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A Remark on a Harnack Inequality
for Degenerate Parabolic Equations.

Firippo CHIARENZA (*) - RAUL SERAPIONI (*)

0. Introduction.

We study in a cylinder @ = 2x10, T[ (2 bounded open set in
R», n>3) the degenerate parabolic equation

n 0 0
(0.1) > PP (aﬁ(w) —g%) == (w(@)u)

i,i=1

with the assumption

(0.2) l-lw(w)lflzgﬁai,(w)§i§j<lw(w)|§|2, V&eR", a.e. in @

i,d=1

where w(x)>0 is an A4, weight in R" (see sec. 1 for the definition).

We prove a Harnack principle for positive solutions of (0.1) on
the usual parabolic cylinders of size (g, 0?) (see sect. 2 for precises
statements).

(*) Indirizzo degli AA.: F'. CHIARENZA: Seminario Matematico, Universita
di Catania, V.le A. Doria 6, 95125 Catania, Italy; R. SERAPIONTI: Dipartimento
di Matematica, University di Trento, 38050 Povo (TN), Italy.
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Our interest for this problem arose while studying the equation

»no0 ou on
(0.3) ”2,21 %(a“(m) %) =7
with hypotheses (0.2).

In fact in [C.8;] we gave examples showing that a Harnack prin-
ciple for positive solutions of (0.3) is in general false, at least on the
standard parabolic cylinders of size (0, 0%).

Moreover in [C.S,] we proved that a more general Harnack prin-
ciple holds true for positive solutions of (0.3) but only under integra-
bility hypotheses on [w(x)]-! stronger that the ones necessary for
degenerate elliptic equations (and depending on the space dimengion #).

This Harnack principle holds on cylinders of size (o) (o)), where
@(0) (a continuous, strictly increasing function) is, in general, different
from p* and varies from point to point depending on the degeneracy
of the weight w(x).

In conclusion the results in [C.S,] and [C.S,] show the different
behaviour of parabolic degenerate operators like (0.3) if compared
both to the corresponding degenerate elliptic operators (as studied
in [F.K.8.]) and to the usual non degenerate parabolic operators.

Given this we considered somewhat interesting to point that equa-
tion (0.1) on the contrary presents a « perfectly normal » behaviour;
in fact the main result of this paper is that a Harnack inequality
holds for solutions of (0.1)

(i) on the standard parabolic cylinders;
(ii) with only the 4, condition on w(x).

Moreover it is interesting to remark that parabolic degenerate
equations with also a non negative coefficient in front of the time
derivative are more natural from the physical point of view than
equations like (0.3). There are in fact two relevant physical quanti-
ties in heat diffusion processes: the conductivity coefficient and the
specific heat; precisely this last one appears in the equation in front
of the time derivative.

Finally we point out that a number of papers have been devoted
to the study of equations like (0.1) but in non divergence form (see
e.g. [F.W.], [W,], [W,]) and that a preliminary study concerning
the local boundedness of the solutions of (0.1) can be found in [Ch.F].

Since the pattern of the proof follows closely Moser’s proof in




]

A remark on a Harnack inequality ete. 181
[M,] we have just sketched the proofs, stressing only some parts in

which the presence of the weights originates some technical diffi-
culties.

1. Notations. Some preliminary results.

We will say that a real, non negative, measurable function defi-
ned in R» is an A, weight, if:

sup (|C|fw(w)dw)(l2|f—dm)_ o<+ 00

where C is any n-dimensional cube and |C| is the Lebesgue measure
of 0. ¢, will be indicated as the A4, constant of w(z).

Let Q be an open bounded set in R"(m>3), T>0 and Q=
= 2x]0, TT[.

