RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

OSCAR STEFANI

Condizioni di continuità in una misura approssimante

Rendiconti del Seminario Matematico della Università di Padova, tome 73 (1985), p. 271-277

http://www.numdam.org/item?id=RSMUP_1985 73 271 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1985, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Condizioni di continuità in una misura approssimante.

OSCAR STEFANI (*)

Sia (X, ϱ) uno spazio metrico, sia $E \subset X$ e sia d(E) il diametro di E; si dice che l'insieme E è δ -massimale se $d(E) = \delta$ e se $X \supset A \supset E$, con $d(A) = \delta$, implica A = E. È noto che negli spazi euclidei gli insiemi δ -massimali coincidono con quelli ad ampiezza costante δ . In [S.Z] sono state date delle condizioni sufficienti affinchè le misure approssimanti la misura unidimensionale di Hausdorff di un insieme δ -massimale E e della sua frontiera ∂E , non presentino discontinuità nel punto $t = \delta$.

Nel presente lavoro dimostreremo che le stesse condizioni sono anche necessarie, e ne daremo delle altre equivalenti (teorema § 2).

Per la terminologia e le notazioni usate facciamo riferimento a [S.Z] ed a [S]. In particolare per i simboli: $\mu(\cdot)$, $m(\cdot)$, $l(\cdot)$, $\nu_{\delta}(\cdot)$, $(\cdot)^{s}$, $s_{\delta}(\cdot)$, ω , N_{R} , K_{0} , \mathcal{K} , $f(\cdot)$, $R(\cdot)$ si veda [S.Z]; per i simboli $\mu_{\delta}(\cdot)$, N^{*} , N', e per la definizione di δ -ricoprimento ottimale si veda [S].

Per le proprietà degli insiemi ad ampiezza costante negli spazi euclidei si veda, tra l'altro, [V], Th. 12.19 e [E], Ch. VII.

Lo spazio in cui opereremo sarà sempre \mathbb{R}^2 euclideo e quando avremo a che fare con un ricoprimento $\mathcal{F} = \{F_i, i \in N^*\}$ tale che $\sum d(F_i) < +\infty$, intenderemo sempre che gli insiemi F_i siano ordinati per diametri decrescenti, cioè: se i > j, allora $d(F_i) \leq d(F_j)$.

(*) Indirizzo dell'A.: Istituto di Matematica Applicata, Università di Padova, Via Belzoni 7 - 35131 Padova.

Ricerca effettuata con fondi erogati dal M.P.I.

1. Premettiamo due lemmi che useremo nella dimostrazione del Teorema del § 2.

LEMMA 1. Sia E δ -massimale in \mathbb{R}^2 euclideo, sia δ^* tale che $0 < \delta^* < \delta$ e sia $\mathcal{F} = \{F_i, i = 1, ..., n\}$ un δ^* -ricoprimento ottimale finito di ∂E , allora esistono due indici p e q, con $p \neq q$, $1 , <math>1 < q \leqslant n$, tali che $F_1 \cap F_p \neq \emptyset$ e $F_1 \cap F_q \neq \emptyset$.

DIM. Posto $d_1 = d(F_1)$, è $d_1 \le \delta^* < \delta$; poichè \mathcal{F} è ottimale, $d(F_1 \cap \partial E) = d_1$; esistono quindi, data la compattezza di $F_1 \cap \partial E$, x_1 , $x_2 \in F_1 \cap \partial E$ tali che $|x_1 - x_2| = d_1$. Sia $u = (x_1 - x_2)/|x_1 - x_2|$, siano r ed s le due rette per x_1 e x_2 rispettivamente, ortogonali ad u, sia π_1 il semipiano delimitato da r e non contenente s, e π_2 il semipiano delimitato da s non contenente r; ricordando le proprietà della rappresentazione canonica di $\partial E : f : \omega \to \mathbb{R}^2$, costruita mediante le rette d'appoggio, poichè r ed s non possono essere rette d'appoggio, è immediato vedere che f(u) è interno a π_1 e f(-u) è interno a π_2 .

