RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

CLAUDIA MENINI

Linearly compact rings and selfcogenerators

Rendiconti del Seminario Matematico della Università di Padova, tome 72 (1984), p. 99-116

http://www.numdam.org/item?id=RSMUP_1984__72__99_0

© Rendiconti del Seminario Matematico della Università di Padova, 1984, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Linearly Compact Rings and Selfcogenerators.

CLAUDIA MENINI (*)

0. Introduction.

0.1. Throughout this paper all rings are associative with identity $1 \neq 0$ and all modules are unitary.

In our previous work [5] we outlined the connection between linearly compact rings and quasi-injective modules. (Definitions and main results we got in [5] are listed below).

In this paper we give some applications of these results.

First of all, in section 1 we get a further characterization of linearly compact rings. More precisely we prove that a ring R admits a left linearly compact ring topology iff $R = \operatorname{End}(K_A)$ where A is a ring and K_A is a right A-module which is strongly quasi-injective, with essential socle and whose cyclic right A-submodules are linearly compact in the discrete topology. Moreover, in this case, R is linearly compact in the topology τ_* having as a basis of neighbourhoods of 0 the left ideals $\operatorname{Ann}_R(L)$ where L ranges among all linearly compact discrete submodules of K_A . This topology τ_* is the finest topology in the equivalence class of the K-tolology of R. This generalizes a previous result by F.L. Sandomierski ([9]), who proved it in the discrete case and gives a method to build linearly compact rings.

(*) Indirizzo dell'A.: Istituto di Matematica dell'Università di Ferrara, Via Machiavelli 35 - 44100 Ferrara (Italy).

Lavoro eseguito nell'ambito dell'attività dei gruppi di ricerca matematica del C.N.R.

The existence of a finest equivalent topology for a linearly compact ring has been recently proved by P.N. Anh (see [1], Proposition 3.1.) in a rather different way and without the representation method.

In section 2 we deal with strictly linearly compact rings and, more in general, with topologically left artinian rings (a linearly topologized ring is called topologically left artinian—see [2] and [7]—if it has a basis of neighbourhoods of 0 consisting of left ideals with artinian residue). These rings have been extensively studied by Ballet in [2] and by A. Orsatti and the author in [7].

Here we point out the relation between such rings and Σ -quasi-injective modules (a module is Σ -quasi-injective iff any direct sum of copies of itself is quasi-injective). We prove that a left selfcogenerator $_RK$ over a ring R has a strictly linearly compact biendomorphism ring (which coincides with the Hausdorff completion \hat{R} of R in its K-topology) iff K, regarded as a right module over its endomorphism ring, is Σ -quasi-injective.

Moreover we give an analogous version of characterization theorem above for strictly linearly compact rings. We prove that a ring R admits a left strictly linearly compact ring topology iff $R = \operatorname{End}(K_A)$ where A is a ring and K_A is a right A-module which is Σ -strongly quasi-injective, with essential socle and whose cyclic right A-submodules are linearly compact in the discrete topology. Theorem 2.9 describes those Σ -strongly quasi-injective left modules over a ring R which are also Σ -strongly quasi-injective as right modules over their endomorphism ring. Theorem 2.12 gives a characterization of topologically left artinian rings in terms of Σ -quasi injective modules. Finally in Proposition 2.14 we prove that a commutative linearly topologized ring (R, τ) is a topologically artinian ring iff τ coincides with the Leptin topology τ^* of τ and the minimal cogenerator of the hereditary pretorsion class associated with τ is Σ -strongly quasi-injective.

I am grateful to D. Dikranjan for his helpful suggestions.

0.2. We conclude this introduction giving some notations and recalling some definitions and results of [5].

Let R be a ring. R-Mod will denote the category of left R-modules and Mod-R that of right R-modules. The notation $_RM$ will be used to emphasize that M is a left R-module. Morphisms between modules will be written on the opposite side to that of the scalars and the composition of morphisms will follow this convention. For every $M \in R$ -Mod,

 $E_R(M)$, or simply E(M), well denote the injective envelope of M in R-Mod and Soc(RM), or simply Soc(M), the socle of M.

N will denote the set of positive integers.

Let R be a ring and let $M \in R$ -Mod. $_RM$ is quasi-injective (for short q.i.) if for every submodule $L \leq_R M$ and for every morphism $f \colon L \to_R M$, f extends to an endomorphism \bar{f} of $_RM$. $_RM$ is a selfcogenerator if, for every $n \in \mathbb{N}$, given a submodule L of $_RM^n$ and an element $x \in M^n \setminus L$, there exists a morphism $f \colon_RM^n \to_RM$ such that (L)f = 0, and $(x)f \neq 0$. $_RM$ is called strongly quasi-injective (for short s.q.i.) if given any submodule B of $_RM$, a morphism $f \colon B \to_RM$ and an element $x \in M \setminus B$, f extends to an endomorphism \bar{f} of $_RM$ such that $(x)\bar{f} \neq 0$. Clearly if $_RM$ is both quasi-injective and selfcogenerator, then $_RM$ is strongly quasi-injective. The converse is true as well (see [6] Corollary 4.5 and [3] Lemma 2.5).

Let $_RK_A$ be a bimodule. $_RK_A$ is faithfully balanced if $A \cong \operatorname{End}(_RK)$ and $R \cong \operatorname{End}(K_A)$ canonically.

Let R be a ring and let $M \in R$ -Mod. The M-topology of R is the left linear ring topology defined by taking as a basis of neighbourhoods of 0 in R the annihilators in R of finite subsets of M.

