RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

NORBERT BRUNNER

Positive functionals and the axiom of choice

Rendiconti del Seminario Matematico della Università di Padova, tome 72 (1984), p. 9-12

http://www.numdam.org/item?id=RSMUP_1984__72__9_0

© Rendiconti del Seminario Matematico della Università di Padova, 1984, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Positive Functionals and the Axiom of Choice.

NORBERT BRUNNER (*)

In this note we prove, that a proposition which is useful in integration theory, is equivalent to a weak axiom of choice.

THEOREM. The axiom MC^{ω} of countable multiple choice is equivalent to the assertion, that every positive linear functional on a B-lattice is continuous.

Our set theory is ZF^0 , the Zermelo-Fraenkel system minus the axioms of choice and foundation. MC^{ω} says, that a countable sequence of nonempty sets $(S_n)_{n\in\omega}$ contains a sequence of nonempty finite subsets $F_n\subseteq S_n$. In ZF^0 MC^{ω} is not provable, and MC^{ω} does not imply the countable axiom of choice AC^{ω} . It is unknown, whether in ZF (= ZF^0 + foundation) $MC^{\omega} \Leftrightarrow AC^{\omega}$.

A *B*-lattice (*AB*-lattice in [4]) is a vector lattice together with a Frechet-complete (Cauchy sequences are convergent, c.f. [3] for a discussion of diverse completeness properties) Riesz-norm $\|\cdot\|$ (c.f. [7], p. 61 and p. 101), i.e. (i) $-y \le x \le y$ implies $\|x\| \le \|y\|$ and (ii) if $\|x\| < 1$ there is a $y \ge 0$ such that $-y \le x \le y$ and $\|y\| < 1$. A positive linear functional for X is a linear mapping $f: X \to \mathbb{R}$ such that $fx \ge 0$ whenever $x \ge 0$.

PROOF OF THE THEOREM. « \Rightarrow »: Assume MC^{ω} . Let $f: X \to \mathbb{R}$ be positive and linear. If f is not continuous, the standard argument proves, that in $\mathbb{Z}F^0$ f is not bounded. We observe, that $S_n = \{x \in X: x \in X$

(*) Indirizzo dell'A.: N. Brunner: Purdue University, Dept. Math., West Lafayette, Indiana 47907, USA.

 $\|x\| \leq 1, fx \geq n, x \geq 0\} \text{ is nonempty. Since } f \text{ is not bounded, there is a } x \in X, \ \|x\| \leq 1, \text{ such that } |fx| \geq 2n. \text{ According to the Riesz decomposition theorem, } x = x^+ - x^-, \ |x| = x^+ + x^-, \text{ where } x^+ = \sup\{x, 0\}, x^- = (-x)^+, \ |x| = \sup\{x, -x\}. \text{ Since } \|\cdot\| \text{ is a Riesz norm, lemma 9.16 of } [7] \text{ applies, which shows: } \|x^+\| \leq 1, \ \|x^-\| \leq 1. \text{ Since } f \text{ is positive } fx^+ \geq 0. \text{ If } fx^+ < n \text{ and } fx^- < n, \text{ then } |fx| = |fx^+ - fx^-| < 2n, \text{ a contradiction. So } x^+ \in S_n \text{ or } x^- \in S_n. \ MC^\infty \text{ provides us with a sequence } F_n \subseteq S_n \text{ of finite sets } F_n \neq \emptyset; x_n \text{ is the arithmetic mean of } F_n \text{: } x_n \geq 0, \|x_n\| \leq 1 \text{ and } fx_n \geq n. \text{ We set } z = \sum_{n=1}^{\infty} (1/n^2)x_n. \text{ As this series converges absolutely and } X \text{ is complete, the limit } z \text{ exists; } z = \lim y_n, y_n = \sum_{i=1}^n (1/i^2)x_i. \text{ Since } y_n \leq z, \sum_{i=1}^n 1/i \leq fy_n \leq fz. \text{ This is a contradiction: The harmonic series is unbounded.}$

The above proof is an adaption of [6], p. 273, where this result was proved for a class of bornological ordered vector spaces. Examples of B-lattices are the spaces L_p , $p \ge 1$, and C(X), X compact T_2 , with the usual order. If the cone of a B-lattice has a base, there is —in $ZF^0 + MC^{\omega}$ —a positive-, continuous-linear functional f, such that $B=C\cap f^{-1}(1)$ (B the base, $C=\{x\in X\colon x\geq 0\}$ the cone). In [6], p. 272, it was shown without the axiom of choice, that a positive linear functional on a topological ordered vector space is continuous, if the cone has interior points. Since this result applies to C(X), it was of interest, whether its extension to B-lattices depends on the axiom of choice. This is shown next. A modification of the argument in [5]. p 24, combined with « > proves, that the following assertion is equivalent to MC^{ω} . In a B-lattice a convex, balanced set which absorbs all order bounded sets absorbs all bounded sets, too. property also implies the continuity of positive linear functionals (in ZF_0).

