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Groups with Soluble Factor Groups and Projectivities.

GIORGIO BUSETTO - FEDERICO MENEGAZZO

1. Introduction.

In [1] (Problem 40) the following question was asked: if_G is a sol-
uble group and n is a projectivity from 6 to some group G (i.e. n is
a lattice isomorphism from the lattice .L(G) of subgroups of G to the
lattice L(G) of subgroups of (G), is G soluble as well? In the finite case
the answer was obtained by Suzuki ([7], Theorem 12) and Zappa ([11]).
The general answer was given by Yakovlev ([9]), y who also gave a
bound for the derived length of G in terms of the one of G (namely
4n3 + 14n2 - 8n if n is the derived length of G) . In the present paper
we deal with the following more general question: if N«G, is

soluble and ~: G - G is a projectivity, does some term of the derived
series of G lie inside_N (= N~) ~ We prove that, if n is the derived
length of then (the 6n-th term of the derived series of G)
lies inside N (see Theorem 4.1). Our main tool is a detailed study
of the structure, and particularly of the derived length, of finite p-groups
of the form G = where having a projective image G
such that the image of .g is core-free in G (we shall refer to this situa-
tion as to the « reduced case »). As a corollary of Theorem 4.1 we are
able to improve Yakovlev’s bound to 6n-4 (see Corollary 4.2).

(*) Indirizzo degli AA.: Istituto di Algebra e Geometria, Università di
Padova, Via Belzoni 7, 35100 Padova.

The authors wish to thank C.N.R. and M.P.I. for the partial financial
support.
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2. Preliminary results.

Our notation will be standard. For lattice theoretical definitions
see [8].

LEMMA 2.1. Let G be a finite modular p-group of exponent pr, where p
is a prime. If G is not Hamiltonian and is not cyclic, then
G contains ac characteristic abelian subgroup A such that G/A is cyclic
and every automorphism of G induces the identity on G/A.

PROOF. Assume that G is not abelian. By Iwasawa’s theorem
on the structure of finite modular p-groups ([8], ch. ~, Th. 18), y G =
== N~t~ where N is abelian and t induces on N some power 1 + pz,
say, with pÂ &#x3E; 2. By hypothesis N has exponent pr. Set A = Ca(N) ;
A is abelian, G/A is cyclic and Ca(A) = A. We now distingush two
cases.

(i) is not cyclic.

Let a = xti E A, where x E N and let cc E Aut G. We shall show
that a()(, E A. Since aa E A if and only if xa E A. As

being isomorphic to is not cyclic, there exists
of order such that ~u~ r1 = 1. u~ and (ce") are both

normal subgroups of G, therefore they commute: it follows that the
power automorphism induced by xa on N is the identity. Thus xa E A
and A is characteristic. Moreover, ta induces on Na the power 1-~- px
and it induces a power automorphism on N as well. These power

automorphisms coincide on N r1 Na, which has exponent (otherwise
N/Qr_i(N) would be a quotient of the cyclic group N/N r1 Na), y and
therefore ta induces on N the power 1 + p-z. Thus E A, as required.

(ii) N/SZr_1(N) is cyclic.

In this case t must have order Moreover, since N has exponent pur
and ~t&#x3E; n A = C~t~(N), it follows that t&#x3E; r1 A = (tpr-A) and A =
== Then, let xtip" E A of order pr, where x E N and IÀ &#x3E; r - ~,.
Since - XpA we have

Therefore t operates on A as the power 1 -f- pz. Hence, recalling
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that the group of power automorphisms of an abelian group lies in
the centre of the whole automorphism group, in order to complete
case (ii) it is sufficiente to prove that A is characteristic in G. In order
to show this we shall prove that A coincides with the subgroup B
of G generated by the cyclic normal subgroups of G of order pr. Clearly
A  B. Conversely, let b~ be a cyclic normal subgroup of G of order pr.
We can write b = tpvy, where and v &#x3E; 0. Assume v = 0. Then

G = N~b~ and so, using the well-known fact that « raising to the
power is an endomorphism of G, since is not cyclic
whereas is cyclic, it follows that there exists h E N of order
pr such that b~ n h~ _ ~ . Thus [b, h] = 1 and this forces b to
centralize N, contradicting our assumption that G is not abelian.
Hence and Since we have

and, moreover,

for some integer k. It follows that E t&#x3E; n y~ = 1. Therefore

v ~ r - Â and so = A, as required. 0

In the following lemma we collect, for the convenience of the

reader, some basic facts occurring in projectivities of some particular
finite p-groups (what we call the « reduced case ») . Similar results
can be found in [3]. All these facts are easy consequences of results

by I’. Gross ([4], Lemma 3.1). Also, it seems useful to introduce
a special notation. If n: G - G is a projectivity, and .bt is a subgroup
of G, we will set H Hn; and, if H  K  G, we often set HK 
and HE = 

