
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

ELENA COMPARINI

DOMINGO A. TARZIA
A Stefan problem for the heat equation subject
to an integral condition
Rendiconti del Seminario Matematico della Università di Padova,
tome 73 (1985), p. 119-136
<http://www.numdam.org/item?id=RSMUP_1985__73__119_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1985, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1985__73__119_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


A Stefan Problem for the Heat Equation
Subject to an Integral Condition (*).

ELENA COMPARINI - DOMINGO A. TARZIA (**)

SUM MARY - We prove existence, uniqueness and continuous dependence and
we study the behaviour of the free boundary of the solution of a Stefan

ect)

problem for the heat equation when the integral condition E(t) = f 1/,(x, t) dx
is assigned. 0

1. Introduction.

In [6] the heat conduction in a slab of variable thickness 0 C x 
 s(t) is studied in the case in which no boundary conditions are
assigned on the face x = 0, but the integral of the temperature

s(t)

E(t) =fu(x, t) dx is prescribed as a function of time.
o

Obviously E(t) represents the thermal energy at time t if we assume
that the heat capacity of the material is constant and equal to 1.

In [3] the same problem is considered assuming that the slab is
made of a material undergoing a change of phase at a fixed tempera-
ture (say u = 0). In this case x = s(t) represents the interphase and
it is assumed that u - 0 for x &#x3E; s(t).

(*) Work performed under the auspices of the Italian CNR-GNFM.
(**) Indirizzo degli A.A.: E. COMPARINI: Istituto Matematico  Ulisse

Dini », Università di Firenze, V.le Morgagni 67/A, 50134 Firenze, Italy;
D. A. TARZIA : PROMAR (CONICET-UNR), Instituto de Matematica « Beppo
Levi », Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Ro-
sario, Argentina.
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In this problem the total thermal energy at time t consists of two
terms: one is the « latent energy », Ls(t) (L is the latent heat), while
the  diffusing energy» is still given by the integral E(t).

In [3] the well posedness of the problem is proved when E ~ 0,
~ ~ 0, the initial temperature 99(x) satisfies 0 c g~(x) c N(b - x) for all

(N constant &#x3E; 0), and c 0.
Here we consider the case of general data (without sign specifica-

tion) and we prove that a T &#x3E; 0 exists such that the problem is well
posed in the time interval (0, T).

The possible non existence of a global solution (i.e. for arbitrary
T ) is outlined in sec. 5, where we show that if E ~ 0 É  0, u(x, 0)  0,
then a finite time To exists such that lim s(t) _ - 00.

t--~ T 0

2. Forxnulation and results.

Let us consider the following problem: find a triple (T, s, u) such
that

i) T&#x3E;0;

ii) s(t) is a positive function, continuously differentiable in

[0, z’) ~ 1

iii) u(x, t) E are continuous in DT, where {(x,
t) : 0  x  s(t), 0  t  T} and DT is its closure;

iv) the following conditions are satisfied:
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Here we assume

First, we state our existence and uniqueness theorem.

THEOREM 1. Under assumptions (A), (B) there exists a solution

(I, s, u) of problem (i)-(iv), which is unique in (0, T).
Moreover we have

THEOREM 2. Let (T, s, u) be the solution of problem (i)-(iv), then
s E ~[0, T) r1 C~(0, T).

We need some more regularity on the data to state the continuous
dependence theorem.

Let us consider two solutions (Tl’ s,, u1), (T2, S2, u2) of problem
(i)-(iv) corresponding to data El and E2 respectively.

If we replace assumptions (A), y (B) with

then we prove

THEOREM 3. If assumption (A)’, (B)’ are satisfied then two con-
stants k, l’ can be found a priori such that :

The notation of spaces and norms used here and in the following
are the same as in [12]. For sake of simplicity we often use the
symbol N &#x3E; 0 integer instead of instead of

to denote the Hôlder norme of order a; and f instead
of Il .BlHN+1¥ to denote the Hôlder norm of the N-th derivative.
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3. Proof of Theorem 1.

I. An equivalent formulation.

We begin with stating the following

LEMMA 3.1. Let (T, SY u) be a solution of (2.1)-(2.6) then

PROOF. From Green’s identity

where L is the heat operator and L* its adjoint, with = t) and
v =1, we obtain 

~

from which (3.1) follows.