« \Leftarrow »: We first observe, that MC^{ω} is equivalent to the following weaker principle PMC^{ω} : If $(S_n)_{n\in\omega}$ is a sequence of nonempty sets, there exists a subsequence $(S_{n(k)})_{k\in\omega}$ and a sequence $(E_k)_{k\in\omega}$ of nonempty finite $E_k \subseteq S_{n(k)}$. For if PMC^{ω} is applied to the sequence $(T_n)_{n\in\omega}$, T_n the set of all choice functions on $(S_i)_{i\in n}$, we define a finite $\emptyset \neq F_i \subseteq S_i$ through $F_i = \{f(i) \colon f \in E_{k(i)}\}$, where $E_k \subseteq T_{n(k)}$ is finite and $k(i) = \min \{j \colon i < n(j)\}$.

We next assume, that MC^{ω} —and hence PMC^{ω} —is false and let $(S_n)_{n\in\omega}$ be a counterexample of PMC^{ω} , consisting of infinite and pairwise disjoint sets. We define a B-lattice X with a positive, un-

bounded functional φ . $S = \bigcup_{n \in \omega} S_n$ and $X = \{f \in S^\omega \colon \|f\| < \infty\}$, where $\|f\|^2 = \sum_{i=1}^\infty \left(\sum_{s \in S_i} |f(s)|\right)^2$. X is the l_2 -sum of the spaces $l_1(S_i)$. As a normed space, X is complete, as can be proved in ZF^0 (c.f. [4]). The ordering $f \leq g$, iff $f(s) \leq g(s)$ for all $s \in S$, defines a vector lattice on X and $\|\cdot\|$ is a Riesz-norm with respect to this structure. We want define φ as $\varphi(f) = \sum_{s \in S} f(s)$.

This definition is correct, i.e.: $\sum f(s)$ is convergent. For set $F_n = \{s \in \mathcal{S} : |f(s)| \geq 1/n\}$. Since $||f|| < \infty$, F_n is finite. If $F = \bigcup_{n \in \omega} F_n$, $M = \{n \in \omega : \mathcal{S}_n \cap F \neq \emptyset\} = \{n \in \omega : \exists x \in \mathcal{S}_n : f(x) \neq \emptyset\}$ is finite, for otherwise we can define a partial multiple choice function $(E_n)_{n \in \mathcal{M}} : E_n = S_n \cap F_{n(k)}$, $n(k) = \min\{m : S_n \cap F_m \neq \emptyset\}$. Hence $\varphi(f) = \sum_{n \in \mathcal{M}} \sum_{s \in S_n} f(s)$ is absolutely convergent by the definition of X and hence the series which defines $\varphi(f)$ is (unconditionally) convergent, by completeness.

That φ is linear and positive is obvious. But φ is not bounded. For otherwise we choose N so that $\sum\limits_{n=1}^{N}1/n>\pi/\sqrt{6}\cdot\|\varphi\|$. Choose $s_i\in S_i$ for $i\in N$ and set

$$f(s_i) = \frac{1}{i+1}$$
, $i \in N$, $f(s) = 0$ otherwise.

Since

$$||f|| = \left(\sum_{n=1}^{N} \frac{1}{n^2}\right)^{\frac{1}{2}} \le \frac{\pi}{\sqrt{6}}$$

we obtain

$$\frac{\pi}{\sqrt{6}} \cdot \|\varphi\| < \sum_{n=1}^{N} \frac{1}{n} = |\varphi(f)| \le \|\varphi\| \cdot \|f\| \le \|\varphi\| \cdot \frac{\pi}{\sqrt{6}},$$

a contradiction. This proves the theorem.

Axioms similar to PMC^{ω} were studied in [2]. Another application of l_p -sums of l_p -spaces to the axiom of choice appeared in [1].

REFERENCES

[1] J. L. Bell - D. H. Fremlin, A geometric form of the axiom of choice, Fundamenta Mathematicae, 77 (1972), pp. 167-170.

- [2] N. Brunner, Sequential compactness and the axiom of choice, Notre Dame Journal of Formal Logic, 24 (1983, 89-92).
- [3] N. Brunner, Kategoriesätze und multiple Auswahl, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 29 (1983), 435-443.
- [4] M. M. DAY: Normed Linear Spaces, Ergebnisse der Mathematik 21, Springer-Verlag, Berlin, 1973.
- [5] I. Namioka, Partially ordered linear topological vector spaces, Memoirs of the American Mathematical Society, No. 24, Providence, 1957.
- [6] H. H. Schaefer, Halbgeordnete lokalkonvexe Vektorräume, Mathematische Annalen, 138 (1959), pp. 259-286.
- [7] Y.-C. Wong K.-F. Ng, Partially ordered topological vector spaces, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1973.

Manoscritto pervenuto in redazione il 26 Ottobre 1982.