RENDICONTI del Seminario Matematico della Università di Padova

M. J. IRANZO F. Pérez Monasor

$\mathcal F$ -constraint of the automorphism group of a finite group

Rendiconti del Seminario Matematico della Università di Padova, tome 73 (1985), p. 23-30

http://www.numdam.org/item?id=RSMUP_1985_73_23_0

© Rendiconti del Seminario Matematico della Università di Padova, 1985, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 73 (1985)

\mathcal{F} -Constraint of the Automorphism Group of a Finite Group.

M. J. IRANZO - F. PÉREZ MONASOR

If \mathcal{F} is a homomorph and we denote $\mathcal{F}' = \{G | S^{\mathcal{F}} = S \forall S \leqslant G\}$, we say that a group G is \mathcal{F} -constrained when there is a maximal normal \mathcal{F} -subgroup \overline{M} of $\tilde{G} = G/G_{\mathcal{F}'}$, such that $C_{\overline{G}}(\overline{M}) \leqslant \overline{M}$.

In ([7]), R. Laue proves that if G has no direct abelian factors and $C_G(F(G)) < F(G)$ (i.e. G is Nilpotent-constrained) then $C_{\operatorname{Aut} G}$ $(F(\operatorname{Aut} G)) < F(\operatorname{Aut} G)$.

In ([10]) it is proved for a saturated Fitting formation and a group G verifying that:

i) $G_{\mathcal{F}'} \leqslant \mathcal{O}(G)$,

- ii) $G/G_{\mathcal{F}}$ has no direct abelian factors,
- iii) G is \mathcal{F} -constrained,

that $\operatorname{Aut} G$ is \mathcal{F} -constrained.

The purpose of this paper is mainly to prove the above result when \mathcal{F} is a homomorph closed for direct products (D_0 -closed) and normal subgroups that is: i) saturated or ii) closed for central extensions.

All group considered are finite.

If \mathcal{F} is a homomorph then the class \mathcal{F}' is a s-closed (i.e. closed for subgroups)extensible Fitting formation and a group G is said \mathcal{F} -sepa-

(*) Indirizzo degli AA.: Departamento de Algebra y Fundamentos, Facultad de Ciencias Matemáticas, C/ Doctor Moliner s/n Burjasot (Valencia), Spain. rable if it possesses a normal series:

$$G = G_0 \succeq G_1 \succeq \dots \succeq G_r = 1$$

whose factor groups G_i/G_{i+1} are either \mathcal{F} -groups or \mathcal{F}' -groups.

If we do not state the contrary here on we shall suppose that \mathcal{F} is a *n*-closed (i.e. closed for normal subgroups) homomorph.

The class of \mathcal{F} -separable groups is an extensible Fitting formation that contains the solvable groups.

The product of all normal semisimple subgroups of a group G is again a semisimple normal subgroup of G, and it is denoted by L(G). It is called the semisimple radical of G([6]).

We use the concepts of semisimple and perfect-quasisimple groups given by Gorenstein and Walter [6].

LEMMA 1 (s. [5] p. 127 or [9] p. III-32). For every group G, we have:

$$C_G(F(G)L(G)) \leqslant F(G)$$

From the definition and properties of class \mathcal{F}' it follows that G is \mathcal{F} -constrained if and only if G/N is \mathcal{F} -constrained, when $N \leqslant G_{\mathcal{F}'}$.

LEMMA 2. If \mathcal{F} is a saturated Fitting formation, the following are equivalent. 1) G is \mathcal{F} -constrained, 2) $L(\overline{G}) \in \mathcal{F}([8])$.

Our remainder notation is standard and it is based on Huppert's book ([4]).

In the following we shall say that \mathcal{F} verifies:

A) If $\{Q, E_{\Phi}, D_0, S_n\}\mathcal{F} = \mathcal{F};$

B) If $\{Q, E_z, D_0, S_n\}\mathcal{F} = \mathcal{F}$, where $E_z\mathcal{F} = \{G|N; N \leq Z(G), G/N \in \mathcal{F}\}$.

As a consequence of the following proposition we obtain that the \mathcal{F} -constraint is equivalent to the constraint with respect to a suitable saturated Fitting formation.

PROPOSITION 3. If $\overline{G} = G/G_{\mathcal{F}'}$ and if \mathcal{F} verifies A or B, the following are equivalent:

- 1) G is F-constrained,
- 2) \overline{G} is (F-separable)-constrained,
- 3) $L(\bar{G}) \in \mathcal{F}$.

PROOF. 1) \Rightarrow 2) Obvious.

