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Linearly Compact Rings and Selfcogenerators.

CLAUDIA MENINI (*)

0. Introduction.

0.1. Throughout this paper all rings are associative with identity
1 ~ 0 and all modules are unitary.

In our previous work [5] we outlined the connection between
linearly compact rings and quasi-injective modules. (Definitions and
main results we got in [5] are listed below).

In this paper we give some applications of these results.
First of all, in section 1 we get a further characterization of linearly

compact rings. More precisely we prove that a ring 1~ admits a left
linearly compact ring topology iff .R = End where A is a ring
and .g~ is a right A-module which is strongly quasi-injective, with
essential socle and whose cyclic right A-submodules are linearly
compact in the discrete topology. Moreover, in this case, R is linearly
compact in the topology 1’* having as a basis of neighbourhoods of
0 the left ideals AnnR (L) where L ranges among all linearly compact
discrete submodules of K. This topology i* is the finest topology
in the equivalence class of the K-tolology of .R. This generalizes a
previous result by F.L. Sandomierski ([9]), who proved it in the

discrete case and gives a method to build linearly compact rings.

(*) Indirizzo dell’A.: Istituto di Matematica dell’Universita di Ferrara,
Via Machiavelli 35 - 44100 Ferrara (Italy).

Lavoro eseguito nell’ambito dell’attivita dei gruppi di ricerca matema-
tica del C.N.R.
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The existence of a finest equivalent topology for a linearly compact
ring has been recently proved by P.N..Anh (see [1], Proposition 3.1.)
in a rather different way and without the representation method.

In section 2 we deal with strictly linearly compact rings and, more
in general, with topologically left artinian rings (a linearly topologized
ring is called topologically left artinian-see [2] and [7]-if it has
a basis of neighbourhoods of 0 consisting of left ideals with artinian
residue). These rings have been extensively studied by Ballet in [2]
and by A. Orsatti and the author in [7].
"’ 

Here we point out the relation between such rings and E-quasi-
injective modules (a module is E-quasi-injective iff any direct sum
of copies of itself is quasi-injective). We prove that a left selfcogenerator
RK over a ring .R has a strictly linearly compact biendomorphism ring
(which coincides with the Hausdorff completion JB of .I~ in its K-topo-
logy) iff I~, regarded as a right module over its endomorphism ring,
is E-quasi-injective.

Moreover we give an analogous version of characterization theorem
above for strictly linearly compact rings. We prove that a ring .R
admits a left strictly linearly compact ring topology iff R = End (K)
where A is a ring and KA is a right A-module which is E-strongly
quasi-injective, with essential socle and whose cyclic right A-sub-
modules are linearly compact in the discrete topology. Theorem 2.9

describes those E-strongly quasi-injective left modules over a ring
.R which are also E-strongly quasi-injective as right modules over
their endomorphism ring. Theorem 2.12 gives a characterization of
topologically left artinian rings in terms of E-quasi injective modules.
Finally in Proposition 2.14 we prove that a commutative linearly
topologized ring (B, i) is a topologically artinian ring iff t coincides
with the Leptin topology z* of z and the minimal cogenerator of the
hereditary pretorsion class associated with T is E-strongly quasi-
injective.

I am grateful to D. Dikranjan for his helpful suggestions.

0.2. We conclude this introduction giving some notations and
recalling some definitions and results of [5].

Let .1~ be a ring. R-Mod will denote the category of left R-modules
and Mod-R that of right R-modules. The notation RM will be used
to emphasize that M is a left R-module. Morphisms between modules
will be written on the opposite side to that of the scalars and the compo-
sition of morphisms will follow this convention. For every M e B-Mod,
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E(M), or simply E(M), wull denote the injective envelope of .M~ in

R-Mod and Soc (,M), or simply Soc (M), the socle of M.
N will denote the set of positive integers.
Let .I~ be a ring and let if e R-Mod. RM is quasi-injective (for

short q.i.) if for every submodule and for every morphism
f : L - Rlll, f extends to an endomorphism f of RM. RM is a sel f cogenera-
tor if, 9 for every n E N, given a submodule L of RlVIn and an element
x E there exists a morphism f : RMn -+ RM such that (L)f = 0,
and (x) f ~ 0. is called strongly quasi-injective (for short s.q.i.)
if given any submodule B‘ of R.lVl, a morphism f : and an ele-
ment x E f extends to an endomorphism f of such that

