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Groups with Soluble Factor Groups and Projectivities.

GI0RGIO BUSETTO - FEDERICO MENEGAZZO

1. Introduction.

In [1] (Problem 40) the following question was asked: if @ is a sol-
uble group and z is a projectivity from G to some group G (i.e. z is
a lattice isomorphism from the lattice L(G) of subgroups of G to the
lattice L(G) of subgroups of (@), is G soluble as well? In the finite case
the answer was obtained by Suzuki ([7], Theorem 12) and Zappa ([11]).
The general answer was given by Yakovlev ([9]), who also gave a
bound for the derived length of G' in terms of the one of ¢ (namely
4n3 4+ 14n2 — 8n if » is the derived length of G). In the present paper
we deal with the following more general question: if N<@, G/N is
soluble and z: @ — @ is a projectivity, does some term of the derived
series of @ lie inside N (= N7)? We prove that, if » is the derived
length of G/N, then G¢m (the 6n-th term of the derived series of @)
lies inside N (see Theorem 4.1). Our main tool is a detailed study
of the structure, and particularly of the derived length, of finite p-groups
of the form G = H<(a), where H<@, having a projective image G
such that the image of H is core-free in G (we shall refer to this situa-
tion as to the « reduced case»). As a corollary of Theorem 4.1 we are
able to improve Yakovlev’s bound to 6n-4 (see Corollary 4.2).

(*) Indirizzo degli AA.: Istituto di Algebra e Geometria, Universita di
Padova, Via Belzoni 7, 35100 Padova.

The authors wish to thank C.N.R. and M.P.I. for the partial financial
support.



250 Giorgio Busetto - Federico Menegazzo

2. Preliminary results.

Our notation will be standard. For lattice theoretical definitions
see [8].

LEMMA 2.1. Let G be a finite modular p-group of exponent p*, where p
is a prime. If G is not Hamiltonian and G/2,_,(G) is not cyclic, then
G contains a characteristic abelian subgroup A such that G/A is cyclic
and every automorphism of G induces the identity on G/A.

PROOF. Assume that G is not abelian. By Iwasawa’s theorem
on the structure of finite modular p-groups ([8], ch. 1, Th. 18), G =
= N(t)> where N is abelian and ¢ induces on N some power 1 -}- p4,
say, with p2» > 2. By hypothesis N has exponent p7. Set A = C¢N);
A is abelian, @G/A is cyclic and Og(4) = A. We now distingush two
cases.

(i) N/Q,_,(N) is not cyclic.

Let a = 2t € A, where z€ N and let « € Aut @. We shall show
that a*e A. Since t:€ Z(G)<4, a*e€ A if and only if a2 4. As
O,_1(N), being isomorphic to N/£2,_,(N), is not cyclic, there exists
u e N of order pr such that (ud N {(x*) = 1. <u)> and {x*) are both
normal subgroups of @, therefore they commute: it follows that the
power automorphism induced by z* on N is the identity. Thus x> € A
and A is characteristic. Moreover, t* induces on N* the power 1 p?
and it induces a power automorphism on N as well. These power
automorphisms coincide on N N N+, which has exponent p" (otherwise
N/Q,_,(N) would be a quotient of the cyclic group N/N N N+), and
therefore t* induces on N the power 1 -+ p*. Thus¢1¢* € A, as required.

(ii) N/Q,_,(N) is cyclic.

In this case t must have order p”. Moreover, since N has exponent p*
and (&) N A = Oy(N), it follows that ()N A =¥ and 4 =
= N{t*""). Then, let #t*" € A of order p7, where ze N and u>r — 4.

Since (xti?")?* = x** we have
iph\E __ ipk ipH\ 1+p?
(wtir")t = wti?"2? = (wti?") .

Therefore ¢ operates on A as the power 1- p: Hence, recalling
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that the group of power automorphisms of an abelian group lies in
the centre of the whole automorphism group, in order to complete
case (ii) it is sufficient to prove that A4 is characteristic in G. In order
to show this we shall prove that A coincides with the subgroup B
of @ generated by the cyclic normal subgroups of G of order pr. Clearly
A < B. Conversely, let (b) be a cyclic normal subgroup of & of order p".
We can write b = t*’y, where y € N and »>0. Assume » = 0. Then
G = N{b) and so, using the well-known fact that «raising to the
power pr—l» is an endomorphism of @, since G/, ,(@) is not cyclic
whereas N/, ,(N) is cyeclic, it follows that there exists » € N of order
pr such that <> N kY =1. Thus [b, h] =1 and this forces b to
centralize N, contradicting our assumption that G is not abelian.
Hence »>1 and so |y| = p’. Since <(b)<1G, we have