2) \Rightarrow 3). By lemma 2, $L(\bar{G})$ is \mathcal{F} -separable, hence $L(\bar{G})/Z(L(\bar{G}))$ is \mathcal{F} -separable and direct product of non-abelian simple groups ([6]). Moreover, since \mathcal{F}' is saturated $\left(L(\bar{G})/Z(L(\bar{G}))\right)_{\mathcal{F}'} = 1$, thus $L(\bar{G})/Z(L(\bar{G})) \in \mathcal{F}$, but since $Z(L(\bar{G})) = \Phi(L(\bar{G}))$, $L(\bar{G}) \in \mathcal{F}$. 3) \Rightarrow 1). Since $\bar{G}_{\mathcal{F}'} = 1$, both $L(\bar{G})$ and $F(\bar{G})$ are normal \mathcal{F} -subgroups of \bar{G} and since $[L(\bar{G}),$ $F(\bar{G})] = 1$, then $L(\bar{G})F(\bar{G})$ is a normal \mathcal{F} -subgroup of \bar{G} . Let \bar{M} be a maximal normal \mathcal{F} -subgroup of \bar{G} containing $L(\bar{G})F(\bar{G})$, by lemma 1 it follows:

$$C_{\overline{G}}(\overline{M}) \! \leqslant \! C_{\overline{G}}(L(\overline{G})F(\overline{G})) \! \leqslant \! F(\overline{G}) \! \leqslant \! \overline{M}$$

COROLLARY. If G is F-constrained group then $C_{\overline{G}}(\overline{M}) \leq \overline{M}$ for all maximal normal F-subgroups of \overline{G} .

PROOF. By proposition 3, $L(\overline{G}) \in \mathcal{F}$. Since $L(C_{\overline{G}}(\overline{M})) \leq L(\overline{G})$ then $L(C_{\overline{G}}(\overline{M})) \in \mathcal{F}$ hence $L(C_{\overline{G}}(\overline{M})) < \overline{M}$ by the maximality of \overline{M} and so $L(C_{\overline{G}}(\overline{M})) = 1$, thus $C_{\overline{G}}(\overline{M})$ is a \mathcal{N} -constrained group. On the other hand $F(C_{\overline{G}}(\overline{M})) \in \mathcal{F}$ hence $F(C_{\overline{G}}(\overline{M})) < \overline{M}$.

Clearly:

$$C_{\overline{G}}(\overline{M}) \leqslant C_{\overline{G}}(\overline{F}(C_{\overline{G}}(\overline{M}))) \cap C_{\overline{G}}(\overline{M}) = C_{C_{\overline{G}}(\overline{M})}(F(C_{\overline{G}}(\overline{M}))) \leqslant F(C_{\overline{G}}(\overline{M})) \leqslant \overline{M}$$

REMARKS. The following conditions, are not equivalent: i) \overline{G} is (\mathcal{F} -separable)-constrained and ii) G is (\mathcal{F} -separable)-constrained. In fact, in [6] it is proved that $G = C_X(\tau)$, where $X = SL(4, 2^a)$, a > 1, and τ is the central involution $I_4 + xE_{14}$, $x \neq 0$, is 2-constrained, hence G is (2-separable)-constrained or equivalently (2'-separable)constrained, however G is not 2'-constrained. Thus G is (2'-separable)constrained but $G/O_2(G)$ is not (2'-separable)-constrained.

If \mathcal{F} is a saturated Fitting formation it is known that:

i) The class of the \mathcal{F} -constrained groups is a Fitting class that contains the solvable groups ([8])

ii) G is \mathcal{F} -constrained if and only if Inn G is \mathcal{F} -constrained ([10]),

iii) The class of the \mathcal{F} -constrained groups is extensible ([10]). As a consequence of the above proposition, the properties i), ii), iii) are still valid when \mathcal{F} verifies A or B.

LEMMA 4. Let \mathcal{F} be a homomorph that verifies A or B, then if G is a group without direct abelian factors and $G_{\mathcal{F}'} = 1$, it follows $(\operatorname{Aut} G)_{\mathcal{F}'} = 1$.