LEMMA 3.2. Let v(t) = t), where u, s solves (2.1)-(2.6), then

with
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PROOF. (3.3)-(3.4) are proved following the methods of [4]. Here

G(x, t; e, i) and N(x, t; e, ï) are Green’s and Neuman’s functions for
the heat operator.

Thus we have reduced (2.1)-(2.6) to a system of integral equa-
tions such that if u(x, t), s(t) satisfy (2.1)-(2.6) then v(t), s(t) satisfy
(3.3)-(3.4).

Conversely, if v(t) is a continuous solution of (3.3) and if s(t), given
~by (3.4), is positive, we can define u(x, t) replacing Ue(S(i), c) with v(-c)
and z) -~- in the formal rappresentation for the
solution of the problem. Now it is easy to show (see [5]) that u(x, t)
so defined satisfies (2.1)-(2.6).

Moreover, it is known that the initial boundary problem (2.1)-(2.5),
for given Lipschitz continuous and positive s(t), admits a unique
solution [6].

It is so proved that problem (2.1)-(2.6) is equivalent to the problem
of finding a continuous solution of the integral equations (3.3), (3.4).

II. Existence and uniqueness.

Now we prove that the system (3.3), (3.4) has a unique solution
for where T is sufficiently small.

We consider

On the set XT,M we define a transformation

as follows
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where

We shall prove that there exists a fixed point of b.
Chosen a T such that

we have that implies immediately

and, from (3.5),

having posed T c 1, is a constant depending on 
and c is a constant depending on b only.

Thus chosen a set XT,M with e,g. M = 2k and T such that

then b maps Xp,M into itself.
Now we prove that b is a contraction.
For any vl, V2 E Xp,M let us consider the difference 
Denote

From (3.6) we have,
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From (3.5):

To estimate the first integral on the right-hand side of (3.12),
say h, we consider that:

where I’ denotes the sum of the first two terms on the right-hand
side of (3.13) but with and S2(i) replaced 
respectively.

We can write
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From (3.14)

Here and in the following c will denote a constant depending on b
and possibly on M. The estimate for is obtained by means of
the mean value theorem

Finally

The second integral in (3.12), call it 12, is easily estimated as follows

with

that is
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Estimates like these hold for the third and the fourth terms on
the right-hand side of (3.12), y from which we obtain

For the last integral, say we have (see [4])

From (3.17), (3.19), (3.20) and (3.21) we obtain

Thus, there exists a time T c T such that then _(3.22 )
implies that 13 is a contractive mapping in the norm of C[0, T].

Therefore we proved that there exists a unique fixed point v(t)
of 13 in and then v(t) is the unique solution of the integral
equation (3.3), with s(t) defined by (3.4).

REMARK 3.1. Note that in the case in which 8(t) is monotone non-
decreasing (this happens for example for ~p(x) ~ 0, E(t) &#x3E; 0, 0  É(t)  A
(see [3])) we can apply the proof of § 3 step by step, to obtain a
solution u(x, t), s(t) (or v(t)) for all times [4].

Now we prove

THEOREM 2. If (T, s, u) solves (i)-(iv) then s e C,[O, T) r1 T).

PROOF. Recalling [7] we can assert that s E T) for any e &#x3E; 0.

Moreover, performing the limit for t - 0 in (3.3), we can easily prove
that

that is is continuous at t = 0.

REMARK 3.2. Let us define
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By strightforward computation one verifies that if (T, s, u) solves
(2.1)-(2.6) then (T, s, ~,u) solves

Thus we proved existence and uniqueness of the solution of prob-
lem (3.25)-(3.29), which is a problem with Cauchy data assigned on
x = s(t), which differs from those studied in [8] where the right-hand
member of the parabolic equation was not allowed to depend on s.

4. Proof of Theorexn 3.

LEMMA 4.1. Assume (A)’, (B)’ and let (T, s, u) be the solution of
problem (i)-(iv), then

PROOF. Replacing assumptions (A), (B) with (A)’, (B)’, we can
repeat the arguments of sec. 3 to prove a contraction on the set

where v(t) is defined by (3.3), (3.4).
This implies s E T].
The estimates of Ilvlll and are obtained following the

methods of [9].

LEMMA 4.2. Under the hypotesis of Lemma 4.1 we have



129

PROOF. In [10] it is proved that the solution z(x, t) of the first

boundary problem in DT for the heat equation has a bounded second
order derivative zxx, when z(s(t), t) = 0, z(0, t) is Lipschitz continuous,

satisfies assumptions like (A)’.
It can be shown that in our case t) E and that it is possible

to modify the estimates of [10] to prove inequality (4.2). Details are
omitted for sake of brevity.

