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The Number of Conjugacy Classes
in a Finite Nilpotent Group.

ANTONIO VERA LOPEZ (*)

SUMMARY - In this paper, we obtain the number of conjugacy classes r(G)
of a finite nilpotent group G as a function of the orders of the center of G
and of any maximal abelian subgroup of G. Also, we prove that, if G is
a p-group of order ~m and ai is the number of conjugacy classes of G of
size ~i, then ai = 0 (mod. p - 1) for each i and

Finally, we get two lower bounds for r(G) and we consider several example
which improves the 10g21GI bound, the P. Hall’s bound and one Sherman’s
lower bound.

In the following, G will denote a finite nilpotent group. Since

the number of conjugacy classes in a direct product is the product
of the number of conjugacy classes in each factor, we can suppose
that G is a p-group, in the study of the number of conjugacy classes
r(G).

We use the standard notation: [x, y] == x-1y-lxy, xv = y-1xy,

(*) Indirizzo dell’A.: Universidad del Pais Vasco, Facultad de Ciencias,
Dpto de Matematicas, Apartado 644, Bilbao, Espana (Spain).
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Throughout this paper, we will suppose that:

1. The number r ( G) .

LEMMA. Let N and M be two subgroups of G such that Z(G) 
and Consider the isomorphism h:

N H yx and suppose that h leaves exactly s conjugacy classes
of N unchanged: Cl,(y,), ... , C1N(ys) . Then there is an integer k’ ~ 0,
such that 8 = pb + k’. (p -1 ).

PROOF. We define T = ~y E N: = = CIN(yl) û ... Ô
Ú Arguing as in [9] pp. 83, there exists a natural number k
such that k has exactly order p-1 module any divisor (~ 1) of ~N~.
Now we consider the permutation

f : T - T defined by y H yk

Clearly, we have Z(G) ç T and f(T - Z(G)) = T - Z(G), because
g.c.d. (k, [Z(G) 1) = 1, hence T - Z(G) is a union of some orbits of f .
Moreover, the length of each orbit ~ {1} of f is p -1, because o(k) _
p - 1 module o(y) for each y E T - ~1.~, hence IT - Z(G)I ] --- 0

(mod p -1 ). Finally, == 1 (mod p -1 ) for each i, implies

and therefore, there is an integer k’ ~ 0 such that s = pb -f - k’- (p -1 ) .

THEOREM 1. Let A be a maximal abelian subgroup of G of order
pa. Then there is an integer such that

PROOF. Clearly we have Z(G)  A and we can consider a composi-
tion series of G: 
with Nu = Z(G) and N. = A. Let gi-, be an element of Ni_1- Ni .
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We know (cf. [15]) that

where si is the number of conjugacy classes of Ni unchanged by the
automorphism Ni -+ - = 1, ... ~ ~ .

Since A is an abelian group, we have:

Moreover for each so, by lemma, there are number
integers 1~~ ~ 0 such that sz = pb + - 1) for each Z ~ v.

Consequently, we have

for some integer k ~ 0.

REMARK. The relation (1) implies the congruence:

Moreover

and arguing as in ([6] V.15.2) or ([9] pp. 79) one obtain the following
result of P. Hall: Let G be a group of order = 0 or 1, then
for some non-negative integer k, we have r(G) = pe + (p2 - 1) (n +
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EXAMPLES.

1) Let G be a non-abelian p-group of order pm and suppose that,
there exists A an abelian subgroup of G such that = p. Then,
we have r(G) = pm-2 + pb-l(p2 -1), @ with pb = For example

a) If there is g&#x3E;  G such that C , then G is isomorphic
to one of the following groups: D2m, y Q2m, 1 or Mf)m, and we

b ) If = pm with m = 3 or 4, then, there exists A  G such
that I GIA ( = p and A is an abelian subgroup of G.

2) Let G be a p-group of order p~ and suppose that .A is a maximal
abelian subgroup of G of order p--2. Then from Theorem 1, we have
r(G) = p--4 + + 1)(p2-1) + kp-2(p2 - 1)(p - 1), for some inte-
ger k &#x3E; 0. Moreover, if |Z(G)| &#x3E; p2, then p2 clivides k and r(G) = pm-4 +

2. Two lower bounds for r ( G) .

P. Hall (cf. [6] V.15.2) proves that r(G) = pe + if lai -
with e = 0 or 1.

In general, if G is a finite group, Erdôs and Turan (cf. [2]) proved
r(G) &#x3E; log2log2|G|. In [1] Bertram improves the log2log2|G| bound,
proving that r(G) &#x3E; (logl6j)- for « most » groups a, where c is any
constant less than log 2. In 1978 Sherman (cf. [13]) proves that if G
is a finite nilpotent group of nilpotency class t, then 
- t + 1 and note that 

In the following, we obtain two new lower bounds for r(G) when G
is a p-group of order pm and we give some examples where one verifies
that these bounds improve the know lower bounds.