LEr&#x3E;rA 2 . 2 . Let G = and G be finite p-groups, where 1 ~ 
and let n: G ~ G be a projectivity such that H is core- f ree in G. Then
the following hold:

(i) (a) r1 H = 1 and S2i(G) _ ,S2i(H) for every 

(ii) and are elementary abelian and there exist bases
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_ 

(iii) 1l induces a projectivity from GjQi(G) to and

core-free in 

(iv) The (pi-’)th power determines an endomorphism of Qi(G) and
of D,(0), for every 

(V) C Z(G) .

(vi) If p = 2 and H has exponent 2r, then 

PROOF. The arguments are the same as those in [3], Lemma 1. C7

THEOREM 2.3. Let G and G be finite p-groups, n: G - G a project-
ivity, H a normal abelian subgroup of exponent pr such that G = H(a)
and H is core-free in G. Then

(a) Qr(G) is a modular p-group ;

(b) G is metabelian.

PROOF. Let f eo, ... , em~, f f o, ... , fm~ be bases of and of 

respectively, chosen as in Lemma 2.2, and set ~a~~ _ ~a;~. In order
t o prove (a) we show first that

(1 ) induces a group of power automorphisms on H

where = 12,,«a». This is obvious if .H is cyclic. Thus, suppose
that 1~ is not cyclic and write s = min i E N and H/Qi(H) is cycliel.
U,-,(H) is a non-trivial normal subgroup of G and therefore, by
Lemma 2.2 (ii), it contains el and, by (iv), it coincides with the set

Therefore there exists h E H such that hpr-l - e1. Then

where 1 c y, ~ c p -1. Hence, using Lemma 2.2 (ii), it follows that

(h)al1T.-l == for some h’ EH. Set Q = H n is

cyclic of order at most pr and r’1 Q = 1, by (2). Thus

Moreover, since is a modular p-group (as the image of the abel-
ian p-group .H via the projectivity na,n-1) we have
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for all In other words aPh’, and therefore a-6, induces a power
automorphism on Q. Then (aP)an induces a power automorphism
on Qa and moreover, aO induces the same power on Q and on Qa" for
every n, i.e. a,6 induces a power automorphism on Q,7. Since Q
and H/Q is cyclic, we have H = Q X h&#x3E; and also that Q is core-free
in G. Thus, since Q has exponent ps, we have QG = = 

and (1) is proved if s = r. If s  r, we may assume that aa induces
the power /o on and, using Lemma 2.2 (iii) and induction on

the power À on Hence where x 

htpr-s). = hpr-8!-t and mod. ps. is normalized by
a,O (because and therefore aft acts as the power À on

If x E (~)y i.e. x = hvpr-1 for some integer v, set Â.’ = À + 
as for À, À’ m p mod. p-,. For all y = where Z E Q, we have
yas = (hiz)ao = = y-%, namely aO acts as the power ~,’
on .H. On the other hand, if oe w h~, then r1 = 1. Also,
aO acts as the power À both on and on In particolar
= hAX gives = = and so x E x~a, a contra-

diction. This completes the proof of (1). Thus, by Lemma 2.2 (i),
is a modular p-group if p ~ 2. On the other hand, if p = 2,

is abelian ([2], Lemma 1), and therefore [H, 
~ ,5~~_~(G) n .H~ _ Qr-2«a») rl H = ~Gr-2(lZ ). This shows that

a~ induces on ,H~ a power congruent to 1 mod. 4, namely that 
is modular. As far as (b) is concerned, observe that Qr(G) is a modular
non-Hamiltonian p-group (see e.g. Lemma 2.2 (iv)), and 
is not cyclic (since (h, Then, as a result of Lemma 2.1,

contains an abelian subgroup A_ normal in G such that

Therefore, since is cyclic, {b) follows. C7

3. The « reduced case ».

For the convenience of the reader we state the following theorem,
which was proved by the second author for p odd ([5]), y and by the
first one for p = 2 ([3]) .

