RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

ANTONIO VERA LOPEZ

The number of conjugacy classes in a finite nilpotent group

Rendiconti del Seminario Matematico della Università di Padova, tome 73 (1985), p. 209-216

http://www.numdam.org/item?id=RSMUP 1985 73 209 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1985, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The Number of Conjugacy Classes in a Finite Nilpotent Group.

ANTONIO VERA LOPEZ (*)

Summary - In this paper, we obtain the number of conjugacy classes r(G) of a finite nilpotent group G as a function of the orders of the center of G and of any maximal abelian subgroup of G. Also, we prove that, if G is a p-group of order p^m and a_i is the number of conjugacy classes of G of size p^i , then $a_i \equiv 0 \pmod{p-1}$ for each i and

$$\sum_{1\leqslant 2k-1\leqslant m-2}a_{2k-1}\equiv 0\ (\mathrm{mod}\ p^2-1)\ .$$

Finally, we get two lower bounds for r(G) and we consider several examples which improves the $\log_2|G|$ bound, the P. Hall's bound and one Sherman's lower bound.

In the following, G will denote a finite nilpotent group. Since the number of conjugacy classes in a direct product is the product of the number of conjugacy classes in each factor, we can suppose that G is a p-group, in the study of the number of conjugacy classes r(G).

We use the standard notation: $[x, y] = x^{-1}y^{-1}xy$, $x^y = y^{-1}xy$, $\operatorname{Cl}_{G}(x) = \{x^g \colon g \in G\}$, $G' = \langle [x, y] \colon x, y \in G \rangle$ and $Z(G) = \{x \in G \colon g^x = g \ \forall g \in G\}$.

(*) Indirizzo dell'A.: Universidad del Pais Vasco, Facultad de Ciencias, Dpto de Matematicas, Apartado 644, Bilbao, España (Spain).

Throughout this paper, we will suppose that:

$$|\mathit{G}| = p^{\mathit{m}} = p^{\mathit{2n+e}} \,\, \mathrm{with} \,\, \mathit{e} = 0 \,\, \, \mathrm{or} \,\, 1 \,\, \, \mathrm{and} \,\, |\mathit{Z}(\mathit{G})| = p^{\mathit{b}} \,.$$

1. The number r(G).

LEMMA. Let N and M be two subgroups of G such that $Z(G) \leqslant \langle N \lhd M \leqslant G \rangle$ and $M/N = \langle \overline{x} \rangle \simeq C_p$. Consider the isomorphism $h: N \mapsto N \rangle y \mapsto y^x$ and suppose that h leaves exactly s conjugacy classes of N unchanged: $\operatorname{Cl}_N(y_1), \ldots, \operatorname{Cl}_N(y_s)$. Then there is an integer k' > 0, such that $s = p^b + k' \cdot (p-1)$.

PROOF. We define $T = \{y \in N : \operatorname{Cl}_N(y)^x = \operatorname{Cl}_N(y)\} = \operatorname{Cl}_N(y_1) \dot{\cup} \dots \dot{\cup} \operatorname{Cl}_N(y_s)$. Arguing as in [9] pp. 83, there exists a natural number k such that k has exactly order p-1 module any divisor $(\neq 1)$ of |N|. Now we consider the permutation

$$f: T \to T$$
 defined by $y \mapsto y^k$

Clearly, we have $Z(G) \subseteq T$ and f(T-Z(G)) = T-Z(G), because g.c.d. (k, |Z(G)|) = 1, hence T-Z(G) is a union of some orbits of f. Moreover, the length of each orbit $\neq \{1\}$ of f is p-1, because o(k) = p-1 module o(y) for each $y \in T-\{1\}$, hence $|T-Z(G)| \equiv 0$ (mod p-1). Finally, $|\operatorname{Cl}_N(y_i)| \equiv 1 \pmod{p-1}$ for each i, implies

$$|Z(G)| + |T - Z(G)| = |T| = \sum_{i=1}^{s} |\operatorname{Cl}_{N}(y_{i})| \equiv s \pmod{p-1}$$
,

and therefore, there is an integer $k' \ge 0$ such that $s = p^b + k' \cdot (p-1)$.