L7(92, w(x)) (1<p <+ oo) is the Banach space of the (classes of)
measurable functions u(x) s.t. the norm

[l s0 = ( [Ju(@)Pu@)ds)™ < + oo
ko]

HY(Q, w(x)) [resp. H(Q, w(x))] is the completion of C(Q) [resp.
CP(2)] under the norm

lwll1,w; 0 = (f(uz(w) + |Du|2)w(m)dm)*
Q
[resp. %]1,0; 0 = (j'|Du|2wdm)’}]; here Du is the gradient of w.
Q

— {u e I*(0, T; Hy (2, w(@))): u e L0, T; L*(2, w(@)))} -

Let us now state some lemmas we will use in the following. Here
we suppose w(x) to be an A4, weight with 4, constant c,.
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LeMMA 1.1 (see [F.K.8.], Th. 1.2). There are two positive constant e,
and & such that

Bz (R)
<6 R(W f]Du]Zw w)dx) M,

Bz (R)

for all w e Hy(B, (R), w(®)) and ke[l, x] (x = n/(n —1) - 8); here ¢,
depends only on ‘n and .

LEMMA 1.2. Let ue L*(a, b; L* (B, (R), w (x)))an(a,b Hy(B, (R),
a:))) Then

b

1 1 _ 1/2%
0 (e [l )<

Bz (R)

X 1 . Fi-1x
<(e,R) [ es(sa sbl)lp (w————( B. ) fu (2, t)w(x) dw) ] .

Bzy(R)

b

1 z
.(b—-aJ‘ (B, (R) f!Du| w(a;)dxdt)

Bz,(R)

where § = (25 —1)/x > 1 (y is the number of Lemma 1.1), the constant ¢,
depend only on n and c,.

The proof is a straightforward consequence of Lemma 1.1.

LEMMA 1.3. Let @(x) be a continuous function compactly supported
in the ball B, (R) of R". Assume that ¢ has convex level sets, that ¢
8 not zdentwally zero amd satisfies 0 <@ <1. Then for any uc H(B, (R);

(*) Here and in the following

B, (R) = {x e R": |z — x,| < B}, w(B, (R)) = |w(x)dw .

Bz,
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w(z))
i
(1.4) ( B, (R)) fu(w AB,O(R))2<p(:v)w(w)dx) <

|B. (B)| ( J’ )
T h LR Du |2 w(z)dx) ;
B, (B
here
1
Ap,. R)= —F5 o |u@)e(r)w(r)dx
B.(R) (p’llJ(Ba;.(R)) f ( )‘P( ) ( )
Bz, (R)
and ¢, depends only on n and c, (?).
Proor. The following inequality holds:
- —_ B, (R Du(z e
0(o) — Aaoyo| Vol <o LoD [ DUy g,

P(B ) ) o=l

z
(]

Here,
~ 1
AB%(R)Z (p—-—( B (®) fu(w)tp(w)dw.
T Bz (R)

The proof can be found in [C.S,] ((2.7) of Lemma 2.4). Further-
more

(w—(B—:?(f)—) f ( f |93:Du(:|w)»ll‘/ )xw(x)dw)m"

Bz (R) Bz, (R)
]
Bz, (R)

(see [F.K.8.] the proof of Theorem 1.2).
From these it follows

( B,(B) f[u fIBx.(R)IW\/(;T(—w—)Z"w(w)dw)l/zx<
B2 (R)
BB

<ec —(B—(T) (W f[Du] 2 (x) w(a;)dx) )

z,
l

(2) For the meaning of @(B(R)) and gw(B(R)) see (1).
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so that:

1 - 3
(W f('u/(w)—Aon(R))Z(p(a’))’w(x)da;) <
Bay(B)
|Ba(B)]

! 3
2\ V)| rl— 1 Dl
@(B. (R)) (w(Bw.(R))B L[) | ‘P(x)w(x)dx)

Finally one can replace AB (B) with Ap, (r) S in the conclusion
of Th. 1.5 of [F.K.8.].

REMARK 1.1. Another property of the 4, weights we will use fre-
quently is the « doubling property » ([Co.F.]). That is

3d = d(e,m)>0: Va,eR", Vr>0 w(B,(2R))<dw(B,(R)) .

2. The Harnack inequality.

Let us consider in @ (see n. 1), the degenerate parabolic equation:

(2.1) i 0 (z a35(2) x) aat(w(x)u)—()

i= lawj

We assume that the coefficients a;;(x) are measurable functions
a.e. defined in @ such that

0,(2) = a;(x)  ,j=1,...,1n

(22) y321>0: —w )€|2< Za“ x) &:&;<Aw(2)|E|?,
pet a.e. in Q, Ve R»

where w(«x) is an 4, weight in R» with 4, constant ¢,.