Recall that a linearly topologized left module M over a discrete ring R is said to be *linearly compact* (for short l.c.) if M is Hausdorff and if any finitely solvable system of congruences $x = x_i$, where the x_i are closed submodules of $_RM$, is solvable. We will say that a left R-module is *linearly compact discrete* (for short l.c.d.) iff it is linearly compact in the discrete topology.

All ring and module topologies are assumed to be linear. By a topological ring (R, τ) we mean a ring R endowed with a left linear topollgy τ . \mathcal{F}_{τ} denotes the filter of open left ideals of R and \mathcal{C}_{τ} the class of τ -torsion modules:

$$\mathcal{C}_{\tau} = \{ M \in R\text{-Mod} : \forall x \in M, \text{Ann}_{R}(x) \in \mathcal{F}_{\tau} \}$$

 \mathfrak{C}_r is an hereditary pretorsion class of R-Mod. For every left ideal I of R it is:

$$I \in \mathcal{F}_{\tau} \iff R/I \in \mathcal{C}_{\tau}$$

For every $M \in \mathbb{R}$ -Mod, $t_{\tau}(M)$ denotes the τ -torsion submodule of M. Analogous notations hold for a right linear topology.

The following two theorems are essentially the main results in [5]. We state them here in a slightly different way, which is more appropriate for our purposes.

- **0.3.** THEOREM. Let (R, τ) be a topological ring and let $(\hat{R}, \hat{\tau})$ the Hausdorff completion of (R, τ) . The following statements are equivalent:
 - (a) $(\hat{R}, \hat{\tau})$ is linearly compact.
 - (b) If $_RK$ is a cogenerator of \mathfrak{T}_{τ} and $A = \operatorname{End}(_RK)$, then K_A is quasi-injective and $_{R}K_A$ is faithfully balanced.
 - (c) There exists a cogenerator $_RK$ of \mathfrak{C}_{τ} such that, setting $A = \operatorname{End}(_RK)$, K_A is quasi-injective and $_{\widehat{R}}K_A$ is faithfully balanced.
 - (d) Let $_RU$ be the minimal cogenerator of \mathfrak{T}_{τ} , $T=\operatorname{End}_{(R}U)$. Then $_RU_T$ is faithfully balanced.

PROOF. It is easy too see that every left R-module in \mathcal{C}_{τ} has a natural structure of \hat{R} -module, that every morphism between two modules of \mathcal{C}_{τ} is an \hat{R} -morphism and that $\mathcal{C}_{\tau} = \mathcal{C}_{\hat{\tau}}$ (see [6], Proposition 6.5). It follows that a module ${}_{R}K \in \mathcal{C}_{\tau}$ is a cogenerator of \mathcal{C}_{τ} iff it is a cogenerator of $\mathcal{C}_{\hat{\tau}}$. Moreover the minimal cogenerator of \mathcal{C}_{τ} and that one of $\mathcal{C}_{\hat{\tau}}$ coincide. From these remarks and from the Main Theorem of [5] the proof follows.

- **0.4.** Theorem. Let R be a ring, ${}_RK$ a strongly quasi-injective left R-module, $A = \operatorname{End}(({}_RK), \ \hat{R}$ the Hausdorff completion of R in this K-topology. Then $\operatorname{Soc}(K_A)$ is essential in K_A , the bimodule ${}_{\hat{R}}K_A$ is faithfully balanced and the following conditions are equivalent:
 - (a) K_A is strongly quasi-injective.
 - (b) \hat{R} is linearly compact in its K-topology and \hat{R} separates points and submodules of K_A :
 - (c) \hat{R} is linearly compact in its K-topology and $Soc(_RK)$ is essential in $_RK$.

Moreover, if these conditions hold, then A is linearly compact in its K-topology.

PROOF. If $_RK$ is s.q.i. and $A = \operatorname{End}(_RK)$, then by Proposition 6.10 of [6] $\operatorname{Soc}(K_A)$ is essential in K_A and by Corollary 7.4 of [6], $\operatorname{End}(K_A) \cong \widehat{R}$. Moreover it is easy to see (see [6], Theorem 6.7) that $_RK$ is s.q.i. iff $_RK$ is s.q.i. Apply now Theorem 10 of [5].

1. A further characterization of linearly compact rings.

1.1. LEMMA. Let R be a ring, ${}_{R}K$ a quasi-injective R-module, $A = \operatorname{End}({}_{R}K)$. Let L ba a submodule of ${}_{R}K$, $\{a_{1}, \ldots, a_{n}\}$ a finite subset of A, and set

$$I = a_1A + ... + a_nA + \operatorname{Ann}_A(L).$$

Then $I = \operatorname{Ann}_A \operatorname{Ann}_K(I)$.

PROOF. Straightforward.

1.2. LEMMA. Let R be a ring, ${}_{R}K$ a selfcogenerator, $A = \operatorname{End}({}_{R}K)$. Let L be a finitely generated A-submodule of an A-module M_{A} which is cogenerated by K_{A} .

Then every morphism of L in K_A extends to a morphism of M in K_A .

PROOF. See Corollary 2.3 of [6].

Let R be a ring. A left ideal I of R is completely irreducible if R/I is an essential submodule of the injective envelope E(S) of a left simple R-module S. A left R-module M is finitely embedded if its socle is finitely generated and it is essential in M.

1.3. LEMMA. Let R be a ring, $_RK$ a quasi-injective left R-module with essential socle, $A = \operatorname{End}(_RK)$. Let I be a right ideal of A such that $I = \operatorname{Ann}_A \operatorname{Ann}_K(I)$. If $\operatorname{Ann}_K(I)$ is l.c.d., then for every right ideal H of A containing I it is $H = \operatorname{Ann}_A \operatorname{Ann}_K(H)$.