THEOREM 1. Let A be a maximal abelian subgroup of G of order p^a . Then there is an integer $k \ge 0$ such that

$$r(G) = (p^{2a}/p^m) + (p^b(p+1)(p^{m-a}-1)/p^{m-a}) + k \cdot (p^2-1)(p-1)/p^{m-a}.$$

PROOF. Clearly we have $Z(G) \leqslant A$ and we can consider a composition series of $G: 1 = N_m < ... < N_u < ... < N_v < ... < N_1 < N_0 = G$ with $N_u = Z(G)$ and $N_v = A$. Let g_{i-1} be an element of $N_{i-1} - N_i$.

We know (cf. [15]) that

(1)
$$r(G) = \left(\sum_{i=1}^{m} s_i (p^2 - 1)/p^i\right) + 1/p^m$$

where s_i is the number of conjugacy classes of N_i unchanged by the automorphism $h_i: N_i \to N_i, \ z \mapsto g_{i-1}^{-1} z g_{i-1}, \ i=1,...,m$.

Since A is an abelian group, we have:

$$s_m = 1, \ s_{m-1} = p, ..., s_{v+1} = p^{a-1} \ (\text{and} \ s_v = |C_{N_v}(g_{v-1})|).$$

Moreover $Z(G) \leqslant A \leqslant N_i$ for each $l \leqslant v$, so, by lemma, there are number integers $k_i \geqslant 0$ such that $s_i = p^b + k_i \cdot (p-1)$ for each $l \leqslant v$.

Consequently, we have

$$\begin{split} r(G) &= (1/p^m) + \left(\sum_{i=1}^m s_i(p^2-1)/p^i\right) = \\ &= (p^2-1)(1+p^2+\ldots+p^{2(a-1)})p^{-m}+p^{-m}+ \\ &+ (p^2-1)p^b(p^{-1}p^{-(m-a)}-p^{-1})(p^{-1}-1)^{-1}+ \\ &+ (p^2-1)(p-1)(k_1p^{-1}+k_2p^{-2}+\ldots+k_{m-a}p^{-(m-a)}) = \\ &= p^{2a-m}+p^b(p+1)(p^{m-a}-1)p^{-(m-a)}+k\cdot(p^2-1)(p-1)p^{-(m-a)} \end{split}$$

for some integer $k \ge 0$.

REMARK. The relation (1) implies the congruence:

$$|G| \equiv r(G) \pmod{(p^2-1)(p-1)}$$
(cf. [15])

Moreover

(2)
$$p^m = p^{2n+e} \equiv p^e + n(p^2 - 1) \pmod{(p^2 - 1)(p - 1)}$$

and arguing as in ([6] V.15.2) or ([9] pp. 79) one obtain the following result of P. Hall: Let G be a group of order p^{2n+s} , e=0 or 1, then for some non-negative integer k, we have $r(G)=p^s+(p^2-1)$ (n+k(p-1)).

EXAMPLES.

- 1) Let G be a non-abelian p-group of order p^m and suppose that, there exists A an abelian subgroup of G such that |G/A| = p. Then, we have $r(G) = p^{m-2} + p^{b-1}(p^2 1)$, with $p^b = |Z(G)|$. For example
- a) If there is $\langle g \rangle \leqslant G$ such that $G/\langle g \rangle \simeq C_x$, then G is isomorphic to one of the following groups: D_{2m} , Q_{2m} , SD_{2m} , or M_{r^m} , and we have $r(D_{2m}) = r(Q_{2m}) = r(SD_{2m}) = 2^{m-2} + 3$, and $r(M_{r^m}) = r^{m-2} + p^{m-3}(p-1)(p+1)$.
- b) If $|G| = p^m$ with m = 3 or 4, then, there exists $A \leq G$ such that |G/A| = p and A is an abelian subgroup of G.