DEFINITION 2.1. We say that u(x,t) eL2(0, T; HY(Q, w(x))) is @
solution of (2.1) in Q if:

(2.3) f{z ”()a a‘P (w)u%‘f}dwdt:ﬂ
b ji=1
VoeW, @0)=g¢T)=0.
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Before stating our main result we introduce some further sym-
bols.
Let (zy,1%) €@, 0>0. We put:

D, (o) = {(, 1) €Q: [t —1o| < 0% |7 —mo| < 20}
D} (o) ={(® 1) €Q: to+ F o <t<to+ % Jo— | < § 0}
Dy 0 ={(@,1)eQ: tyi—}*<t<ti—1o%|r—a|<}o}
R, 1,(0) = B, (0) XJto— 0%t + 0°[;
R 1 (0) = By, (0) X 1oy to + 0°[5
B, 1,(0) = Bg () X Tto— €% bl
Finally:

R(p) = Ry (o), Rt(0) = Ryol0), E(0)= Ejl0)-

THEOREM 2.1 (Harnack inequality). Let u(x,t) be a positive solu-
tion in D, ;(0) of (2.1). Assume (2.2) holds. Then it exists y =
= 9(Coy A, m) > 0 such that

(2.4) sup u(xz,t) <y inf wu(z,t) Vo: Dy .,(0)CQ .

— +
D, 1,(@) D100

REMARK 2.1. Theorem 2.1, and the following lemmas, will be proved
only for a particular choise of D, D%, D~ (o = 1).

To get (2.4) in its full generality it will be enough to perform a
change of coordinates of the kind:

T:y=p00+x, 7T=0%+1.

Such a transformation takes D(1), D*(1), D—(1) into D(g), D*(e),
D—(p) while the equationn (2.1) is changed in a similar equation for
the unknown function » = woT, and w(x) is changed in woT. Ob-
viously woT € A,, with the same constant ¢,. This, recalling that
the constant y in the statement of Theorem 2.1 (like the ones in the
following Lemmas 2.1, 2.2, 2.3) depends only on ¢, » and A, implies
the validity of Theorem 2.1 in the general situation.

Let us remark in particular that the « doubling property » (see
Remark 1.1) holds with the same constant d for all the weights woT.
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LeMmA 2.1, Let <po<r<1 and u be a positive solution of (2.1).
Then it exists a constant ky, = ky(cy, A, ») > 0 such that

1 /o
(2.5) esi(sél)lp w(z, 1) <k ((r— Q)"“w(Bo(l))R(,!;(u(x’ t))rw() dxdt)
Vp €10, 24[, and:
i 1 » 1/p
(2.5) esRs_(sgl)lp wu(z, ) <k, ((r— @)"Hw(Bo(l))R_.!:fu(w’ t))pw(w) dwdt)
Vpel—24,0[

LEMMA 2.2. Let w be a positive solution of (2.1) in D,4(1). Then
there are constants k, = ky(co, n) >0 and a = a(cy, n, ) >0 such that

(2.6)  w{(x,?) e R+(1): log u(w,?) < —s -+ a} +
+ w{(x,t) € R~(1): log u(z,t) > s - a} <k, —g w(B,(1)) .

LEMMA 2.3. Let u, ks and 0 €[}, 1[ be some positive constants. Let
v be a positive function defined in a neighbourhood of Q(1) (3) such that

1 1/p
(2.7) eSg(ﬁ}lp V<ks [Wmoiva(w) dzr dt]

for all o, r and p such that F<f<p<r<l, 0 <p < 2A.
Moreover assume that

(2.8) w{(x,?) €Q(1): logv > s}<k, % w(Q(1)), Vs>0.

Then it exists a constant y = y(0, u, ks, A) such that

supov <y .
Q)

Proof of LEMMA 2.1. We will get the conclusion for p =4, r =1
only.