PROOF. Let H be a left ideal of A containing I and let $a \in \operatorname{Ann}_A \operatorname{Ann}_K(H)$. Then $\operatorname{Ann}_K(a) \geqslant \operatorname{Ann}_K(H)$ and $L = \operatorname{Ann}_K(I) \geqslant \operatorname{Ann}_K(H)$. Thus $\operatorname{Ann}_L(a) \geqslant \operatorname{Ann}_L(H) = \bigcap \operatorname{Ann}_L(h)$.

Since L is l.c.d., $L/\operatorname{Ann}_L(a) \cong La$ is l.c.d. and since $\operatorname{Soc}(_RK)$ is essential in $_RK$, La is finitely embedded.

Thus, by Lemma 8 of [5], there exists $h_1, \ldots, h_n \in H$ such that

(1)
$$\operatorname{Ann}_{L}(a) > \bigcap_{i=1}^{n} \operatorname{Ann}_{L}(h_{i}).$$

Since, by Lemma 1.1, the right ideal of A

$$J = (h_1A + ... + h_nA) + \operatorname{Ann}_A(L)$$

is closed in the K-topology of A and $J = \operatorname{Ann}_A \operatorname{Ann}_K(J)$, if $a \notin J$ there exists an $x \in \operatorname{Ann}_K(J)$ such that $xa \neq 0$. Since $\operatorname{Ann}_K(J) = \bigcap_{i=1}^n \operatorname{Ann}_K(h_i) \cap L$, by (1) this is impossible.

Let R be a ring, $_RK$ a left R-module. We will say that $_RK$ is finitely linearly compact discrete (for short f.l.c.d.) if every cyclic (and hence every finitely generated) left R-submodule of $_RK$ is l.d.c.

1.4. Lemma. $_RK$ is f.l.c.d. iff the Hausdorff completion \hat{R} of R in its K-topology is linearly compact.

PROOF. Straightforward.

The following proposition unifies some known results ([9], Corollary 2 page 342, [6] Theorem 9.4, [8] Proposition 3.4 a)) which were proved by the use of the same technique.

1.5. PROPOSITION. Let R be a ring, ${}_RK \in R\text{-Mod}$ a selfcogenerator, $A = \operatorname{End}({}_RK)$ and $L \leq {}_RK$. Then L is linearly compact discrete iff for any right ideal I of A and for any morphism $f \colon I \to K_A$ such that $\operatorname{Ker}(f) \geqslant \operatorname{Ann}_A(L)$, f extends to a morphism $\bar{f} \colon A \to K_A$. In particular ${}_RK$ is f.l.c.d. iff K_A is quasi-injective, while ${}_RK$ is l.c.d. iff K_A is injective.

PROOF. Assume that L is l.c.d. and let I be a right ideal of A and $f\colon I\to K_A$ a morphism such that $\operatorname{Ker}(f)\!>\!\operatorname{Ann}_A(L)$. Then f induces, in a natural way, a morphism $\bar f\colon I/\operatorname{Ann}_A(L)\to K_A$. Let $(H_j)_{j\in J}$ be the family of finitely generated A-submodules of $I/\operatorname{Ann}_A(L)$. Since $A/\operatorname{Ann}_A(L)$ is embeddable in $\prod_{x\in L}xA$ which is embeddable in K_A^L , by Lemma 1.2, for every $j\in J$, $\bar f_{|H_j}$ extends to a morphism $A/\operatorname{Ann}_A(L)\to K_A$ so that there exists an $x_j\in\operatorname{Ann}_K\operatorname{Ann}_A(L)=L$ such that $\bar f_{|H_j}$ coincides with the left multiplication by x_j . Now, write $H_j=I_j+\operatorname{Ann}_A(L)\operatorname{Ann}_A(L)$ where I_j is a finitely generated ideal of A. Then

it is easy to prove that the system

(1)
$$X \equiv x_j \mod \operatorname{Ann}_L(I_j) \quad j \in J$$

is finitely solvable in L and hence—since L is l.c.d.—it is solvable in L. Let $x \in L$ be a solution of (1). Then $x - x_j \in \operatorname{Ann}_L(I_j)$, for every $j \in J$, so that the left multiplication by x gives a morphism $A \to K_A$ which extends f.

Conversely assume that $L \leq_R K$ is such that for every right ideal I of A and any morphism $f \colon I \to K_A$ such that $\operatorname{Ker}(f) \geqslant \operatorname{Ann}_A(L)$, f extends to a morphism $A \to K_A$: Let

$$(2) X \equiv x_i \mod (L_i)$$

be a finitely solvable system of congruences in L.

Then the morphism

$$g \colon \sum_{i \in I} \operatorname{Ann}_{A}(L_{i}) \to K_{A}$$

defined by setting $g\left(\sum_{j\in F}a_j\right)=\sum_{j\in F}x_j$, where F is a finite subset of J and $a_j\in \operatorname{Ann}_A(L_j)$ for every $j\in F$, is well defined and $\operatorname{Ker}(g)\geqslant \operatorname{Ann}_A(L)$.

By hypothesis g extends to a morphism $A \to K_A$ so that there exists an $x \in K$ such that $x - x_i \in \operatorname{Ann}_K \operatorname{Ann}_A(L_i) = L_i$. Note that, since $x_i \in L$ and $L_i \leqslant L$, $x \in L$. Thus (2) is solvable in L.

The two last statements follows by the Baer's criterion for quasiinjectivity (see e.g. Proposition 6.6 of [6]) and that one for injectivity.

Let R be a ring. Recall that two left linear ring topologies on R are called *equivalent* if they have the same closed ideals.