COROLLARY 1. Let G be a group of order pm and center of order pb.
If A is a maximal abelian subgroup of G of order pa, then
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Moreover f (a, b) is a increasing function of each variable a and b.

PROOF. This follows directly from Theorem 1.

REMARK. If A is a maximal abelian normal subgroup of G of

order pa, then A is a maximal abelian subgroup, and + 1)
forces ~(2013l+(l-t-8m)~)/2. Moreover, 1  b  a  m if G is a

non-abelian group (cf. [14] pp. 94).
For every prime number p, we define

W’e have:

THEOREM 2. Let G be a group of order pm. Then

PROOF. We consider Then

Set G1 = G/.gl and consider Op r--J H2/HI  Z(G,). Then Gl/
and r(Gi) + -1 = r(G/H2) + P -1, hence

r(G»r(G/H2) + 2.(p-1). Repeating this reasoning, we obtain

EXAMPLE 1. If IGI - p4, then r(G) E 2p2 -1, p3 + p2 - p~,
hence d4(p) = 2p2 -1. Consequently, if G is a group of order pm with
~m ~ 6, then r(G) &#x3E; 2p2 - 1 + (m - 4) (p -1) . Thus, we have r(G) =
== p + (p2 - 1) (n + k( p --1 ) ) with an integer such that

EXAMPLE 2. If p = 2, we have dl(2) = 2, d2(2) = 4, d,(2) == 5,
d4(2 ) == 7, d,(2) = 11, d,,(2) =13, d7(2) == 14 (cf. [4] and [12]). Suppose
G of order 28. Then P. Hall’s bound is r(G) ~ 1 + 3-4 = 13. On the
other hand, Theorem 2 yields r(G»d6(2) + (8 - 6).1 = 13 + 2 = 15,
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hence r(G) = 13 + 3k &#x3E; 15, implies r(G) ~ 16. Finally the Sherman’s
bound yields r(G) &#x3E; 7 ~ 28~’ - 7 + 1 &#x3E; log2 28 = 8.

EXAMPLE 3. Let G be a group of order p8 such that IGjZ(G)1 -- p4.
Then the nilpotency class of G is «4y and the Sherman’s bound
yields ~(û)&#x3E;4’p~20134~-i=4p2_~ On the other hand, if A is
a maximal abelian subgroup of G of order pa, then Z(G)  A, hence
a&#x3E;5 and the Corollary 1 implies

EXAMPLE 4. Let G be a group of order pm such that 1 =:: p3.
If then Z(G) (g)  C,(g), hence c p2. By Vaughan-lee’s
Theorem (cf. [7] pp. 341) it follows G’ ~ c p3; our Corollary yields
also the above result. In effect, we have r(G) = pm-2 -~- (p2 -1)

-i- pm-5(p 2 -1 ) ~ hence 

PROPOSITION. If G is a p-group, then r(G) &#x3E; 

PROOF. Set 101 = pm = p2n+e with e = 0 or 1. By the Remark
we have

The desired inequality now follows from (3) if we argue by induc-
tion on m to prove that

Let G be a group of order pm. We define

Finally we obtain:

PROPOSITION. Let G be a p-group, then G satisfies the following
relations :
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for some number

PROOF. We have
On he other hand,

and

module ( p 2 -1 ) ( p -1 ) . Hence there is a number integer k" &#x3E;0 such
that

Arguing as in the Lemma, we deduce that ai - 0 (mod p -1 ) for
each i (considering we have ~ ITil [ == 0

(mod p -1 ) and Ti ( (mod (p -1 )), and consequently we have
IGI _ + ro + ~iP + ~’(p~2013l)(p2013l) for some number integer
~’&#x3E;0. Finally (4) yields ri == 0 (mod p 2 -1 ) .

EXAMPLES.

1) If G is a non-abelian group of order p 2, then al) -
- (p~ p2 -1) ~

2) Let G be a non-abelian group of order p4. Then 
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