[b, 8] = [y, t] = [y, t] = y*" € by
and, moreover,
"y = T = ()T = Ty,

for some integer k. It follows that " e (t>) N (y> = 1. Therefore
v>r—2A and so be N = A, as required. 0O

In the following lemma we collect, for the convenience of the
reader, some basic facts occurring in projectivities of some particular
finite p-groups (what we call the «reduced case»). Similar results
can be found in [3]. All these facts are easy consequences of results
by F. Gross ([4], Lemma 3.1). Also, it seems useful to introduce
a special notation. If z: @ — @G is a projectivity, and H is a subgroup
of @, we will set H = H=; and, if H< K <@, we often set HE = (Hx)""
and H.= (Hp)™".

LEMMA 2.2. Let @ = H{a) and G be finite p-groups, where 1 # H<@G,
and let 7: @ — G be a projectivity such that H is core-free in G. Then
the following hold:

i) (e>N H=1 and Q,G) = Q,(H) 2,({a)) for every i>0.

(ii) 2,(G) and Q2,(G) are elementary abelian and there ewist bases
{€o0y €1y ...y €n}y {foy Try --ey fu} Of S4(G) and Q,(G) respectively, such that

{1, ...y en} CH, eyela), {e)y = {fy, €1 =6, ¢ =e,e,_, for i>2.
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_ (iii) m_induces a projectivity from G/Q(G) to G/2.Q) and
HQ,(@)/924G) is core-free in G/Q(G) for i>0.

(iv) The (pi~*)th power determines an endomorphism of Q,(G) and
of Q2,Q), for every i>1.

(v) <o <Z(@).
(vi) If p =2 and H has exponent 27, then |G/R2.(G) >4.

PrOOF. The arguments are the same as those in [3], Lemma 1. O

THEOREM 2.3. Let G and G be finite p-groups, n: @ — G a project-
wity, H a normal abelian subgroup of exponent pr such that G = H{a)
and H is core-free in G. Then

(a) Q.(G) is a modular p-group;
(b) @ is metabelian.
PROOF. Let {€, ..., €n}y {foy ---5 fn} De bases of 2,(@) and of 2,(F)

respectively, chosen as in Lemma 2.2, and set {(a,> = <a)*. In order
to prove (a) we show first that

(1) {afy induces a group of power automorphisms on H

where {af) = 0,({a)). This is obvious if H is cyclic. Thus, suppose
that H is not cyclic and write s = min {¢: 4 € N and H/Q,(H) is cyclic}.
O,_(H) is a non-trivial normal subgroup of G and therefore, by
Lemma 2.2 (ii), it contains e, and, by (iv), it coincides with the set
{#*": 2 € H}. Therefore there exists » € H such that h* = ¢,. Then

Qu(By™) = (el s
where 1<y, 6<p —1. Hence, using Lemma 2.2 (ii), it follows that
YW = (aBh'y, for some h'e H. Set Q = H N H»'-H»*/Q is
cyclic of order at most p” and {afh’> N Q =1, by (2). Thus
(3) B = QCash'y .

Moreover, since H%"" is a modular p-group (as the image of the abel-
ian p-group H via the projectivity ma,n~') we have

(g, afh'> N Q = {gH<a{g, aPh’)
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for all g€ @. In other words afh’, and therefore a#, induces a power
automorphism on @. Then af = (af)®" induces a power automorphism
on Q¢ and moreover, af induces the same power on @ and on @+ for
every 7, i.e. af induces a power automorphism on ¢ Since ¢, ¢@Q
and H/Q is cyclic, we have H = @ X <(h) and also that @ is core-free
in G. Thus, since @ has exponent p*, we have Q¢ = @ X Q2,(<h>) = 2,(H)
and (1) is proved if s =r. If s <r, we may assume that af induces
the power u on Q,(H) and, using Lemma 2.2 (iii) and induction on
|H|, the power A on H/Q,(H). Hence h*’ = h*z where @ e Q,(H),
(B7)e" = B = p*""# and so A=py mod. p*. <{x) is normalized by
a? (because 2,(H)<Q,(H)) and therefore a#f acts as the power A on
H/{z). If xe (h),i.e. # = h** for some integer », set 2’ = 4 + »p™1;
ag for A, A’=u mod. p°. For all y = hizec H, where z €, we have
y¥ = (hiz)*" = ¥ 2¢ = (hiz)* = y*», namely a8 acts as the power A’
on H. On the other hand, if x¢ (h), then () N <{x)* = 1. Also,
a# acts as the power 4 both on H/<x) and on H/(x)*. In particolar
b = hix gives h“’(x)" = (hx)%)* = hrta{x)?, and so x € {x)*?, a contra-
diction. This completes the proof of (1). Thus, by Lemma 2.2 (i),
.Q,(G) is a modular p-group if p ¢ 2. On the other hand, if p = 2,
3)/2,_,(@) is a,behan (121, Lemma 1), and therefore [H, af]l<
<.Q,_2(G) NH=2Q, ,(H) 2, ,(a)) N H = 2, ,(H). This shows that
af induces on H a power congruent to 1 mod. 4, namely that Q,.(G)
is modular. As far as (b) is concerned, observe that Q,(G) is a modular
non-Hamiltonian p-group (see e.g. Lemma 2.2 (iv)), and 2,(@)/2,_,(@)
is not cyeclic (since a8 ¢ <(h, £2,_,(@)>). Then, as a result of Lemma 2.1,
0,G) contains an abelian subgroup A4 normal in G such that
Q.G)JA<Z(G/A). Therefore, since @/2,(G) is eyclic, (b) follows. O