- 1.6. THEOREM. Let A be a ring. A admits a right linearly compact ring topology iff $A = \operatorname{End}(_RK)$ where R is a ring and $_RK$ is a finitely linearly compact discrete and strongly quasi-injective left R-module with essential socle. In this case
 - 1) A is linearly compact in the topology τ_* having the right annihilators of submodules of $_RK$ which are linearly compact discrete as a basis of neighbourhoods of 0.
 - 2) τ_* is the finest topology in the equivalence class of the K-topology of A.
 - 3) K_A is strongly quasi-injective with essential socle.

Proof. Assume that (A, τ) is right linearly compact and let U_A be an injective cogenerator of \mathfrak{T}_{τ} with essential socle, $R = \operatorname{End}(U_A)$. By Lemma 6 of [5] τ is equivalent to the U-topology τ_U of A so that (A, τ_U) is right linearly compact. Thus, by Theorem 0.4 $_RU$ is f.l.c.d. and s.q.i. with essential socle.

Conversely, assume R is a ring and R is an f.l.c.d. and s.g.i. left R-module with essential socle. Thus by Lemma 1.4 and by Theorem $0.4~K_A$ is s.q.i. with essential socle and A is linearly compact in its K-topology τ . Now to prove statements 1) and 2) it is enough to show that τ_* is the finest topology in the equivalence class of τ . By Lemma 1.3 every open—and hence every closed—right ideal of τ_* is closed in τ . Let τ' be a topology equivalent to τ . To complete our proof let us show that every open right ideal I of τ' is open in τ_* . Since I is open in τ' , which is equivalent to τ , A/I is l.c.d. and moreover every right ideal of A containing I is closed in τ . In particular I is closed in τ so that, as K_A is s.q.i., it is $I = \operatorname{Ann}_A(L)$ where $L = \operatorname{Ann}_K(I)$. Let us prove that L is l.c.d. To do this we use Proposition 1.5. Let H be a right ideal of A and let $f: H \to K_A$ be a morphism such that $\operatorname{Ker}(f) \geqslant I$. Then, since A/I is l.c.d. and K_A has essential socle, $\operatorname{Im}(f)$ is finitely embedded. Thus, there exists a finite number S_1, \ldots, S_n of simple A-submodules of K_A such that $Im(f) \leqslant \bigoplus_{i=1}^n E(S_i)$ and hence f extends to a morphism $\bar{f} \colon A \to \bigoplus_{i=1}^n E(S_i)$. Let $x = \bar{f}(1)$. Then $x = x_1 + \dots + x_n$ where $x_i \in E(S_i)$ for every i, and $\bigcap_{i=1}^n \operatorname{Ann}_A(x_i) = \operatorname{Ann}_A(x) = \operatorname{Ann}_A(x_i)$ $= \operatorname{Ker}(\hat{t}) \geqslant \operatorname{Ker}(t) \geqslant I$. Thus each $\operatorname{Ann}(x_i)$ is closed in τ and, since it is completely irreducible, it is also open in τ . Thus $\operatorname{Ker}(f) = H \cap$ \cap Ker(f) is open in the relative topology on H of τ and, as K_A is q.i., f extends to a morphism $A \to K_A$. Hence, by Proposition 1.5., L is 1.c.d.

- 1.7. COROLLARY (Theorem 3.10 of [9]). A ring A is right linearly compact discrete if and only if $A = \text{End}(_RK)$ where $_RK$ is l.c.d. and s.q.i. with essential socle.
- 1.8. COROLLARY (Proposition 4.3 of [8]). Let R be a ring and let $_RK$ be an s.q.i. R-module, $A = \operatorname{End}(_RK)$. The following conditions are equivalent:
 - (a) RK is l.c.d. and Soc(RK) is essential in RK.
 - (b) K_A is an injective selfcogenerator.

- (c) K_A is an injective cogenerator of Mod-A.
- (d) A is linearly compact in the discrete topology which is equivalent to the K-topology of A and $Soc(_RK)$ is essential in $_RK$.

PROOF. (a) \Leftrightarrow (b) follows by Lemma 1.4, Theorem 0.4 and Proposition 1.5.

- $(c) \Rightarrow (b)$ is trivial.
- $(a) \Rightarrow (c)$ and $(a) \Rightarrow (d)$. Since we already proved $(a) \Leftrightarrow (b)$, K_A is injective. By Theorem 1.6 A is linearly compact in the discrete topology which is equivalent to the K-topology of A. Thus K_A is a cogenerator of Mod-A. $(d) \Rightarrow (a)$. By Theorem 1.6.

2. A characterization of strictly linearly compact rings.

2.1. LEMMA. Let R be a ring and let $(M_i)_{i \in I}$, $M_i \in R$ -Mod, be a family of selfcogenerators. If $\bigoplus_{i \in I} M_i$ is quasi-injective, then it is strongly quasi-injective.

PROOF. One easily sees that it is enough to give a proof for I finite. In this case a proof similar to that one of Lemma 2.5 in [3] works.

Let R be a ring and let $M \in R$ -Mod. We will say that RM is Σ -quasi-injective (for short Σ -q.i.) if every direct sum of copies of RM is q.i. Moreover we will say that RM is ω -quasi-injective (for short ω -q.i.) if RM is quasi-injective. The definitions of Σ -strongly quasi-injective (for short Σ -s.q.i.) and ω -strongly quasi-injective (fort short ω -s.q.i.) module are given in an analogous way.

The following useful lemma is a trivial consequence of Lemma 2.1.