THEOREM 3.1. Let G and G be finite p-groups, n: G - G a projec-
tivity, .ga G such that G = ~H~a~ and H is core-free in G. T hen

(a) if p ~ 2, then H is abelian (hence the hypothesis that H is abe-
tian in the statement of T heorem 2.3 is unnecessary i f p =1= 2).
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is abelian and is a metacyclic modular non-.,g’amiltonian group (*).

Making a combined use of Theorems 2.3 and 3.1 we obtain

THEOREM 3.2..Let G and G be G -+ G a pro-
jectivity, suck that G = .H~a~ and H is core-free in G. Then G
has derived length at most 6.

PROOF. If p is odd, then G is metabelian by Theorems 2.3 and
3.1(a). Thus, suppose that p = 2. Let

Suppose first that r = 0. Then H is a metacyclic modular non Hamil-
tonian group, by Theorem 3.1(b). We show that, in this case

(4) G has derived length at most 4.

Set X = (H’)$ and suppose that = 28. By [9], Lemma 6,
for all Hence X is the join of cyclic normal sub-

groups of G of order 2S. Therefore G’, and consequently H’, centralise
X. Moreover X has exponent IH’l and then, since X is metacyclic,
X/H’ is cyclic. It follows that X is abelian. Now consider 
n induces a projectivity from O/Qs(G) to is

core-free in (Lemma 2.2 (iii)) and is abelian.

Then, by Theorem 2.3 (b),

(5) is metabelian

and so (4) is proved if s = 0. Suppose s &#x3E; 0 and consider the group
X_a~ = Y, induces a projectivity from Y to Y, X is core-free
in Y and X is abelian. Therefore, by Theorem 2.3 (a_), QiY) is a modular
p-group. Also, by Lemma 2.2 (iii), applied to Y, 
is non-trivial and core-free in and therefore 

is not cyclic. Moreover, since = 

(Lemma 2.2 (i)) -_X~ = Xo and, since is cyclic, it follows
also that Q~(G) /Q~( Y) is cyclic. Then, applying Lemma 2.1 to 

(*) The proof of (b) makes use of an unpublished result due to the second
author. For completeness reasons we shall give a proof here, in the Appendix.
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it follows that is metabelian. Hence, recalling (5), (4) follows.
Suppose now that r &#x3E; induces a projectivity from 

to fÏDr(G)/Dr(G) is core-free in (Lemma 2.2 (iii))
and = I c 4. Therefore, by applying
what we have just proved to we see that G/Qr(G) has derived
length at most 4. Also, by Theorem 3.1 (b), is abelian. Hence,
by applying Theorem 2.3 to Dr(H)(a), it follows that £Jr(G)
(= is a modular p-group. In particular it is metabelian.
Consequently G has derived length at most 6, as required. Il

4. On the derived series of a projective image of a group having a
normal subgroup with soluble factor group.

THEOREM G be projectivity,
and suppose tha,t G/N is soluble of derived lengthn. T hen

G(6n)  N.

PRooF. Clearly we may assume that G is finitely generated. Using
induction on the derived length of G~N, we may assume that 
cN. G/G’ is a finitely generated abelian group, therefore 
- cl~G’/G’ &#x3E;C ~c2~G’/G’ ... &#x3E;C for some suitable elements ci E G
such that r’1 G’ is either infinite cyclic or a p-group. Set

.gi = G’, cx, ... , c;i, ... , et), for 1 ~ i c i. If r1_G’ is

infinite cyclic, then, as a result of [10], Corollario 1, HiaG. If

( ~ci~/_~ci_~ r1 is a prime power, then IG:Ïlil is finite ([10], Teorema A_)
and is a chain. Therefore, assuming that Hi is not normal in G,
according to [6], Lemmas 2 and 3, the following two possibilities can
occur:

(a) is ac non-abelian group of order pq where p and q are
prime numbers. In particular is metabelian.

(b) G/(Hi)G is a finite non-abelian p-group. (Hi)a is normal in

G ([2 ]) and n induces a projectivity f rom to ..B_‘y [7],
Theorem 3, is also a p-group. Theorem 3.2 implies that 
has derived length  6.

_ _ _ 

i 
_

Now, in ail cases for all 1  i  t. Therefore G(6)  n Hi
It follows that as required. 0 

-



256

COROLLARY 4.2. Let G and G be groups, n: G ~ G a projectivity,
and suppose that G is soluble of derived length  n. Then G is soluble
of derived length  6n - 4.