3. The «reduced case ».

For the convenience of the reader we state the following theorem,
which was proved by the second author for p odd ([5]), and by the
first one for p = 2 ([3]).

THEOREM 3.1. Let G and G be finite p-groups, n: G — G a projec-
tivity, H<@ such that @ = H<{a) and H is core-free in G. Then

(a) if p#~ 2, then H is abelian (hence the hypothesis that H is abe-
lian in the statement of Theorem 2.3 is unnecessary if p # 2).
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(b) if p=2, set r = min {neN:|Q,(H/Q.H))|<4}. Then Q,(H)
is abelian and H|Q,(H) is a metacyclic modular non-Hamiltonian group (*).

Making a combined use of Theorems 2.3 and 3.1 we obtain

THEOREM 3.2. Let G and G be finite_p-groups, m: G —_>@ a pro-

jectivity, H<G such that G = H{a) and H is core-free in G. Then G
has derived length at most 6.

Proor. If p is odd, then G is metabelian by Theorems 2.3 and
3.1(a). Thus, suppose that p = 2. Let

r = min {n € N: |Q,(H/Q.(H))|<4}.

Suppose first that » = 0. Then H is a metacyclic modular non Hamil-
tonian group, by Theorem 3.1(b). We show that, in this case

(4) G has derived length at most 4.

Set X = (H')® and suppose that |H'|=2: By [9], Lemma 6,
(H')»"*<@ for all h,e H. Hence X is the join of eyclic normal sub-
groups of @ of order 2¢. Therefore G', and consequently H’, centralise
X. Moreover X has exponent [H'| and then, since X is metacyclic,
X/H' is cyelic. It follows that X is abelian. Now consider G/Q,(@).
@ induces a projectivity from G/Q,(G) to G/Q,(F), HQ,(F)/2,G) is
core-free in G/Q,(F) (Lemma 2.2 (iii)) and HQ,(G)/2,(G) is abelian.
Then, by Theorem 2.3 (b),

(5) GIQ,G) is metabelian

and so (4) is proved if s = 0. Suppose s > 0 and consider the group
X{(a) = Y, say. = induces a projectivity from Y to Y, X is core-free
in Y and X is abelian. Therefore, by Theorem 2.3 (a), 2,(Y) is a modular
p-group. Also, by Lemma 2.2 (iii), applied to ¥, X2, ,(Y)/2,,(Y)
is non-trivial and core-free in Y /2, ,(¥) and therefore 2,Y)/2, ,(Y)
is not cyclic. Moreover, 2,Y)<12,(G), since 2,¥)= XQ,(a))
(Lemma 2.2 (i)) = X¥ = X¢ and, since Q,(H)/X is cyclic, it follows
also that Q,(@)/Q,Y) is cyclic. Then, applying Lemma 2.1 to 2,Y),

(*) The proof of (b) makes use of an unpublished result due to the second
author. For completeness reasons we shall give a proof here, in the Appendix.
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it follows that Q,(G) is metabelian. Hence, recalling (5), (4) follows.
Suppose now that r > 0. z induces a projectivity from G/Q2.(&)
to @/2,(G), H2,(G)/2,(F) is core-free in G/Q,(G) (Lemma 2.2 (iii))
and |Q,(HQ,(6)/2.@))| = |2,(H/Q,(H))|<4. Therefore, by applying
what we have just proved to G/2,(@), we see that G/2,(Q) has derived
length at most 4. Also, by Theorem 3.1 (b), 2,(H) is abelian. Hence,
by applying Theorem 2.3 (a) to 2,(H)<{a), it follows that Q.(G)
(= Q2.(H)2,({a))) is a modular p-group. In particular it is metabelian.
Consequently G has derived length at most 6, as required. O

4. On the derived series of a projective image of a group having a
normal subgroup with soluble factor group.

THEOREM 4.1. Let G and G be groups, m: G — G a projectivity,
N<@G and suppose that G/N is soluble of derived length<n. Then
Gom < N.