- **2.**2. LEMMA Let R be a ring and let $M \in R$ -Mod be a selfcogenerator. Then $_RM$ is Σ -s.q.i. (ω -s.q.i.) iff $_RM$ is Σ -q.i. (ω -q.i.).
- **2.3.** Proposition. Let R be a ring, $_RK \in R$ -Mod a selfcogenerator, $A = \operatorname{End}(_RK)$ and $L \leq_R K$. The following statements are equivalent:
 - (a) _RL is artinian.
 - (b) For every right ideal I of A, for every set X, and for every morphism $f: I \to K_A^{(X)}$ such that $Ker(f) \geqslant Ann_A(L)$, f extends to a morphism $A \to K_A^{(X)}$.

(c) For every right ideal I of A and for every morphism $f: I \to K_A^{(N)}$ such that $\operatorname{Ker}(f) \geqslant \operatorname{Ann}_A(L)$, f extends to a morphism $A \to K_A^{(N)}$.

PROOF. (a) \Rightarrow (b). Assume $_RL$ is artinian and let $f\colon I\to K_A^{(x)}$ as in (b). Proceeding in a similar way as in Proposition 1.4 define $\bar{f}\colon I/\mathrm{Ann}_A(L)\to K_A^{(x)}$, $(H_j)_{j\in J}$ and I_j and note that for $j\in J$, $\bar{f}(H_j)$ is contained in an A-submodule M of $K_A^{(x)}$ which is a finite direct sum of copies of K_A . Thus since $_RK$ is a selfcogenerator, using Lemma 1.2 it is easy to prove that $\bar{f}_{|H_j}$ extends to a morphism $A/\mathrm{Ann}_A(L)\to M$. Hence, for every $j\in J$, there exists an $x_j\in K_A^{(x)}$ such that $\bar{f}_{|H_j}$ coincides with the left multiplication by x_j . It is $x_j(\mathrm{Ann}_A(L))=0$ and hence $x_j\in Ann_{K(X)}Ann_A(L)=(\mathrm{Ann}_KAnn_A(L))^{(\lambda)}=L^{(X)}$. Hence the system

(1)
$$X \equiv x_i \mod \operatorname{Ann}_{L(X)}(I_i) \quad j \in J$$

is finitely solvable in $L^{(x)}$. Let $j_0 \in J$ be such that $\operatorname{Ann}_L(I_{j_0})$ is a minimal element of the non empty family $\{\operatorname{Ann}_L(I_j)\}_{j \in J}$ of submodules of the the artinian left R-module L. Then x_{j_0} is a solution of the system (1) so that left multiplication by x_{j_0} gives a morphism $A \to K^{(x)}$ which extends f.

- $(b) \Rightarrow (c)$ is trivial.
- $(c) \Rightarrow (a)$ Assume $L_0 = L \geqslant L_1 \geqslant ... \geqslant L_n \geqslant ...$ is a strictly decreasing sequence of submodules of L and, for any $n \in \mathbb{N}$, let $y_n \in L_n \setminus L_{n+1}$. Since ${}_RK$ is a selfcogenerator and $A = \operatorname{End}({}_RK)$, left multiplication by y_n defines a morphism $\mu_n \colon A \to K_A$ such that

$$\mu_n(\operatorname{Ann}_{A}(L_n)) = 0$$
 and $\mu_n(\operatorname{Ann}_{A}(L_{n+1})) \neq 0$.

Let $I = \bigcup_{n \in \mathbb{N}} \operatorname{Ann}_A(L_n)$ and let $\mu \colon A \to K^{\mathbb{N}}$ be the diagonal morphism of the μ_n 's. It is easy th check that $\mu(I) \leqslant K^{(\mathbb{N})}$ so that μ induces a morphism $\bar{\mu} \colon I \to K^{(\mathbb{N})}$. Note that, since $y_n \in L$ fo every $n \in \mathbb{N}$, $\operatorname{Ker}(\bar{\mu}) \geqslant \operatorname{Ann}_A(L)$. By hypothesis $\bar{\mu}$ extends to a morphism $A \to K^{(\mathbb{N})}$. Thus there exists an $x \in K^{(\mathbb{N})}$ such that $\operatorname{Im}(\bar{\mu}) \leqslant xA$. For every $n \in \mathbb{N}$, let $\pi_n \colon K^{(\mathbb{N})} \to K$ be the canonical projection. Then there is a $k \in \mathbb{N}$ such that $\pi_n \circ \bar{\mu} = 0$ for every $n \geqslant k$. Since $\pi_n \circ \bar{\mu} = \mu_n \neq 0$ for every n, we get a contradiction.

2.4. REMARK. Let R, $_RK$, L and A be as in Proposition 2.3 and let X be an infinite set. Assume that for every right ideal I of A and

for every morphism $f: I \to K_A^{(X)}$ such that $\operatorname{Ker}(f) \geqslant \operatorname{Ann}_A(L)$, f extends to a morphism $A \to K_A^{(X)}$. Then L satisfies (c) of Proposition 2.3 and hence it is artinian.

We will say that a left R-module M is artinian finitely generated (for short artinian f.g.) if every cyclic, and hence every finitely generated, left R-submodule of M is artinian.

The definition of noetherian finitely generated (for short noetherian f.g.) module is given in an analogous way.

Recall (see [2] and [7]) that a topological ring (R, τ) is a topologically left artinian ring (for short (R, τ) is a TA-ring) if, for every $I \in \mathcal{F}_{\tau}$, R/I is left artinian.

The definition of topologically left noetherian ring (for short TN-ring) is given in an analogous way (see [1]).

 (R, τ) is a strongly topologically left artinian ring (for short (R, τ) is an STA-ring) iff it is both a TA-ring and a TN-ring (see [7]).

Finally recall that (R, τ) is strictly linearly compact (for short s.l.c.) iff it is a complete and Hausdorff TA-ring.

For technical convenience we state the following lemma whose proof is straightforward.