If
$$(m, a) = (3, 2)$$
, then $b = 1$ and $r(G) = p + p^2 - 1$.
If $(m, a) = (4, 3)$, then $b = 1$ or 2 and $r(G) = 2p^2 - 1$ or $p^2 + p(p^2 - 1)$.

2) Let G be a p-group of order p^m and suppose that A is a maximal abelian subgroup of G of order p^{m-2} . Then from Theorem 1, we have $r(G) = p^{m-4} + p^{b-2}(p+1)(p^2-1) + kp^{-2}(p^2-1)(p-1)$, for some integer $k \geqslant 0$. Moreover, if $|Z(G)| \geqslant p^2$, then p^2 divides k and $r(G) = p^{m-4} + p^{b-2}(p+1)(p^2-1) + k_1(p^2-1)(p-1)$, with $k_1 \geqslant 0$.

2. Two lower bounds for r(G).

P. Hall (cf. [6] V.15.2) proves that $r(G) = p^e + n(p^2 - 1)$ if $|G| = p^{2n+e}$ with e = 0 or 1.

In general, if G is a finite group, Erdös and Turan (cf. [2]) proved $r(G) > \log_2 \log_2 |G|$. In [1] Bertram improves the $\log_2 \log_2 |G|$ bound, proving that $r(G) > (\log |G|)^c$ for «most» groups G, where c is any constant less than $\log 2$. In 1978 Sherman (cf. [13]) proves that if G is a finite nilpotent group of nilpotency class t, then $r(G) \ge t \cdot |G|^{1/t} - t + 1$ and note that $r(G) \ge \log_2 |G|$.

In the following, we obtain two new lower bounds for r(G) when G is a p-group of order p^m and we give some examples where one verifies that these bounds improve the know lower bounds.

COROLLARY 1. Let G be a group of order p^m and center of order p^b . If A is a maximal abelian subgroup of G of order p^a , then

$$r(G) \geqslant f(a, b) = (p^{2a}/p^m) + p^b(p+1) ((p^{m-a}-1)/p^{m-a}).$$

Moreover f(a, b) is a increasing function of each variable a and b.

PROOF. This follows directly from Theorem 1.

REMARK. If A is a maximal abelian normal subgroup of G of order p^a , then A is a maximal abelian subgroup, and $2m \le a(a+1)$ forces $a \ge (-1 + (1+8m)^{1/2})/2$. Moreover, $1 \le b < a < m$ if G is a non-abelian group (cf. [14] pp. 94).

For every prime number p, we define

$$d_i(p) = \min \{r(G) : |G| = p^i\}$$
.

We have:

THEOREM 2. Let G be a group of order p^m . Then

$$r(G) \geqslant d_i(p) + (m-i) \cdot (p-1)$$
 for each $i \leqslant m$.

PROOF. We consider $C_n \simeq H_1 \leqslant Z(G)$. Then

$$r(G) \geqslant r(G/H_1) + |H_1| - 1 = r(G/H_1) + p - 1$$
.

Set $G_1 = G/H_1$ and consider $C_p \simeq H_2/H_1 \leqslant Z(G_1)$. Then $G/H_2 \simeq G_1/(H_2/H_1)$ and $r(G_1) \geqslant r(G/H_2) + |H_2/H_1| - 1 = r(G/H_2) + p - 1$, hence $r(G) \geqslant r(G/H_2) + 2 \cdot (p - 1)$. Repeating this reasoning, we obtain

$$r(G) \geqslant r(G/H_{m-i}) + (m-i) \cdot (p-1)$$

with $|G/H_{m-i}|=p^{m-(m-i)}=p^i$. Thus, $r(G)\!\geqslant\! d_i(p)+(m-i)(p-1)$ for each $i\leqslant m$.

EXAMPLE 1. If $|G| = p^4$, then $r(G) \in \{p^4, 2p^2 - 1, p^3 + p^2 - p\}$, hence $d_4(p) = 2p^2 - 1$. Consequently, if G is a group of order p^m with $m \ge 6$, then $r(G) \ge 2p^2 - 1 + (m-4)(p-1)$. Thus, we have $r(G) = p^2 + (p^2 - 1)$ (n + k(p-1)) with k an integer such that

$$k \geqslant (2p^2-1+(m-4)(p-1)-p^e-n(p^2-1))/((p^2-1)(p-1))$$
.