Sia Γ_1 l'arco di ∂E di estremi x_1 e f(u) e contenuto in π_1 , e Γ_2 l'arco di ∂E gli estremi x_2 e f(-u) e contenuto in π_2 , è evidente che:

1.A
$$\forall x \in \Gamma_1 \setminus \{x_1\}, |x - x_2| > d_1 \text{ e quindi } \Gamma_1 \cap F_1 = \{x_1\},$$

1.B
$$\forall x \in \Gamma_2 \setminus \{x_2\}, |x-x_1| > d_1 \text{ e quindi } \Gamma_2 \cap F_1 = \{x_2\}.$$

Da 1.A segue che $\Gamma_1 \setminus \{x_1\} \subset \bigcup_{i=2}^n (F_i \cap \Gamma_1)$ e pertanto $\Gamma_1 = \bigcup_{i=2}^n (F_i \cap \Gamma_1)$, ma allora esiste un p > 1 tale che $x_1 \in F_p$ e quindi $F_1 \cap F_p \neq \emptyset$. Da 1.B segue che $\Gamma_2 \setminus \{x_2\} \subset \bigcup_{i=2}^n (F_i \cap \Gamma_2)$, e da 1.B e dal fatto che $x_1 \in F_p$ e $d(F_p) \leq d_1$ segue che:

$$\varGamma_2 \diagdown \{x_2\} \subset \bigcup_{\substack{2 \leqslant i \leqslant n \\ i \neq p}} (F_i \cap \varGamma_2) \quad \text{ da eui } \quad \varGamma_2 = \bigcup_{\substack{2 \leqslant i \leqslant n \\ i \neq p}} (F_i \cap \varGamma_2)$$

e quindi esiste un $q>1,\ q\neq p$ tale che $x_2{\in}F_a$, pertanto $F_a{\cap}F_1{\neq}\emptyset$. //

LEMMA 2. Sia C chiuso e convesso in \mathbb{R}^2 euclideo, sia $D \subset \partial C$; se esistono $\delta > 0$ s k > 0 tali ch. $v_{\delta}(D) < k$, allora si ha: $\mu(D) < \pi k$.

DIM. Poichè $\nu_{\delta}(D) < k$ esiste un δ -ricoprimento ottimale $\mathcal{F} = \{F_i, \ i \in N^*\}$ di D (cfr. [S], Prop. 4) tale che:

2.A
$$\sum d(F_i) < k$$
.

Si ha ovviamente:

2.B
$$\mu(D) \leqslant \sum \mu(D \cap F_i) \leqslant \sum \mu(\partial C \cap F_i) \leqslant \sum \mu(\partial (C \cap F_i))$$
.

Poichè \mathcal{F} è ottimale, per ogni $i \in N^*$, F_i è ad ampiezza costante $d(F_i)$; dal fatto, poi, che $F_i \cap C$ è compatto e convesso ed $F_i \cap C \subset F_i$, per note proprietà dei convessi (cfr. [L], sec. 22 e sec. 11) si ha:

2.C
$$\mu(\partial(C \cap F_i)) \leqslant \mu(\partial F_i) = \pi d(F_i)$$
.

Da 2.B, 2.C, 2.A segue subito la tesi. //

2. Sia $I \subset \mathbb{R}^2$ ricordiamo che dire che $\nu_t(I)$ è continua, come funzione di t, per $t = \delta$, equivale a dire che $s_{\delta}(I) = 0$. Con riferimento al seguente Teorema, in [8.Z] si è dimostrato che: viii \Rightarrow v \Rightarrow vi \Rightarrow i.

TEOREMA. Sia $\delta > 0$ e sia E δ -massimale in \mathbb{R}^2 euclideo, le seguenti proposizioni sono equivalenti:

- i) $s_{\delta}(\partial E) = 0$;
- ii) $\forall \varepsilon > 0$ e $\forall \theta \colon 0 < \theta < \delta$, esiste un δ^* , con $0 < \delta^* < \delta$ e un δ^* -ricoprimento ottimale finito $\mathcal{F} = \{F_i, i \in N^*\}$ di ∂E tale che $\sum d(F_i) < \delta + \varepsilon$ e $\theta < d(F_1)$;
- iii) $\forall \varepsilon > 0$ esiste un ricoprimento chiuso $\mathcal{F} = \{F_i, i \in N^*\}\ di\ \partial E$ tale che $\sum d(F_i) < \delta + \varepsilon$ e $\delta \varepsilon < d(F_1) < \delta$;
- iv) $\forall \varepsilon > 0$, $\exists K \in \mathcal{K} \text{ tale che } v_{\delta}(f(K)) < \varepsilon$;
- v) inf $\{v_{\delta}(f(K)), K \in \mathcal{K}\} = 0$;
- vi) $s_{\delta}(E) = 0$;
- vii) $\forall \varepsilon > 0$ esiste un ricoprimento chiuso $\mathcal{F} = \{F_i, i \in N^*\}\ di\ E$ tale che $\sum d(F_i) < \delta + \varepsilon$ e $\delta \varepsilon < d(F_i) < \delta$;
- viii) $m(K_0) = \pi$.

DIM.

i \Rightarrow ii. Poichè $s_{\delta}(\partial E) = 0$, $\nu_{t}(\partial E)$ è continua in $t = \delta$, allora è continua anche $\mu_{t}(\partial E)$ ed in particolare è:

$$\lim_{t\to\delta^-}\mu_t(\partial E)=\mu_\delta(\partial E)=\nu_\delta(\partial E)=\delta.$$

Fissati ε e θ , posto

3.A
$$\varepsilon_1 = \min \{ \varepsilon, (\delta - \theta)/3 \}$$

esiste un ricoprimento aperto, che per la compattezza di ∂E non è restrittivo supporre finito, $\mathfrak{G} = \{G_i, i = 1, ..., n\}$, tale che

$$\sum d(G_i) < \delta + \varepsilon_1 \quad \text{ e } \quad d(G_1) < \delta \ .$$

Preso δ^* tale che:

3.B
$$\max \{\delta - \varepsilon_1, d(G_1)\} < \delta^* < \delta$$
,

S è un δ^* -ricoprimento di ∂E ; esiste quindi (vedi [S], Prop. 3) un δ^* -ricoprimento ottimale finito $\mathcal{F} = \{F_i, i = 1, ..., m\}$ di ∂E tale che:

3.C
$$\sum_{i=1}^m d(F_i) \leqslant \sum_{i=1}^n d(G_i) < \delta + \varepsilon_1.$$

 \mathcal{F} è il ricoprimento cercato. Siano, infatti, $F_{\mathfrak{p}}$ ed $F_{\mathfrak{q}}$ due insiemi intersecanti F_1 , di cui si è dimostrata l'esistenza nel Lemma 1; posto, per $1 \le i < m$, $d_i = d(F_i)$, per proprietà dei ricoprimenti ottimali (cfr. [S], 5.1) e la 3.B si ha:

$$d_{\scriptscriptstyle 1} + d_{\scriptscriptstyle 7} \! > \delta^* \! > \delta - \varepsilon_{\scriptscriptstyle 1} \,, \quad d_{\scriptscriptstyle 1} + d_{\scriptscriptstyle q} \! > \delta^* \! > \delta - \varepsilon_{\scriptscriptstyle 1} \,.$$

Dalla seconda relazione si ricava: $d_q > \delta - \epsilon_1 - d_1$. Ora se fosse $d_1 \leqslant \theta$ si avrebbe:

$$d_1 + d_p + d_q > 2\delta - 2\varepsilon_1 - \theta \geqslant \delta + \varepsilon_1$$
,

ma questo sarebbe in contraddizione con 3.C; pertanto $d(F_1) > \theta$; 3.C e 3.A implicano inoltre che $\sum d(F_i) < \delta + \varepsilon$.

ii \Rightarrow iii. Basta prendere $\theta = \max \{\delta/2, \delta - \epsilon\}$.

iii \Rightarrow iv. Dimostriamo che iii implica che, per ogni ε , esiste un aperto $A \subset \omega$ tale che:

3.D.1
$$A\supset K_0$$
;

3.D.2 se
$$u \notin A$$
, allora $-u \in A$;

3.D.3
$$\nu_{\delta}(f(A)) < \varepsilon$$
.

