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An 03A9+-Estimate for the Number
of Lattice Points in a Sphere.

WERNER GEORG NOWAK (*)

Let A( T) be the number of lattice points in the sphere x2 --E- y2 +
+ z2  T, then it is the purpose of the present paper to prove that

(log, denoting the k-fold iterated logarithm). This is done by a method
due to K. S. Gangadharan [7] on the basis of an explicit formula of
P. T. Bateman [1].

1. Introduction.

Denote by the number of triples (u, v, w) E Z3 satisfying
u2 + 1]2 + w2 = n, then it is the objective of the present paper to
establish a result on the behaviour of the « lattice rest»

for T -~ oo . Concerning the 0-problem, it has been proved by I. M.
Vinogradov ([14J and [15], p. 29 f ) that P(T) = O(Tf(log T)c) for

some absolute constant c. (Vinogradov gave the value c = 6 which

(*) Indirizzo dell’A.: Institut für Mathematik der Universitat für Boden-
kultur, Gregor Mendel-StraBe 33, A-1180 Vienna, Austria.
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can be readily improved at least to c = 2 ; Chen J. R. [4] stated this
result even with c = 0.)

In the other direction, y G. Szegô [13] showed that

apparently the best result of that kind to date. On the opposite side
K. Chandrasekharan and R. Narasimhan [3] proved that

In this paper we are going to establish a refinement of this last result,
i.e. we prove the following estimate.

THEOREM. For T -~ 00 me have

where logk denotes the k- f old iterated logarithm.

REMARKS. We employ the method developed by K. S. Ganga-
dharan [7] for the divisor and the circle problem, the essential difficulty
(due to the somewhat « irregular» behaviour of r3(n)) being surmounted
by the lemma on page 6 (the proof of which is based on the explicit
formula (17) for r3(n) ) . In fact, there are numerous contributions to
the literature (see the references) which contain investigations analogous
to the part of our argument leading from our lemma to (3), most of
them involving generating functions (-in our case this would be

Epstein’s zeta-function ) which satisfy a certain functional equation
due to Chandrasekharan and Narasimhan. However, apparently none
of this results can be applied directly (i.e. without the necessity to get
rid of some condition which is not satisfied in our case) to infer (3)
from our lemma. So we prefer to give an argument as simple and self-
contained as desirable which avoids the use of generating functions.

2. [Notation and other preliminaries.

Throughout the whole paper, n and m are nonnegative integers, q
resp. qj denotes square-free integers and p denotes primes. X is a
(large) real variable, qj are the square-free positive integers not exceed-
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ing X (1  j  N = N(~)~. C+ is the half-plane of all complex
numbers with a positive real part. Let T(u) be

v

any trigonometric polynomial and H(s) an analytic function on C+,
then we define for a &#x3E; 0

We further put (for real oc)

and

where

is the complex conjugate of 7: runs through an index set of
cardinality C 3x, the coefficients br are of modulus  1 and the numbers
(JT have the following property relevant for later purposes. If we define

then Ivln:1: for all i and No. Moreover, putting

we note that Gangadharan [7] has proved that

for sufficiently large X with some positive constants a and b(b &#x3E; 2).
Hence
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for each r and any n G No. We finally remark that it follows from the
above in a straightforward manner that (for or &#x3E; 0 and ~, &#x3E; 0)

where = cr-A and the 0-constant is an absolute one. (This will
be the case for all 0- and «-constants throughout the whole paper.)

3. Proo£ of the theorem.

3.1. Foru &#x3E; 0 we define P(’U) = ~-~(JP(~~) 2013 l)y then Po = sup W(u)
(taken over all u &#x3E; 0) is a finite positive number for 1  8  3. (If
this were not true for some 8 &#x3E; 1, a stronger estimate than our theorem
would follow immediately.) We further put P(u2) + 1,
then 0, and we obtain for arbitrary s E C+

where

and



35

It follows from (9) that (for J &#x3E; 0)

In this formula we now put (for a large parameter X)

(with a suitable large absolute constant A) and proceed to establish

asymptotic evaluations of the terms on the right side of (10). To this
end we first infer from (9’) that

(For a proof cf. the analogue treated by G. H. Hardy [9], p. 266.)
From this the following two assertions are easy consequences (see
lemma 1 and 2 of Gangadharan [7] for details~ :

From this we obtain an asymptotic expansion for the second term on
the right side of (10) :

PROPOSITION :

PROOF. Recalling (5), we first note that
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Applying (I) (with
obtain

and the same argument holds for T.11. Finally we infer from (II)
(with c = 3JtXf, ro == 2x exp (- q(X)~, in view of (7)) that

(because of (6)) which completes the proof of our proposition.
Next we obtain as an immediate consequence of (8) and (11) that

(for X - oo)

and

Entering this and the above proposition into (10) and noting that
.T’(1-f- 8(X)) = 1-f- o(1) we get

(since, by definition, and Tx(u) are &#x3E; 0 for every u &#x3E; 0).

3.2. We are now going to establish the essential auxiliary result of
the whole argument:
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PROOF. Suppose that n # 0 (mod 4) and write n = m2 q (q square-
free), then on - 1 (mod 2 ), hence m2 « 1 (mod 8) and therefore n _--_- q
(mod 8). We make use of the following explicit formula for r3(n) due
to P. T. Bateman [1], p. 99:

where

(b denoting the largest integer such that n = 0 (mod p2b), (oeffl) being
Jacobi’s symbol for and 0 otherwise) ; z(n) = 0 if 

(mod 8), X(n) = 1 if (mod 8) and y(n) = 2 otherwise.
According to E. Landau [11], p. 219, we have

(noting that Landau’s proof holds also without the somewhat more
restrictive concept of a « fundamental discriminant»); here is
Euler’s function.

Since obviously

we conclude from (17), (18) and (19) that

Summation by parts yields
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hence, noting that r3(4k) = r3(k), we infer that

Therefore, by (20), we get

Observing that

we complete the proof of the lemma.

3.3. In view of the result just obtained we infer from (16) that
there exists a positive absolute constant C such that, for sufficiently
large X,

Writing L(X) = X"(log X)-l for short, we conclude that, for each
sufficiently large .X, there exists a real number satisfying

and that necessarily u(X) - oo for ~ --~ 00. We now put v(X) =
- (thus v(X) &#x3E; 1) and obtain, noting that in-

creases for large x,

Let Qw denote the inverse function and put Wg = max {1, 2 log v(X)}
then we infer from the above that Q-1(2 log  XWg. Using
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this and (23) we conclude that (for large X)

Since (as noted earlier) ~(X) -~ oo we have thus proved that

Infering (e.g. by de l’Hôpital’s rule) from the definition of Q(x) in (6)
that (log b)-ilog y log2 y, we obtain the assertion of our

theorem.
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