- **2.5.** LEMMA. Let R be a ring, let ${}_RK \in R$ -Mod and let τ be the K-topology of R. Denote by $(\widehat{R}, \widehat{\tau})$ the Hausdorff completion of (R, τ) . Then:
 - (a) (R, τ) is a TA-ring \Leftrightarrow $(\hat{R}, \hat{\tau})$ is a TA-ring \Leftrightarrow $_RK$ is artinian f.g.
 - (b) (R, τ) is a TN-ring \iff $(\hat{R}, \hat{\tau})$ is a TN-ring \iff _RK is noetherian f.g.
 - (c) (R, τ) is an STA-ring \Leftrightarrow $(\hat{R}, \hat{\tau})$ is an STA-ring \Leftrightarrow $_RK$ is both artinian f.g. and noetherian f.g.
 - (d) (R, τ) is strictly linearly compact $\Leftrightarrow (R, \tau) = (\hat{R}, \hat{\tau})$ and $_RK$ is artinian f.g. $\Leftrightarrow (R, \tau)$ is linearly compact and $_RK$ is artinian f.g.

Moreover, if RK is a selfcogenerator then:

- (e) K_A artinian $f.g. \Rightarrow_R K$ noetherian f.g.
- (f) K_A noetherian $f.g. \Rightarrow_R K$ artinian f.g.

REMARK. Since $_RK$ has a natural structure of \hat{R} -module and since, with respect to this structure, every subgroup of K is an R-submodule iff it is an \hat{R} -submodule, it is clear that all the statements of lemma above hold if one writes $_{\hat{R}}K$ instead of $_RK$.

2.6. Proposition. Let (R, τ) be a linearly compact ring, $_RU$ an injective cogenerator of \mathfrak{C}_{τ} with essential socle, $A = \operatorname{End}(_RU)$. Let τ_* be the finest topology in the equivalence class of τ . Then (R, τ_*) is strictly linearly compact iff every linearly compact discrete submodule of U_A is finitely generated. In this case every topology equivalent to τ coincides with τ .

PROOF. Recall (see Theorem 1.6) that $_RU_A$ is faithfully balanced and that U_A is f.l.e.d. and s.q.i. with essential socle. Moreover τ_* has the left annihilators of submodules of U_A which are linearly compact discrete as a basis of neighbourhoods of 0.

Now if (R, τ_*) is strictly linearly compact then it is clear that there is not any topology in the equivalence class of τ_* coarser than τ_* . Thus $\tau_* = \tau$ and every topology equivalent to τ coincides with τ . In particular τ_* coincides with the U-topology of R. Hence if L is a linearly compact discrete submodule of U_A , there exists a finitely generated submodule H of U_A such that $\operatorname{Ann}_R(L) \geqslant \operatorname{Ann}_R(H)$ so that $L \leqslant H$. As (R, τ) is s.l.c., $_RU$ is artinian f.g. and hence, by Proposition 2.5 e) U_A is noetherian f.g. It follows that L is a finitely generated A-module.

Conversely, assume that every linearly compact discrete submodule of U_A is finitely generated. Then τ_* coincides with the U-topology of R and U_A is noetherian f.g. By Lemma 2.5 e) and a) (R, τ_*) is strictly linearly compact.

The following result was suggested to me by D. Dikranjan.

2.7. Corollary. Let (R, τ) be a linearly compact ring and assume that the Jacobson radical of R, J(R), is zero. Then (R, τ) is strictly linearly compact.

Consequently (R, τ) is topologically isomorphic to a topological product $\prod_{\lambda \in \Lambda} \operatorname{End}_{D_{\lambda}}(V_{\lambda})$ where, for every $\lambda \in \Lambda$, V_{λ} is a vector space over the division ring D_{λ} and $\operatorname{End}_{D_{\lambda}}(V_{\lambda})$ is endowed with the finite topology.

PROOF. It is easy to see (cf. [5] Theorem 14) that for the minimal

injective cogenerator $_RU$ of \mathcal{C}_{τ} we have, in this case,

$$_{\scriptscriptstyle R}U=\bigoplus_{\pmb{\lambda}\in\pmb{arLambda}}S_{\pmb{\lambda}}$$

where $(S_{\lambda})_{\lambda \in A}$ is a system of representatives of the isomorphism classes of the left simple R-modules of \mathcal{C}_{τ} . Thus each S_{λ} is fully invariant in $_{R}U$ and hence, setting $A = \operatorname{End}(_{R}U)$, it is straightforward to prove that U_{A} is semisimple. Then every l.c.d. submodule of U_{A} has finite length.

By Proposition 2.6, (R, τ) is strictly linearly compact and, in particular, τ coincides with its Leptin topology. Thus the last assertion of the Corollary follows by the classical Leptin's result (see [5], Theorem 14).

In the following theorem we sum up all the main relations between the properties of a selfcogenerator $_RK \in R$ -Mod and those of the Hausdorff completion of R in its K-topology.

- **2.8.** THEOREM. Let R be a ring, ${}_RK \in R$ -Mod a selfcogenerator, $A = \operatorname{End}({}_RK)$, $(\hat{R}, \hat{\tau})$ the Hausdorff completion of R in its K-topology. Then:
 - a) $(\hat{R}, \hat{\tau})$ is l.c. $\Leftrightarrow {}_{R}K$ is f.l.c.d. $\Leftrightarrow K_{A}$ is q.i.
 - b) $(\hat{R}, \hat{\tau})$ is s.l.c. $\Leftrightarrow {}_{R}K$ is artinian f.g. $\Leftrightarrow K_{A}$ is Σ -q.i. $\Leftrightarrow K_{A}$ is ω -q.i.
 - c) $_{R}K$ is l.c.d. $\Leftrightarrow K_{A}$ is injective.
 - d) $_RK$ is artinian $\iff K_A$ is Σ -injective $\iff K_A$ is ω -injective.