PROOF. By Theorem 4.1, G~g~n-~’~ c G~n-1~. Moreover, since G(n-1)
is abelian, is metabelian ([8], ch. 1, Theorems 17 and 18). It
follows that G~g~n-~~+2~ = 1, as required. 0

5. Appendix.

As it was mentioned in the statement of Theorem 3.1, we give
here a proof of the following result, which was needed in the proof
of Theorem 2.4 (b).

PROposzTroN 5.1. In the hypotheses of Theorem 3.1 and with p = 2,
i f 2 n is the exponent of H, then

PROOF. We first show (a). Suppose false, and choose a count-
erexample G with minimal. Let ... , em}, {f0, ... , fm) be bases
of £2i(G) and respectively, as in Lemma 2.2 (ii) and set =

= ~a~. Then

_ 

Set = and it does not contain el. Thus
r1.H~ = 1 and this implies that and consequently .K are

cyclic. Moreover, since el eo E Ïialn-l r1 Z( G) (Lemma 2.2), K =1= 1 and
g is normal in G ([2] applied to the projectivity na, G - G).
Then the minimality of yields = 1. In particular

Now is a non-trivial normal subgroup of G contained in
Thus Also, by Lemma 2.2 (iv), Un-l(H)=

- It follows that there exists h E .g of order 2n such

that h2"-’ = ei. Then = 1 and so, since n 
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is cyclic, we get

h~ is normalised by (7), therefore is normalised by
as well. Moreover, since it is quasi-normal in G, is nor-

malised by Hence, from (8)

Using the décomposition ,S2n(G) = (see Lemma 2.2 (i)),
we get

Let ~b~ be any cyclic subgroup of G of order 2n containing e,,&#x3E;. Consi-

dering that, if b~ is normalised by Q1(G), y then it is centralised by
Ql(G), it follows from (9) and from the decomposition Qn(G) = 
(see Lemma 2.2 (i)) that

(11) b~ is not normalised by 

Set (hi) = ~h~. is normalised by Q1(G). Suppose that 
&#x3E; fo, Il, ... , Im-1). Then la = t~ mod. and so either fm
centralises both and or it induces on and the same

power 1-~-- 2n-1. In both cases

by Lemma 2.2 (iv). It follows that is normalised by Ql(G)
and contains eo , contradicting (11). 
~ C~ 1 (G) ( ~hl~ ) , and so we can find such that

If we let ~~~ = 9,,«a» ::= (say) in (11), it follows from the action
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of a on that

The 21 elements form a basis of

Therefore

Moreover, by Lemma 2.2 (iv) and ( vi ) , _ (eo) for all z E H.
Hence a2~) = za2~) = (eo) X In particular

and so, by (12), y

But then el E a2)) r1 .,g = ~x?~x,a$~, contradicting (14). This

contradiction completes the proof of (a). 
_

In arder to show (b) observe that, by (a), every element y e Qi(G)
induces a power automorphism on Then, from the fact that

contains two cyclic subgroups of order 2n intersecting trivially,
using Lemma 2.2 (iv), it follows that the power automorphism induced
by y on Dn(G) is universal, and it is either the identity or the power
1 + 2n-1. Hence  2 and so, since £J1(G) r~
r1 we get

and ~eo , ... , em~ are the usual bases of and

!21(G), accord,ing to Lemma 2.2 (ii). Assume, by way of contradic-
tion, that lm induces the power 1 + 2n-l on Set = 

Then [lm, ==/0 implies 2£. The 2 elements em (0 c 2l -1 )
form a basis of Therefore

Moreover, by Lemma 2.2 (iv) and (vi), Qi((a2z)) = eo~ for all 
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In particular ~a2 z~ r1 .g = 1. Therefore

and

Then

for all zi E H. As we have seen in proving (a), there exists h1 E H such
that - Il. Thus

by (16). Therefore contradicting (15).
This completes the proof of Proposition 5.1. CI

We finally point out that, using Lemma 2.1, y we can improve a
result in [3] (Theorem) as follows:

THEOREM 5.2. Let G be a group projectivity. If
then HIHU and HIHU are soluble groups of derived length at

most 3.

(In [3] the upper bound for the derived length of H/Ha was 4).
PROOF. Looking at the proof of [3], Theorem, it is immediately

seen that the critical case is when G = .H~~ac~, H is core-free in G and
G, G are finite 2-groups. In this case, applying Theorem 3.1 (b), it

follows that there exists r such that is metacyclic and 
is a non-Hamiltonian modular 2-group such that is

non-cyclic. Then, as a result of Lemma 2.1, H~3~ = 1, as required. C1
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