Proor. Clearly we may assume that G is finitely generated. Using

induction on the derived length of G/N, we may assume that (G'N)®»—9 <

<N. G/ is a finitely generated abelian group, therefore G/G' =
= (e )@ |G X L@ |G ... X {e,»G' |G for some suitable elements ¢, € G
such that <{e¢;>/<{e;> N @' is either infinite cyclic or a p-group. Set
H, =Gy ¢y covy Ciyy Cirzy +ovy Gy Tor 1<i<t. If {e>/{e;> N G is
infinite cyclic, then, as a result of [10], Corollario 1, H,<qG. 1f
[<e:p/<e:y N G| is a prime power, then |G:H,| is finite ([10], Teorema A)
and G/H, is a chain. Therefore, assuming that H, is not normal in G,
according to [6], Lemmas 2 and 3, the following two possibilities can
oceur:

(@) G/(H,); is a non-abelian group of order pq where p and q are
prime numbers. In particular G/(H,)z is metabelian.

() G)(H,); is a finite non-abelian p-growp. (H,); is normal in
G([2]) and m induces a projectivity from G/(H)g to G/(H,)z. By [7],
Theorem 3, G/(H,); is also a p-group. Theorem 3.2 implies that G(H )z
has derived length <6.

— —n— t —
Now, in all cases G® < H;, for all 1 <i<t. Therefore G®< (| H, =
i=1

= G'<@N. It follows that Gom <N, as required. 0O =
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COROLLARY 4.2. Let @ and G be groups, m: G — G a projectivity,
and suppose that G is soluble of derived length <n. Then G is soluble
of derived length <6n — 4.

ProoF. By Theorem 4.1, G®n—1)<@m-1, Moreover, since G—b
is abelian, G0 is metabelian ([8], ch. 1, Theorems 17 and 18). It
follows that G@r-+2) — 1, as required. 0O

5. Appendix.

As it was mentioned in the statement of Theorem 3.1, we give
here a proof of the following result, which was needed in the proof
of Theorem 2.4 (b).

PROPOSITION 5.1. In the hypotheses of Theorem 3.1 and with p = 2,
if 2" is the exponent of H, then

(@) QG <Z(2.D);
(b) 24(G)<Z(2.(G)).

Proor. We first show (a). Suppose (a) false, and choose a count-
erexample ¢ with [H| minimal. Let {e,, ..., ém}, {fo; --., fn} be bases
of £2,(G) and 0,(@) respectively, as in Lemma 2.2 (ii) and set <a,> =

= {a). Then
(6) e, € Hw"" |

Set (H»"")y = K**", K*""<@, and it does not contain ¢,. Thus
K™ N H =1 and this implies that K% and consequently K are
cyclic. Moreover, since e,¢, € H*" ' N Z(G) (Lemma 2.2), K % 1 and
K is normal in @ ([2] applied to the projectivity ma,n~': G — G).
Then the minimality of |H| yields [£,(G/K), H/K] = 1. In particular

(7 [2,(G), HI<S4(K) = {ey) .

Now O,_,(H) is a non-trivial normal subgroup of G contained in
O\(H). Thus U,_,(H)><e,>. Also, by Lemma 2.2 (iv), U, (H) =
= {h*""|he H}. It follows that there exists k€ H of order 2" such

that »2"" = ¢,. Then <h)»** N H = 1 and so, since H*""/H N H*""
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is eyelie, we get
® B = (1 O i

¢h)> is normalised by Q,(@) (7), therefore <(h)**" ig normalised by
02,(G) as well. Moreover, gince it is quasi-normal in G, H*™" is nor-
malised by £,(G). Hence, from (8)

(9)  [(@), H"] = (@), (H N H*) By»1<

<Key NHY )G N hyn?) = 1.
Using the decomposition Q,(G) = H*""(h) (see Lemma 2.2 (i)),
we get
(10) [4(G), 2.(6)] = <e .
Let <b)> be any cyeclic subgroup of G of order 2 containing <{e,>. Consi-
dering that, if <6) is normalised by £,(G), then it is centralised by