If moreover RK is s.q.i. then:

- α) $(\hat{R}, \hat{\tau})$ is l.c. and $Soc(_RK)$ is essential in $_RK \iff K_A$ is s.q.i.
- β) $(\hat{R}, \hat{\tau})$ is s.l.c. $\iff K_A$ is Σ -s.q.i. $\iff K_A$ is ω -q.i.
- γ) _RK is l.c.d. with essential socle \Leftrightarrow K_A is an injective cogenerator of Mod-A.
- δ) $_RK$ is artinian $\Leftrightarrow K_A$ is a Σ -injective cogenerator of Mod-A $\Leftrightarrow A_A$ is noetherian.

PROOF. Assume $_RK$ is a selfcogenerator. Then

a) follows by Proposition 1.5,

- b) follows by Proposition 2.3 and by Proposition 6.6 of [6] after observing that, for a non-empty set X, the K-topology and the $K^{(x)}$ -topology of A coincide,
- c) follows by Proposition 1.5,
- d) follows by Proposition 2.3.

Assume now _RK is s.q.i. Then

- α) follows by Theorem 0.4,
- β) follows by Theorem 0.4, Lemmata 2.5 and 2.2 and by b),
- γ) follows by Corollary 1.8.
- δ) The first equivalence of δ) follows by d) and γ). Now if Mod-A has a Σ -injective cogenerator then it is well known that A is right noetherian. Conversely if A is right noetherian then, as $_RK$ is a selfcogenerator and $A = \operatorname{End}(_RK)$ it is straightforward to prove that $_RK$ is artinian.

Remark. Statement c) is Theorem 9.4 of [6].

Statement d) could be deduced from Theorem 9.4 of [6] and Proposition 3 of [4]. Statement δ) was already proved, in a different way, in [7] (see [7], Lemma 4.12).

It is natural to ask when, in the hypothesis of Theorem 2.8, $_RK$ and K_A are both Σ -s.q.i. Following theorem gives an answer to this question.

- **2.9.** THEOREM. Let R be a ring and let ${}_RK \in R\text{-Mod}$ be an s.q.i. module. Then, in the notations of Theorem 2.6, the following statements are equivalent:
 - (a) Every finitely generated submodule of RK has finite length.
 - (b) Every finitely generated submodule of K_A has finite length.
 - (c) \hat{R} and A are both strictly linearly compact in their K-topologies.
 - (d) $_RK$ and K_A are both Σ -strongly quasi-injective.

PROOF. (a) \Rightarrow (b) Since $_RK$ is artinian f.g. by Theorem 2.8 K_A is Σ -s.q.i. Since $_RK$ is s.q.i., $\widehat{R} = \operatorname{End}(K_A)$ by Theorem 0.4. Thus (b) follows by Lemma 2.5 e) and f).

- (b) \Rightarrow (a) Since _RK is s.q.i., (a) follows by Lemma 2.5 e) and f).
- (a) \Rightarrow (c) Since (a) \Leftrightarrow (b), (c) follows by Theorem 0.4.
- (c) \Rightarrow (d) As \hat{R} is s.l.c. in its K-topology, by Theorem 0.4 ${}_{\hat{R}}K_A$ is faithfully balanced and K_A is s.q.i. (d) follows now from Theorem 2.8.
- (d) \Rightarrow (a) By Theorem 2.8 _RK and K_A are both artinian f.g. Since _RK is s.q.i. (a) follows by Lemma 2.5 e).
- **2.10.** PROPOSITION. Let R be a ring and let ${}_{R}K \in R$ -Mod be an f.l.c.d. and s.q.i. module with essential socle, $A = \operatorname{End}({}_{R}K)$. Then A is s.l.c. in its K-topology $\Leftrightarrow K_{A}$ is artinian $f.g. \Leftrightarrow {}_{R}K$ is noetherian $f.g. \Leftrightarrow {}_{R}K$ is Σ - $q.i. \Leftrightarrow {}_{R}K$ is Σ -s.q.i.

PROOF. By Lemma 1.4 and Theorem 0.4, ${}_{R}K_{A}$ is faithfully balanced, K_{A} is an s.q.i. module and A is linearly compact in its K-topology. Thus by Lemma 2.5 d) A is s.l.e. in this topology $\iff K_{A}$ is artinian f.g. Now, by Lemma 2.5 e) and f) K_{A} is artinian f.g. $\iff_{R}K$ is noetherian f.g. The other equivalences follow by Theorem 2.8.

As a corollary we get the following result which is analogous to Theorem 1.6.

2.11. COROLLARY. Let A be a ring. A admits a right strictly linearly compact ring topology iff $A = \operatorname{End}(_RK)$ where R is a ring and $_RK$ an f.l.c.d. Σ -strongly quasi-injective left R-module with essential socle. In this case A is s.l.c. in its K-topology.

PROOF. Follows by Proposition 2.10 and Theorem 1.6.

The following theorem, which is analogous to Theorem 0.3, characterizes topologically left artinian rings.