PROOF. Let H be a normal \mathcal{F}' -subgroup of $\operatorname{Aut}(G)$, then $H \cap \operatorname{Inn}(G)$ is a normal \mathcal{F}' -subgroup of $\operatorname{Inn}(G)$; as $(G/Z(G))_{\mathcal{F}'} = 1$, consequently $H \cap \operatorname{Inn} G = 1$, thus $[H, \operatorname{Inn} G] = 1$ and so $H \leq C_{\operatorname{Aut} G}(\operatorname{Inn} G) \leq$ $\leq F(\operatorname{Aut} G)$ because G has no direct abelian factors ([7]). Set $\pi = \operatorname{car} \mathcal{F} =$ $= \{p | C_p \in \mathcal{F}\}$, since F(G) is nilpotent and $G_{\mathcal{F}'} = 1$ it follows that F(G) is a π -group and thus $F(\operatorname{Aut} G)$ is a π -group ([7]). Since $H \in \mathcal{F}'$, H is a π' -group and so H = 1.

COROLLARY 1. Let \mathcal{F} be a homomorph that verifies A or B, and G a group such that $G/G_{\mathcal{F}'}$ has no direct abelian factors, then if G is \mathcal{F} -constrained, Aut $(G/G_{\mathcal{F}'})$ is \mathcal{F} -constrained.

PROOF. As G is \mathcal{F} -constrained group, so $G/G_{\mathcal{F}'}$ is \mathcal{F} -constrained. By proposition 3, $G/G_{\mathcal{F}'}$ is (\mathcal{F} -separable)-constrained. We can apply (2.6) of [10] to obtain that $\operatorname{Aut}(G/G_{\mathcal{F}'})$ is (\mathcal{F} -separable)-constrained. By lemma 4 ($\operatorname{Aut}(G/G_{\mathcal{F}'})$) $_{\mathcal{F}'} = 1$, hence by proposition 3, $\operatorname{Aut}(G/G_{\mathcal{F}'})$ is \mathcal{F} -constrained.

COROLLARY 2. Let \mathcal{F} be a homomorph verifying B, and G a group whithout direct abelian factors. If G is \mathcal{F} -constrained, then Aut G is \mathcal{F} -constrained.

PROOF. If \mathcal{F} verifies B), then $\mathcal{F}' = 1$ now we can apply corollary 1, to obtain the result.

However, in the case of saturated homomorph, it does not appear that the constraint of Aut G can be obtained as an easy consequence of the constraint of Aut $(G/G_{\mathcal{F}'})$.

THEOREM 5. Let \mathcal{F} be a homomorph verifying A, and G a group that verifies:

- i) $G_{\mathcal{F}'} \leqslant \Phi(G)$
- ii) $G/G_{\mathcal{F}'}$ has no direct abelian factors
- iii) G is F-constrained.

Then Aut G is F-constrained.

PROOF. We denote $\overline{\operatorname{Aut} G} = \operatorname{Aut} G/(\operatorname{Aut} G)_{\mathcal{F}'}$. We have:

$$egin{aligned} \overline{\mathrm{Inn}\,G} &= \mathrm{Inn}\,G(\mathrm{Aut}\,G)_{\mathcal{F}'}/(\mathrm{Aut}\,G)_{\mathcal{F}'} \ &\simeq \mathrm{Inn}\,G/(\mathrm{Inn}\,G \cap (\mathrm{Aut}\,G)_{\mathcal{F}'} = \mathrm{Inn}\,G/(\mathrm{Inn}\,G)_{\mathcal{F}'} \simeq \ &\simeq (G/Z(G))/(G/Z(G))_{\mathcal{F}'} = (G/Z(G))/(G_{\mathcal{F}'}Z(G))/Z(G) \simeq \ &\simeq G/G_{\mathcal{F}'}Z(G) \ . \end{aligned}$$