EXAMPLE 2. If p=2, we have $d_1(2)=2$, $d_2(2)=4$, $d_3(2)=5$, $d_4(2)=7$, $d_5(2)=11$, $d_6(2)=13$, $d_7(2)=14$ (cf. [4] and [12]). Suppose G of order 28. Then P. Hall's bound is $r(G) \ge 1+3\cdot 4=13$. On the other hand, Theorem 2 yields $r(G) \ge d_6(2)+(8-6)\cdot 1=13+2=15$,

hence $r(G) = 13 + 3k \ge 15$, implies $r(G) \ge 16$. Finally the Sherman's bound yields $r(G) > 7 \cdot 2^{8/7} - 7 + 1 > \log_2 2^8 = 8$.

EXAMPLE 3. Let G be a group of order p^8 such that $|G/Z(G)| = p^4$. Then the nilpotency class of G is $t \leq 4$, and the Sherman's bound yields $r(G) \geq 4 \cdot p^{8/4} - 4 + 1 = 4p^2 - 3$. On the other hand, if A is a maximal abelian subgroup of G of order p^a , then Z(G) < A, hence $a \geq 5$ and the Corollary 1 implies

$$r(G)\!\geqslant\! p^{\scriptscriptstyle 2}+p^{\scriptscriptstyle 4}(p+1)(p^{\scriptscriptstyle 3}-1)\,p^{\scriptscriptstyle -3}=p^{\scriptscriptstyle 5}+p^{\scriptscriptstyle 4}-p>4p^{\scriptscriptstyle 2}-3\ .$$

EXAMPLE 4. Let G be a group of order p^m such that $|G/Z(G)| = p^3$. If $g \in G$, then $Z(G) \langle g \rangle \leqslant C_G(g)$, hence $|\operatorname{Cl}_G(g)| \leqslant p^2$. By Vaughan-lee's Theorem (cf. [7] pp. 341) it follows $|G'| \leqslant p^3$; our Corollary yields also the above result. In effect, we have $r(G) = p^{m-2} + (p^2 - 1)$ $p^{-2} \cdot |G/G'| \geqslant p^{m-2} + p^{m-5}(p^2 - 1)$, hence $|G/G'| \geqslant p^{m-3}$.

PROPOSITION. If G is a p-group, then $r(G) > \log_2(|G|^{(p+1)/2})$.

Proof. Set $|G| = p^m = p^{2n+e}$ with e = 0 or 1. By the Remark we have

(3)
$$r(G) > p^e + (p^2 - 1)(m - e) \cdot 2^{-1}$$
.

The desired inequality now follows from (3) if we argue by induction on m to prove that

$$p^{\mathfrak s} + (p^{\mathfrak s} - 1)(m - e) \cdot 2^{-1} \! \geqslant \! 2^{-1} \cdot (p + 1) \, m \cdot \log_2 p \; .$$

Let G be a group of order p^m . We define

$$a_i = \left| \{ Cl_{G}(g) \colon |Cl_{G}(g)| = p^i \} \right| 1 \leqslant i \leqslant m-2$$
,

$$r_{\mathbf{0}} = \sum_{1 \leqslant 2k \leqslant m-2} a_{2k} \ \ ext{and} \ \ r_{\mathbf{1}} = \sum_{1 \leqslant 2k-1 \leqslant m-2} a_{2k-1} \ .$$

Finally we obtain:

Proposition. Let G be a p-group, then G satisfies the following relations:

1)
$$r(G) = |Z(G)| + r_0 + r_1$$
.

- 2) $|G| |Z(G)| = r_0 + r_1 \cdot p + k'(p^2 1)(p 1)$ for some number integer $k' \ge 0$.
- 3) $a_i \equiv 0 \pmod{p-1}$ for every i.
- 4) $r_1 \equiv 0 \pmod{p^2-1}$.