Let (Tl, si, (T2, S2’ ~c2) be two solutions of problem (i)-(iv), with
assumptions (A)’, (B)’, corresponding to the data qJ2,
E2, b respectively. We perform the transformation (for i = 1, 2)

leading to

Obviously problem (4.4)-(4.8) is equivalent to (2.1)-(2.6).
Let us introduce the following notation

~1~(y, t) defined by (4.9) solves:
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where

We are going to study the difference

for which we need an estimate of W y(1, t).
We split ~ into the sum

where W1 solves problem:

with conditions (4.12), and W2 solves:

with zero initial and boundary conditions.
In (4.16)

As to W,, y we split it again into the sum z, -f - Z2, y where z,
is the solution in the half plane x &#x3E; 0 of

with
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while Z2 solves the same equation (4.18) with

Introducing the fundamental solution for the operator -

- say rA(y, t; E, 1:), by means of the parametrix method
of E. E. Levi, we have for zi :

From (4.20) we have immediately the estimate

An estimate like (4.21) holds for zlt(1, t).
Now we consider z2 as the restriction to [0, 1] X (0, T) of the solu-

tion of

with

We can estimate z2~(1, t) knowing Z2(YI t) on ôDp, by means of
Lemma 3.1 p. 535 of [11].

Making use of the estimate on zii, we obtain

From (4.21) and (4.25) we get the estimate
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Moreover, applying the maximum principle in DT, we get also the
estimate

Finally, let us consider W2 as the restriction in [0, 1] X (0, T) of
the solution of

with

Using the methods of [12], sec. 4 we obtain the estimate

which gives, with (4.26),

From (4.14)

which proves (2.7).

5. Behaviour of the free boundary.

It has been proved in [3] that if one assumes positive data 99(x),
E(t) with g~’(x) c 0 and 0  É(t)  A, then s(t) is monotone non decreasing
in t and is bounded so that a solution can exist with arbitrarily
large T.
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In this section we want to study the problem of the continua-
tion of the solution and to analyze the behaviour of the free boundary
when the sign restriction imposed in [3] are no longer valid.

We will assume besides of (A)’, (B)’ that

We first prove

LEMMA 5.1. Let (T, s, u) be the solution of (i)-(iv) with assumption
(A)’, (B)’. Let the data satisfy (5.1), (5.2), then

PROOF. From (5.1) it is that is since à(t) is continuous,

Consider the solution corresponding to

for which àn(0)  0.

Assume that there exists a first time !,, such that 8n(tn) =- 0, and
then

From the maximum principle in Dt., it is t)  0, that is,
as un(Sn(tn), tn) - 0, (Sn(tn), tn) is an isolated Irlaximum for and

the parabolic Hopf’s Lemma [13] ensures &#x3E; 0, contradict-
ing (5.6).

Then

and perf orming the limit for n - 00 we obtain (5.3).
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REMARK 5.1. If one excludes the trivial case in 0,
,corresponding to data E - q - 0, then immediately

TmJoREM 4. Let us consider two sets of data (El, 991, (E2, CP2’ 
for problem (i)-(iv), and assume that both of them satisfy assump-
tions (A)’, (B)’ and (5.1), (5.2).

Let UI)’ (T2, the correspondent solutions and

assunle : ».

Then

PROOF. Lemma 3.1 ensures

Thus we can consider (T,, s,, Ut), (T2, S2, u2) as solutions of two

boundary problems with assigned flux, and then (see [14], Lemma 2.10)
(5.11) holds.

We conclude this section with the following

THEOREM 5. Let the hypothesis of Lemma 5.1 hold.
Then there exists ~~ finite time To such that:



135

PROOF. The existence of a solution of problem (i)-(iv) with ar-

bitrarily large T implies (see [14], Cor. 2.12) that

for all t &#x3E; 0, which is contradictory with (5.2).
Now if we suppose that ar time 1 exists such that lim s(t) = 0 then

i-î

Indeed if (5.15) is not true then

exist and are bounded, and then u is continuous in (s(l), 1) (and equal
to 0).

That implies

which cartnot hold because of (5.2).
Of course we excluded the trivial case E = 0.
The theorem is proved recalling [15], Theorem 8.
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