Since G is \mathcal{F} -constrained we know that $\operatorname{Inn}(G)$ is \mathcal{F} -constrained and so $\overline{\operatorname{Inn} G}$ is \mathcal{F} -constrained too. By proposition 3, $L(\overline{\operatorname{Inn} G})$ is a characteristic \mathcal{F} -subgroup of $\overline{\operatorname{Inn} G}$. Since $(\overline{\operatorname{Inn} G})_{\mathcal{F}'} = 1$, consequently $F(\overline{\operatorname{Inn} G})$ is also a characteristic \mathcal{F} -subgroup of $\overline{\operatorname{Inn} G}$. Since $[L(\overline{\operatorname{Inn} G}),$ $F(\overline{\operatorname{Inn} G})] = 1$ and \mathcal{F} is a D_0 -closed homomorph, hence $L(\overline{\operatorname{Inn} G})$ $F(\overline{\operatorname{Inn} G})$ is a normal \mathcal{F} -subgroup of $\overline{\operatorname{Aut} G}$. Let \overline{M} be a maximal normal \mathcal{F} -subgroup of $\overline{\operatorname{Aut} G}$ that contains $L(\overline{\operatorname{Inn} G})F(\overline{\operatorname{Inn} G})$. Set $\overline{L} = C_{\overline{\operatorname{Aut} G}}(\overline{M})$, since \overline{L} centralizes \overline{M} , \overline{L} will centralize $L(\overline{\operatorname{Inn} G})$ $F(\overline{\operatorname{Inn} G})$. Let L be the subgroup of Aut G such that $\overline{L} = L/(\operatorname{Aut} G)_{\mathcal{F}'}$, and let H be the normal subgroup of G such that $L(\overline{\operatorname{Inn} G})F(\overline{\operatorname{Inn} G}) \simeq$ $\simeq H/G_{\mathcal{F}'}Z(G)$. Then L centralizes $H/G_{\mathcal{F}'}Z(G)$ and hence L centralizes $G/C_G(H/G_{\mathcal{F}'}Z(G))$, too. Now since $H/G_{\mathcal{F}'}Z(G) = L(G/G_{\mathcal{F}'}Z(G))$ $F(G/G_{\mathcal{F}'}Z(G))$, by lemma 1 consequently:

$$C_{\mathcal{G}/\mathcal{G}_{\mathcal{F}'}Z(\mathcal{G})}(H/\mathcal{G}_{\mathcal{F}'}Z(\mathcal{G})) \leq H/\mathcal{G}_{\mathcal{F}'}Z(\mathcal{G}) ,$$

hence $C_{\mathcal{G}}(H/G_{\mathcal{F}'}Z(G)) \leq H$, and so L centralizes G/H, therefore L stabilizes the series:

$$G/G_{\mathcal{F}'}Z(G) \! \geq \! H/G_{\mathcal{F}'}Z(G) \! \geq \! 1$$

thus $L/C_L(G/G_{\mathcal{F}'}Z(G))$ is nilpotent by a well-known P. Hall's result. We consider now $C_{\operatorname{Aut} G}(G/G_{\mathcal{F}'}Z(G))$. This group induces an automorphism group of $G/G_{\mathcal{F}'}$ which is isomorphic to:

(1)
$$C_{\operatorname{Aut} G}(G/G_{\mathcal{F}'}Z(G))/C_{\operatorname{Aut} G}(G/G_{\mathcal{F}'})$$

By ii) $G/G_{\mathcal{F}'}$ has no direct abelian factors, hence we know ([7]) that:

$$C_{\operatorname{Aut}(G/G_{\mathcal{F}'})}(G/G_{\mathcal{F}'}/Z(G/G_{\mathcal{F}'}))$$

is nilpotent and so:

(2) $C_{\operatorname{Aut}(G/G_{\mathcal{F}'})}(G/G_{\mathcal{F}'}/Z(G)G_{\mathcal{F}'}/G_{\mathcal{F}'})$

is nilpotent, too.

Since the subgroup of $\operatorname{Aut}(G/G_{\mathcal{F}'})$ isomorphic to (1) is contained in (2), we deduce that (1) is nilpotent. Now, since $C_{\operatorname{Aut} G}(G/\Phi(G))$ is nilpotent ([11]) and by i) $C_{\operatorname{Aut} G}(G/G_{\mathcal{F}'})$ is nilpotent too. Consequently $C_{\operatorname{Aut} G}(G/G_{\mathcal{F}'}Z(G))$ is solvable and so L and hence \overline{L} are solvable. Now $F(\overline{L}) \in \mathcal{F}$, hence $F(\overline{L})\overline{M} \in \mathcal{F}$, as \overline{M} is a maximal normal \mathcal{F} -subgroup of $\overline{\operatorname{Aut} G}$, then $F(\overline{L}) \leq \overline{M}$, therefore:

$$ar{L} = C_{\overline{\operatorname{Aut} G}}(ar{M}) \! < \! C_{\overline{\operatorname{Aut} G}}(F(ar{L})) \cap ar{L} = C_{ar{L}}(F(ar{L})) \! < \! F(ar{L}) \! < \! ar{M}$$
 .

Next, we give some counterexamples which prove that the conditions imposed in theorem 5, are not superfluous.

1) The assumption $G_{\mathcal{F}'} \leqslant \Phi(G)$ is necessary.

