is supplemented, so is R, and the proof is again completed by [9, p. 526, SATZ].

PROOF OF THEOREM 1.3. Let S be a submodule of R and assume that every 2-generated R-module is quasi-projective. Then $R \oplus R/S$ is quasi-projective and [8, p. 339, 2.2(1)] implies that R/S is projective. Hence S is a direct summand. This being true for every submodule S of R shows R to be semi-simple [1, p. 115, 13.9]. The proof is completed by Koehler [11, p. 656, 2.1].

3. Quasi-projective cyclic modules.

Since we regard R as a left R-module, the R-endomorphisms of R are precisely the right multiplications with elements of R. Consequently, for two left ideals K and L of R with $K \subseteq L$,

$$\varphi: R/K \to R/L$$

is an *R*-module homomorphism if and only if there exists $r \in R$ such that $Kr \subseteq L$ and $(x + K)\varphi = xr + L$ for all $x \in R$. Hence $r \in (L:K)$ where we define

$$(L:K) = \{r \in R | Kr \subseteq L\}.$$

Since $K \subseteq L$, we have $L + (K:K) \subseteq (L:K)$. These remarks essentially prove the following characterization of submodules K of R with R/K quasi-projective.

PROPOSITION 3.1. Let K be a submodule of R. Then R/K is quasiprojective if and only if, for all submodules L of R, whenever $K \subseteq L$, then (L:K) = L + (K:K).

Immediate consequences are the following facts. The first one is well known (cf. Fuchs and Rangaswamy [5], Golan [7]).

COROLLARY 3.2. Let S be a submodule of R. In each of the following cases R/S is quasi-projective.

- (i) S is a two-sided ideal of R.
- (ii) S is a maximal submodule of R.
- (iii) R/S has order pq where p and q are (not necessarily distinct) primes.

Another illustration of the usefulness of 3.1 is a short and transparent proof of a result by Wu and Jans [13].

PROPOSITION 3.3. If K is a small submodule of R and R/K is quasiprojective, then K is a two-sided ideal of R.

PROOF. Let $r \in R$. By 3.1 we have

$$r \in ((Kr + K):K) = Kr + K + (K:K)$$
$$= Kr + (K:K)$$

so that r = kr + x with $k \in K$ and $Kx \subseteq K$. Hence

$$(1-k)(r-x) = r - kr - x + kx = kx$$
,

and 1-k is a unit in R since K is small. It follows that

$$R(r-x) = R(1-k)(r-x) = Rkx \subseteq RKx = Kx \subseteq K$$

52

which implies

$$Kr \subseteq K(r-x) + Kx \subseteq R(r-x) + Kx \subseteq K + K = K$$
.

We obtain the following characterization of q^* -rings.

THEOREM 3.4. The ring R is a q*-ring if and only if, for each pair of submodules K and L of R, whenever $K \subseteq L$, then (L:K) = L + (K:K).

Combining 3.2 and 3.3, it is immediate that a local ring (cf. [3, p. 35]) is a q^* -ring if and only if every submodule contained in the radical is a two-sided ideal (cf. Koehler [10, p. 312, 2.1]).

We turn to cyclic modules with quasi-projective covers. If

$$\varphi: Q \twoheadrightarrow R/S$$

is a quasi-projective cover then it is easy to see that there is a submodule K of R with $K \subseteq S$ such that

$$\pi \colon R/K \twoheadrightarrow R/S$$

is a quasi-projective cover where π is the natural map. Thus we have

THEOREM 3.5. The ring R is a *qpc*-ring if and only if, for each submodule S of R, there exists a submodule K of R such that 1) $K \subseteq S$, 2) S/K is small in R/K, and 3) for every submodule L of R, whenever $K \subseteq L$, then (L:K) = L + (K:K).

To demonstrate that not every qpc-ring is a q^* -ring we give the following

EXAMPLE (Koehler [10]). For n an integer, let $\hat{n} \in \mathbb{Z}_4$ and $\overline{n} \in \mathbb{Z}_2$ be the congruence classes containing n modulo 4 and modulo 2, respectively. Let

$$R = \left\{ egin{bmatrix} \dot{a} & ar{b} \ 0 & ar{c} \end{bmatrix} ig| \, a, \, b, \, c \in Z
ight\}$$

with addition defined componentwise and multiplication given by

$$\begin{bmatrix} \hat{a} & \overline{b} \\ 0 & \overline{c} \end{bmatrix} \begin{bmatrix} \hat{d} & \overline{e} \\ 0 & \overline{f} \end{bmatrix} = \begin{bmatrix} \widehat{ad} & \overline{ae + bf} \\ 0 & \overline{cf} \end{bmatrix}.$$

Koehler has shown that R is not a (left) q^* -ring. The radical of R is

$$N = \left\{ \begin{bmatrix} \widehat{2a} & \overline{b} \\ 0 & 0 \end{bmatrix} \middle| a, b \in Z \right\}.$$

In order to show that R is a *qpc*-ring, let S be a submodule of R such that R/S is not quasi-projective. By 3.2, S has order 2. One verifies that then $S \subseteq N$. Hence S is small and $R \xrightarrow{\pi} R/S$ is a projective cover of R/S.

REFERENCES

- [1] F. W. ANDERSON K. R. FULLER, *Rings and Categories of Modules*, Graduate Texts in Mathematics, Springer-Verlag, New York, 1974.
- [2] H. BASS, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc., 95 (1960), pp. 466-488.
- [3] C. FAITH, Algebra II, Ring Theory, Springer-Verlag, Berlin, 1976.
- [4] T. G. FATICONI, On quasiprojective covers, Trans. Amer. Math. Soc., 278 (1983), pp. 101-113.
- [5] L. FUCHS K. M. RANGASWAMY, Quasi-projective abelian groups, Bull. Soc. Math. France, 98 (1970), pp. 5-8.
- [6] J. S. GOLAN, Characterization of rings using quasiprojective modules, Israel J. Math., 8 (1970), pp. 34-38.
- [7] J. S. GOLAN, Quasiperfect modules, Quart. J. Math. Oxford, (2), 22 (1971), pp. 173-182.
- [8] J. S. GOLAN, Characterization of rings using quasiprojective modules, II, Proc. Amer. Math. Soc., 28 (1971), pp. 337-343.
- [9] F. KASCH E. A. MARES, Eine Kennzeichnung semi-perfekter Moduln, Nagoya Math. J., 27 (1966), pp. 525-529.
- [10] A. K. KOEHLER, Rings for which every cyclic module is quasi-projective, Math. Ann., 19, 189 (1970), pp. 311-316.
- [11] A. K. KOEHLER, Quasi-projective covers and direct sums, Proc. Amer. Math. Soc., 24 (1970), pp. 655-658.
- [12] K. M. RANGASWAMY N. VANAJA, Quasi projectives in abelian module categories, Pacific J. Math., 43 (1972), pp. 221-238.
- [13] L. E. T. WU J. P. JANS, On quasi projectives, Illinois J. Math., 11 (1967), pp. 439-448.

Manoscritto pervenuto in redazione il 12 dicembre 1983.