(®) Here @(p) can be indifferently R(p), RB*(0), B (g).
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Using standard techniques (see e.g. [L.S.U.], p. 189 having in mind
that one can assume % to be locally bounded for the results in [Ch.F.])
we get the inequality:

(2.9) sup fvzwdx —|—le’0|2@0($) dxdt<rﬁf fv“w(m)dwdt .
ety ) %5

Here: 1<p < r<1, v = u?? pe]0, + co[\{1}, k, depends on 1and p.

An application of LEMMA 1.2 to (2.9) yields:

1 74 1/2% 1 9 d
(m fv w(w)dwdt) 1 x<k5(rzw(Bo(r)) fv w(w)dwdt)
R(e) R(r)

where k; depends on A, p, n, ¢, r and g.

The conclusion can be achieved as in [M,], p. 735. Let us only
point out that it is possible to control the ratio w(By(1))/w(By(2))
in terms of the constant d in the doubling property, hence in terms
of ¢, only.

Proof of LEMMA 2.2.

Let:

t+h

fu(a:, s)ds (h > 0) .

t

Sp= u, =

S

Then, with standard calculations, it is possible to derive the follow-
ing inequality valid for all positive solutions in D(1)

f' j
ty Bo(2

Here y(#) is a Lipschitz continuous function compactly supported
in By(2) and: —1<t, <it,<1.
We have:

S u\ o[y (@) ()] | 38w 1 . B
{i”z:lsh (aﬁ(w) %) %, % sa? (w)w(x)} dodt=0.
)

%

iy

LG 1
[/ [{$,ummzrra gl
t; Bo(2)
5 1 oS,u 1
—_ ) 2 PR~ e —
Mzﬂa,,,(w) Suthz,p (o) S, + % S v (w)w(w)}dwdt 0.
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Let: v = —log(S,u). Then:

ts

f f{ z @;5(2) (Ve x‘Qw"me"l"
DR

+ Z @ 5(2) (V) e, (Viny)w, P2 + 1/)2W}dxdt—0

B,i=1

From this it follows:

ta
1 n t=1,y
3] [ Searv@easis [ fomproad] "<
b XN B,(2) -
ty

<¢ f J“‘P Zau V), (D), A dE - = f f 2 @is(®) e, Yo, dwdt .

i,i=1 B,i=1
ty Bo(2) ty Bo(2)

After a convenient choice of ¢, and after taking y with convex
level sets and such that 0 <y <1, p(1) =1 in By(1) the last inequality
together with LEmMmA 1.3 yields

[ ot v vi@)w) dx]::i—|- Fo [ (00n(@, 1) — Vonlt))2p2(2) 0() dr it <

B,(2) D(1)

<k, ( fw(m) dw) (ta—1,) .

By(2)
Here k; and k, depend on A (% on ¢, too), and
N {27;(,,,(90, 1) p2(z) w(x) do
V(h)(t) = J‘w 97) ax
B,(2)

The last estimate implies

Va(ts) — Vi(t) ks
ta—1, dfw(m)da: t,— 1t

f f v(h) (2,?) V(h)(t))ZW(-’E) dedi<k,d

ta By(1)
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from which, going to the limit for ¢, approaching ¢,, it is possible to
get a relation similar to (4.7) in [M,].

From this, one gets (2.6) (with v, in the place of log ) following
the same argument of [M,].

Finally it is possible to get the conclusion letting h go to zero.

Proof of LEMMA 2.3. It is possible to suppose A =1. We let:

@(o) =suplogv for p€[6,1]
Q(e)

We now split Q(r) (§<p < r<1) in two subsets:

Q.= {(%,t) €Q(r): logv> % g(r)}
and

Q.= {(x,t) €Q(r): logv<} (r)}.
So that

IUPW(x) dx dt =f—|-f<W(Q(1 ) [eXP [P @(r)/2] +- exp [pg(r)] ;(7;;]
Q(r) Q Q

Now a convenient choice of p gives:

fv»w(m) dxdt <2 exp [%ip]w(Q(l))
aln

so that:
1 2 ex 2

(r—e)»

From now on the proof is the same as the one of LEMMA 3 in [M,].
Proof of THEOREM 2.1. The theorem follows immediately from
the LEMMAS 2.1, 2.2, 2.3 (see [M,]).
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