It is enough to take $G = C_3 \times C_3 \times C_3 \times Q$ where Q is the quaternion group of order 8. The Aut $G = GL(3,3) \times S_4$. If \mathcal{F} is the class of 2-groups, then $G_{\mathcal{F}'} = C_3 \times C_3 \times C_3$ is not a subgroup of $\Phi(G) = Z(Q)$. Make note that G is 2-constrained because it is solvable, now, if Aut G is 2-constrained, GL(3,3) would be also 2-constrained and hence his normal subgroup SL(3,3) would be also 2-constrained, but SL(3,3)is a simple group that is neither a 2-group nor a 2'-group and therefore it is not 2-constrained group.

2) The condition that $G/G_{\mathcal{F}}$ has no direct abelian factors is equally necessary. We can consider $G = C_3 \times C_3 \times C_3$ and as \mathcal{F} the class of nilpotent groups, then G is \mathcal{N} -constrained but Aut G is not \mathcal{N} -constrained, because GL(3,3) is not \mathcal{N} -constrained by a similar argument, to the above one.

Finally, we give some examples of classes verifying A or B that are not saturated Fitting formations

a) The class of the supersolvable groups is a formation that verifies A and B but it is not a Fitting class.

b) Let $\mathcal{F} = \mathcal{NA} \cap S_{\pi}$ be, where \mathcal{A} is the class of abelian groups and S_{π} is the class of π -groups, π is a set of prime numbers. This class is a *n*-closed saturated formation but it is neither a Fitting class nor E_z -closed. Of course if we take $\pi = \{2\}$ and $G = C_5 \times Q$ where Q is the quaternion group of order 8, then $G/Z(G) \simeq C_2 \times C_2 \in \mathcal{F}$ but $G \notin \mathcal{F}$. On the other hand if we consider:

$$\pi = \{2, 5\}, \quad G = [C_5 imes C_5] \cdot Q_8,$$
 $C = [C_5 imes C_5] \langle a
angle \quad ext{and} \quad D = [C_5 imes C_5] \langle b
angle$

where $Q = \langle a, b | a^4 = 1$ $a^2 = b^2$, $b^{-1} ab = a^{-1} \rangle$ then $C, D \in \mathcal{F}$ but $G \notin \mathcal{F}$ because G' is not nilpotent.

c) The class of solvable groups with absolute arithmetic 3-rank a 3'-number is a not saturated Fitting formation [3]; but it is an E_z closed class, because the 3-chief factors under Z(G) have order 3.

d) Following Cossey, we consider inside solvable groups, the class $\mathfrak{X} = S_p S_{p'} S_p$ where $S_{p'}$, S_p are the class of p'-groups and p-groups respectively. We denote by $c_p(G)$ the least common multiple of the absolute degrees of the complemented p-chief factors. Thus the class:

$$\mathfrak{Y} = \{ G \in \mathfrak{X} | c_p(G) \text{ is coprime to } p \}$$

is both a Fitting class and a Schunck class but it is not a formation [1]. This class verifies A and also satisfies B by a similar argument to that of c).

BIBLIOGRAPHY

- J. COSSEY, On Fitting classes that are Schunck classes, J. Aust. Math. Soc., (A), 30 (1981), pp. 381-384.
- P. HALL, Some sufficient conditions for a group to be nilpotent, Illinois J. Math., 2 (1958), pp. 787-801.
- [3] T. HAWKES, On Fitting formations, Math. Z., 117 (1970), pp. 177-182.
- [4] B. HUPPERT, Endliche Gruppen I, Springer-Verlag, 1967.
- [5] HUPPERT BLACKBURN, Finite Groups III, Springer-Verlag, 1982.
- [6] GORENSTEIN WALTER, The π -layer of a finite group, Illinois J. Math., 15 (1972), pp. 555-564.
- [7] R. LAUE, Zur Charakteriesierung der Fitting-gruppe der Automorphismengruppe einer endliche Gruppe, J. of Algebra, 40 (1976), pp. 618-626.

- [8] F. PÉREZ MONASOR, Grupos finitos separados respecto de una formación de Fitting, Rev. Acad. Ciencias de Zaragoza, Serie 2ª, XXVIII, 3 (1973), pp. 253-301.
- F. PÉREZ MONASOR, Extensión de un teorema de Gorenstein-Walter. Grupos F-constrictos, III Jornadas Mat. Hispano-Lusas, III-28-35 (1974), Sevilla.
- [10] F. PÉREZ MONASOR, F-constrained Groups, Conference in the University of Mainz, Mainz (1983).
- [11] P. SCHMID, Über die Automorphismengruppen endlicher Gruppen, Arch. Math., 23 (1972), pp. 236-242.

Manoscritto pervenuto in redazione il 23 settembre 1983 ed in forma riveduta il 27 marzo 1984.