PROOF. We have $|G|=|Z(G)|=\sum\limits_{i=1}^{m-2}a_ip^i$ and $r(G)=|Z(G)|+r_0+r_1$. On he other hand,

$$a_{2k}p^{2k} \equiv a_{2k}(1+k(p^2-1)) \pmod{(p^2-1)(p-1)}$$

and

$$a_{2k-1}p^{2k-1} = a_{2(k-1)+1}p^{2(k-1)+1} \equiv a_{2k-1}(p+(k-1)(p^2-1))$$

module $(p^2-1)(p-1)$. Hence there is a number integer $k'' \geqslant 0$ such that

$$\begin{array}{ll} (4) & |G| = r(G) + \sum\limits_{1 \leqslant k \leqslant (m/2)-1} \left(a_{2k} k(p^2-1) \right. + \\ & + \left. a_{2k-1} (p-1 + (k-1)(p^2-1)) \right) + k''(p^2-1)(p-1) \, . \end{array}$$

Arguing as in the Lemma, we deduce that $a_i \equiv 0 \pmod{p-1}$ for each i (considering $T_i = \{g \in G : |\operatorname{Cl}_G(g)| = p^i\}$), we have $|T_i| \equiv 0 \pmod{p-1}$ and $|T_i| \equiv a_i \pmod{(p-1)}$, and consequently we have $|G| = |Z(G)| + r_0 + r_1 p + k'(p^2 - 1)(p-1)$ for some number integer $k' \geqslant 0$. Finally (4) yields $r_1 \equiv 0 \pmod{p^2 - 1}$.

EXAMPLES.

- 1) If G is a non-abelian group of order p^2 , then $(|Z(G)|, a_1) = (p, p^2 1)$.
- 2) Let G be a non-abelian group of order p^4 . Then $(|Z(G)|, a_1, a_2) = (p^2, p(p^2-1), 0)$ or $(p, p^2-1, p(p-1))$.

REFERENCES

- [1] E. A. Bertram, A density Theorem on the number of conjugacy classes in finite groups, Pacific J. Math., 55 (1974), pp. 329-333.
- [2] P. Erdös P. Turan, On some problems of a statistical group-theory, IV, Acta Math. Acad. Sci. Hung., 19 (1968), pp. 413-435.

- [3] W. H. Gustafson, What is the probability that two group elements commute?, Amer. Math. Monthly, 80 (1973), pp. 1031-1034.
- [4] M. HALL J. Senior, The groups of order 2^n , $n \le 6$, MacMillan Co., New York, 1964.
- [5] P. Hall, The Eulerian functions of a group, Quart. J. Math., 7 (1936), pp. 134-151.
- [6] B. HUPPERT, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
- [7] B. HUPPERT N. BLACKBURN, Finite groups II, Springer-Verlag, Berlin, New York, 1982.
- [8] N. Ito, On finite groups with given conjugate types I, Nagoya Math. J.,6 (1953), pp. 17-28.
- [9] A. Mann, Conjugacy classes in finite groups, Israel J. Math., 31, No. 1, (1978), pp. 78-84.
- [10] J. Poland, Two problems of finite groups with k conjugate classes, J. Austral. Math. Soc., 8 (1968), pp. 49-55.
- [11] J. Rebmann, F-gruppen, Arch. Math., 22 (1971), pp. 225-230.
- [12] E. Rodemich, The groups of order 128, J. Algebra, 67 (1980), pp. 129-142.
- [13] G. SHERMAN, A lower bound for the number of conjugacy classes in a finite nilpotent group, Pacific J. Math., 80, No. 1 (1979), pp. 253-254.
- [14] M. Suzuki, Group Theory I, Springer Verlag, Berlin, New York, 1982.
- [15] A. Vera, Conjugacy classes in finite solvable groups, to appear in Israel J. Math.

Manoscritto pervenuto in redazione il 4 aprile 1984.