Non è restrittivo supporre $\varepsilon < \delta/2$. Poichè $\mu(f(K_0)) = 0$ ([S.Z], Coroll. 9.A) esiste un ricoprimento aperto $\mathfrak{G} = \{G_i, i \in N^*\}$ di $f(K_0)$ tale che $\sum d(G_i) < \varepsilon/2$.

Posto $G' = (\bigcup G_i) \cap \partial E$, G' è aperto in ∂E e poichè $\varepsilon < \delta$ si ha:

$$v_{\delta}(G') \leqslant \sum d(G_i) < \varepsilon/2$$
.

In base a iii, fissato ε , esiste un ricoprimento chiuso $\mathcal{F} = \{F_i, i \in N'\}$ tale che $\sum d(F_i) < \delta + \varepsilon/4$ e $\delta - \varepsilon/4 < d(F_1) < \delta$. Sia $G'' = \partial E \setminus F_1$; G'' è aperto in ∂E e $G'' \subset \bigcup_{N' \setminus \{1\}} F_i$; ne segue facilmente che:

$$\nu_{\delta}(G'') \leqslant \sum\limits_{N'} d(F_i) = \sum\limits_{N'} d(F_i) - d(F_1) < \varepsilon/2$$
 .

Ma allora $\nu_{\delta}(G' \cup G'') < \varepsilon$.

Sia $A = f^{-1}(G' \cup G'')$, A è l'aperto di ω cercato. Infatti, $A \supset K_0$, poichè $f(K_0) \subset G'$; se $u \notin A$, allora $-u \in A$; infatti se $u \notin A$ e $-u \notin A$, allora f(u), $f(-u) \notin G' \cup G''$ e quindi in particolare f(u), $f(-u) \notin G''$. Quindi f(u), $f(-u) \in F_1$; il che è in contraddizione col fatto che $d(F_1) < \delta$. Ora, poichè $f(A) = G' \cup G''$, è $v_{\delta}(f(A)) < \varepsilon$. Pertanto A verifica le proprietà 3.D.

Si costruisca infine un insieme $K \in \mathcal{K}$ tale che $K \subset A$. Basta a tal fine considerare l'insieme K' di cui all'Osservazione 0.B di [S.Z] e prendere: $K = (A \cap K') \cup (K' \setminus A)^s$. Dalla disuguaglianza $\nu_{\delta}(f(K)) \leqslant \langle \nu_{\delta}(f(A)) \rangle$ segue la iv.

 $iv \Rightarrow v$. È immediata.

v \Rightarrow vi. È immediata conseguenza della Prop. 11 di [S.Z].

 $vi \Rightarrow i$. È immediata.

vii ⇒ iii. È immediata.

ii \Rightarrow vii. Non è restrittivo supporre $\varepsilon < \delta/10$. Fissato $\theta = \delta - \varepsilon$, sia $\mathcal{F} = \{F_i, i = 1, ..., n\}$ il δ^* -ricoprimento ottimale di ∂E di cui ii afferma l'esistenza. Per dimostrare che l'implicazione è vera, basterà dimostrare che \mathcal{F} è un ricoprimento anche di E.

Data l'ipotesi su ε ed il valore di θ è immediato che:

$$\sum_{i=2}^n d(F_i) < 2\varepsilon < 2\delta/10 < \delta^*/2;$$
 allora $d(F_i) < \delta^*/2$, per $i \geqslant 2$.

Questo per proprietà dei ricoprimenti ottimali (cfr. [S], 5.2) implica $F_i \cap F_j = \emptyset$ per $i \neq j$ e i, j > 1.

Sia $G = \partial E \setminus F_1$, G è aperto in ∂E , pertanto $G = \bigcup \Delta_i$, ove Δ_i sono archi aperti disgiunti e l'unione indicata è al più numerabile. Dimostriamo che:

3.E Per ogni i, esiste un j* con $2 \le j* \le n$ tale che $\Delta_i \subset F_{j*}$.