0,(G@), it follows from (9) and from the decomposition 2,(G¢) = H*"(b>
(see Lemma 2.2 (i)) that

(11) <b> is not normalised by Q,(G).
Set <hyy = (h). <hy) is normalised by 2,(&). Suppose that Cg (<)) >
><foy frs--ry fmr). Then for =f, mod. Cq G (<(hy)) and so either f,

centralises both <h,> and <{h{*) or it induces on <h,» and (k,)** the same
power 1+ 27-1, In both cases

s Wbl € o) = (B3
by Lemma 2.2 (iv). It follows that <{k,h%)>™" is normalised by £2,(G)
and contains e,, contradicting (11). Therefore (fo, fiy ooy sy €
0o,@(<(hy), and so we can find €<, €yy..., €n_y» such that
T ey €3y ...y €m_gy and (@) £0p )(<hy). Set (x,) = (x). Then
(12) (B, 2] = 1y .

If we let <b) = Q,(<(a)) = <{a') (say) in (11), it follows from the action
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of & on Q,(G) that

(13) m=2'+1 and Q@) N Z(2.(G)) = (e €1y vy bm_1) -

The 2! elements %, 0<j<2'—1, form a basis of {e,..., e, ).
Therefore
(14) C (K@) a) = 1.

Moreover, by Lemma 2.2 (iv) and (vi), £,({za?>) = {e,» for all z€ H.
Hence Q,(<{#, a*>) = Q,({x, 2a%>) = {6,> X {x)<**>, In particular

Q,(Cxyy 7)) = 2y(<y, hya3))
and so, by (12),
fi = [by, 2] = [hy, ®,J01 = [hai, @] [0}, 2,] € (<4, a3)) .

But then e € 2,({z,a?) N H = (x> contradicting (14). This
contradiction completes the proof of (a).

In order to show (b) observe that, by (a), every element y € Q&)
induces a power automorphism on 2,(G). Then, from the fact that
2,(G) contains two cyelic subgroups of order 2 intersecting trivially,
using Lemma 2.2 (iv), it follows that the power automorphism induced
by y on 2,(G) is universal, and it is either the identity or the power
1+ 2. Hence |2,(@): (@) N Z(2.(@)|<2 and so, since 2,(GF) N
N Z(2.(F) <G, we get

‘91(g) N Z(Qn(@)) > Joy evey fma -
where {f,, ..., fn} and {e,...,e,} are the usual bases of 2,(G) and
0,(@), according to Lemma 2.2 (¢¢). Assume, by way of contradic-
tion, that f,, induces the power 1 -+ 27-1 on 2,(G). Set (a?> = Q,({a,)).
Then [f,,, a?]=f, implies that m = 2!. The 2! elements ¢% (0 <j<2'—1)
form a basis of Q,(H). Therefore
(15) Oay(Cemyem ) = 1.

Moreover, by Lemma 2.2 (iv) and (vi), £2,({a?2)) = <e,» for all z€ H.
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In particular <a%z) N H = 1. Therefore

Comdems> = (onem®D = (o, a¥> N H = (en, a?2> N H

and

Q(Cmy a2) = L) Xlm)Cm ™ = Q\((tn, a?2)) .
Then
(16) (s a1)) = Qu({fmy 2321))

for all 2, € H. As we have seen in proving (a), there exists h, € H such
that »¥" =7f,. Thus

fl = [hu fm] = [hu fm]a% = [hlo"L fm] [aia fm] € Q1(<fm7 ai>)

by (16). Therefore e, € {€,, a*> N H = (e, >, contradicting (15).
This completes the proof of Proposition 5.1. O

We finally point out that, using Lemma 2.1, we can improve a
result in [3] (Theorem) as follows:

THEOREM 5.2. Let G be a group and m: G — @ a projectivity. If
H<@, then H/H; and H|H; are soluble groups of derived length at
most 3.

(In [3] the upper bound for the derived length of H/H, was 4).

PrOOF. Looking at the proof of [3], Theorem, it is immediately
seen that the critical case is when G = H{a), H is core-free in G and
@, G are finite 2-groups. In this case, applying Theorem 3.1 (), it
follows that there exists » such that H/Q,(H) is metacyclic and Q,(H)
is a non-Hamiltonian modular 2-group such that Q,(H)/Q,_ ,(H) is
non-cyclic. Then, as a result of Lemma 2.1, H® =1, as required. O
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