- **2.**12. THEOREM. Let (R, τ) be a topological ring, $(\hat{R}, \hat{\tau})$ the Hausdorff completion of (R, τ) and τ^* the Leptin topology of τ . Then, with the notations introduced in 0.2, the following statements are equivalent:
 - (a) (R, τ) is a TA-ring (i.e. $(\hat{R}, \hat{\tau})$ is strictly linearly compact).
 - (b) If $_RK$ is a cogenerator of \mathfrak{T}_{τ} and $A = \operatorname{End}(_RK)$, then K_A is Σ -q.i. $(\omega$ -q.i.).
 - (c) $\tau = \tau^*$ and there exists a cogenerator K of \mathfrak{T}_{τ} such that, setting $A = \operatorname{End}_{(R}K), \ K_A \ is \ \Sigma q.i. \ (\omega q.i.).$

(d) Let _RU be the minimal cogenerator of \mathfrak{F}_{τ} , $T = \operatorname{End}(_{R}U)$.

Then U_{τ} is Σ -s.q.i. (ω -s.q.i.) and $\tau = \tau^*$.

PROOF. $(a) \Rightarrow (b)$ Since (R, τ) is a TA-ring every module of \mathcal{C}_{τ} is artinian f.g. Now (b) follows from Theorem 2.8.

- (b) \Rightarrow (a) Let $_RK = \bigoplus_{I \in \mathcal{F}_\tau} \mathrm{t}_\tau(E(R/I))$. Then $_RK$ is a cogenerator of \mathcal{G}_τ . By Theorem 2.8 $_RK$ is artinian f.g. so that, for every $I \in \mathcal{F}_\tau$, R/I is left artinian.
 - $(a) \Rightarrow (c)$ Since $(a) \Leftrightarrow (b)$, this is trivial.
 - (c) \Rightarrow (a) By Theorem 2.8 _RK is artinian f.g. Since _RK contains the minimal cogenerator of \mathcal{C}_{τ} , by Lemma 5 of [5], (a) follows.
 - (a) \Rightarrow (d) Since (a) \Leftrightarrow (b), (d) follows by Theorem 0.3 and Lemma 2.2.
 - $(d) \Rightarrow (c)$ is trivial.

The following proposition characterizes STA-rings.

- **2.13.** Proposition. In the hypothesis of Theorem 2.1, let $_RU$ be the minimal cogenerator of \mathfrak{T}_{τ} , $T=\operatorname{End}(_RU)$. The following statements are equivalent:
 - (a) (R, τ) is an STA-ring.
 - (b) $\tau = \tau^*$ and $_RU$ and U_T are both Σ -s.q.i. (ω -s.q.i.).
 - (c) _RU is s.q.i. and T, endowed with its U-topology is a strongly topologically right artinian ring.
 - (d) (R, τ) is a TA-ring and _RU is Σ -s.q.i. $(\omega$ -s.q.i.).

PROOF. (a) \Rightarrow (b) By Theorem 2.1 of [7] $_RU$ is s.q.i. Thus Theorem 2.7 applies.

- (b) \Rightarrow (c) By Theorem 2.9.
- (c) \Rightarrow (d) By Theorem 2.9.
- $(d) \Rightarrow (b)$ By Theorem 2.8.
- (b) \Rightarrow (a) By Theorem 2.9.

Commutative TA-rings were extensively studied in [7] (see [7], section 6). Following proposition gives a further characterization of these rings.

- **2.14.** Proposition. Let (R, τ) be a commutative topological ring, $_RU$ the minimal cogenerator of \mathcal{C}_{τ} . The following statements are equivalent:
 - (a) (R, τ) is a (strongly) topologically artinian ring.
 - (b) $\tau = \tau^*$ and $_RU$ is Σ -s.q.i.
 - (c) $\tau = \tau^*$ and (R, τ) is a topologically noetherian ring.

PROOF. First of all note that (R, τ) is a topologically artinian ring iff it is a strongly topologically artinian ring (see Proposition 3.9 of [7]). Thus

- (a) \Rightarrow (b) follows from Proposition 2.13.
- (b) \Rightarrow (c) Since $_RU$ is Σ -s.q.i. it is straightforward to prove that (R, τ) is a topologically noetherian ring (see Theorem 15 of [1]).
- (c) \Rightarrow (a) Let $x \in {}_RU$, $x \neq 0$, $I = \operatorname{Ann}_R(x)$. Then Rx is noetherian and thus the ring R/I is a commutative noetherian ring. Since Rx is a finitely embedded R/I-module, from the general theory of commutative noetherian rings, it follows that Rx is artinian.

REFERENCES

- [1] P. N. Ánh, Duality over Topological Rings, J. Algebra, 75 (1982), pp. 395-425.
- [2] B. Ballet, Topologies Linéaires et Modules Artiniens, J. Algebra, 41 (1976), pp. 365-397.
- [3] S. Bazzoni, Pontryagin Type Dualities over Commutative Rings, Ann. Mat. pura e applicata, 121 (1979), pp. 373-385.
- [4] C. FAITH, Rings with ascending condition on annihilators, Nagoya Math. J., 27 (1966), pp. 179-191.
- [5] C. Menini, Linearly Compact Rings and Strongly Quasi-Injective Modules, Rend. Sem. Mat. Univ. Padova, 65 (1980), pp. 251-262. See also: Errata-Corrige, Linearly Compact Rings and Strongly Quasi-Injective Modules, Ibidem, vol. 69.

- [6] C. MENINI A. ORSATTI, Good dualities and Strongly quasi-injective modules, Ann. Mat. pura e applicata, 127 (1981), pp. 187-230.
- [7] C. Menini A. Orsatti, Topologically left artinian rings. To appear on J. of Algebra.
- [8] A. Orsatti V. Roselli, A characterization of discrete linearly compact rings by means of a duality, Rend. Sem. Mat. Univ. Padova, 65 (1981), pp. 219-234.
- [9] F. L. SANDOMIERSKI, Linearly compact modules and local Morita duality, in Ring Theory, ed. R. Gordon, New York, Academic Press, 1972.

Manoscritto pervenuto in redazione il 23 aprile 1983.