In caso contrario, infatti, poichè $G \subset \bigcup_{j=2}^{n} F_{j}$, si avrebbe

$$\Delta_i = \bigcup_{j=2}^n (F_j \cap \Delta_i)$$

che, essendo per ogni $j, F_i \cap \Delta_i$ chiuso in Δ_i , sarebbe in contraddizione con la connessione di Δ_i .

Poichè \mathcal{F} è un ricoprimento di ∂E , per dimostrare che è un ricoprimento anche di E basterà dimostrare che $E^{\circ} \setminus F_1 \subset \bigcup_{j=2}^n F_j$. A tal fine, sia $x \in E^{\circ} \setminus F_1$, poichè $x \notin F_1$, che è compatto e convesso, esiste una retta r passante per x, senza punti in comune con F_1 ; è facile vedere che r incontra ∂E in due punti x_i, y_i appartenenti ad uno stesso Δ_i ; per la 3 E esiste quindi un $j^*: 2 \leqslant j^* \leqslant n$ tale che $x_i, y_i \in F_{j^*}$, ma poichè F_{j^*} è convesso anche $x \in F_{j^*}$ e quindi $x \in \bigcup_{j=2}^n F_j$.

viii ⇒ v. È il Coroll. 11.B di [S.Z].

 $\mathbf{v}\Rightarrow \mathrm{viii}$. Se $\inf\left\{v_{\delta}(f(K)),\ K\in\mathfrak{K}\right\}=0$, esiste una successione K_n di elementi di \mathfrak{K} tali che $v_{\delta}(f(K_n))<1/(\pi n^2)$. Per il Lemma 2 segue che $\mu(f(K_n))<1/n^2$ e quindi (vedi [S.Z], 0.1) $l(K_n)<1/n^2$.

Posto $H_n = \{u \in \omega \setminus N_R \colon R(u) < 1/n\}$ si ha $K_0 = \bigcap_{n=1}^{\infty} H_n$ e quindi:

3.F $m(H_n) \rightarrow m(K_0)$.

Poichè (cfr. [S.Z], 0.3):

$$\frac{1}{n^2} > l(K_n) = \int_{K_n} R(u) m(du) \geqslant \int_{K_n} R(u) m(du) \geqslant \frac{1}{n} m(K_n \backslash H_n)$$

si ha: $m(K_n \setminus H_n) < 1/n$ e quindi:

3.G
$$m(K_n \setminus H_n) \to 0$$
.

Tenuto conto che (cfr. [S.Z], Prop. 1): $\pi = m(K_n) = m(K_n \backslash H_n) + m(K_n \cap H_n)$ da 3.G segue che:

3.H
$$m(K_n \cap H_n) \to \pi$$
.

Ora, se $m(K_0) \neq \pi$, deve essere $m(K_0) < \pi$.

Ma è facile vedere che, se fosse $m(K_0) < \pi$, tenendo conto del fatto che $m(K_n \cap H_n) \leq m(H_n)$, 3.F e 3.H sarebbero in contraddizione tra loro. //

COROLLARIO. Se E è δ -massimale in \mathbb{R}^2 euclideo allora $v_t(E)$ è continua in $t = \delta$ se e solo se è ivi continua $v_t(\partial E)$.

DIM. È:
$$i \Leftrightarrow vi$$
. //

BIBLIOGRAFIA

- [E] EGGLESTON H. G., Convexity, Cambridge University Press, 1963.
- [L] LAY S. R., Convex Sets and Their Applications, Wiley & Sons, 1982.
- [Le] Leichtweiss K., Konvexe Mengen, Springer, Berlin, 1980.
- [R] ROGERS R. A., Hausdorff measures, Cambridge University Press, 1970.
- [S] STEFANI O., Ricoprimenti e misure approssimanti, Rend. Acc. Naz. di Scienze detta dei XL, Memorie di Matematica, 102° (1984), vol. VIII. pagg. 121-136.
- [S.Z] STEFANI O. ZIRELLO G., Misure approssimanti ed insiemi ad ampiezza costante, Rend. Sem. Mat. Univ. Padova, 72 (1984), pp. 191-202.
- [V] VALENTINE F. A., Convex Sets, McGraw-Hill, New York, 1964.

Manoscritto pervenuto in redazione il 31 gennaio 1984.