~ 0. Clearly if R~ is both quasi-injective and selfcogenerator,
then RM is strongly quasi-injective. The converse is true as well

(see [6] Corollary 4.5 and [3] Lemma 2.5).
Let KA be a bimodule. Rg~ is faithfully balanced if End (RK)

and R I".J End canonically.
Let .Z~ be a ring and let if e The M-topology o f J~ is the left

linear ring topology defined by taking as a basis of neighbourhoods
of 0 in R the annihilators in .R of finite subsets of M.

Recall that a linearly topologized left module .M- over a discrete
ring 1~ is said to be linearly compact (for short I.e.) if M is Hausdorff
and if any finitely solvable system of congruences where the

xs are closed submodules of is solvable. We will say that a left
R-module is linearly compact discrete (for short l.c.d.) iff it is linearly
compact in the discrete topology.

All ring and module topologies are assumed to be linear. By a
topological ring (.R, i) we mean a ring R endowed with a left linear
topollgy ~. :;-7: denotes the filter of open left ideals of Rand b7: the class
of z-torsion modules:

i3~ is an hereditary pretorsion class of ,R-Mod.
For every left ideal I of .1~ it is:

For every M e R-Mod, t,(M) denotes the -r-torsion submodule of M.
Analogous notations hold for a right linear topology.
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The following two theorems are essentially the main results in
[5]. We state them here in a slightly different way, which is more
appropriate for our purposes.

0.3. THEOREM. Let (R, -r) be a topological ring and let (R, f) the
Hausdorff completion of (R, -r). The following statements are equivalent:

(a) ell, f) is linearly compact.

(b) If BK is a cogenerator of ~t and A = End (RK), then KA
is quasi-injective and pKA is faithfully balanced.

(c) There exists a cogenerator BK of b1’ such that, setting A =
= End (RK), KA is quasi-injective and gKA is faithfully bal-
anced.

(d) Let B U be the minimal cogenerator of b-r, T = End (B U).
Then 11 UT is faithfully balanced.

PROOF. It is easy too see that every left 1?-module in bT has a
natural structure of R-module, that every morphism between two
modules of bT is an -ll-morphism and that 13~ = 13, (see [6], Proposition
6.5). It follows that a module BK E bT. is a cogenerator of b-r iff it
is a cogenerator of br. Moreover the minimal cogenerator of bT and
that one of 13, coincide. From these remarks and from the Main Theorem
of [5] the proof follows.

0.4. THEOREM. Let R be a ring, BK a strongly quasi-injective left
R-module, A = End ((RK), .R the Hausdorff completion of .R in this

K-topology. Then Soc (KA) is essential in KA, the bimodule ¡K.A is faith-
fully balanced and the following conditions are equivalent :

( a) KA is strongly quasi-in j ective.

(b) .R is linearly compact in its K-topology and R separates points
and submodules of 

(c) l~ is linearly compact in its K-topology and Soc (BK) is essen-
tial in BK.

Moreover, if these conditions hold, then .A. is linearly compact in its
K-topology.



103

PROOF. If nK is s.q.i. and A = End (nK), then by Proposition
6.10 of [6] Soc is essential in KA and by Corollary 7.4 of [6],
End (K) gz f?. Moreover it is easy to see (see [6], Theorem 6.7) that
nK is s.q.i. iff gK is s.q.i. Apply now Theorem 10 of [5].

I. A further characterization of linearly compact rings.

1.1. LEMMA. Let ,rR be a ring, RK a quasi-injective 
.A = End (R.K)..Let L ba a submodule of ... , an~ a finite subset
of A, and set

Then I = AnnA Annx (I ) .

PROOF. Straightforward. ;

1.2. LEMMA. Let .R be a ring, BK a sel f cogenerator, A = End 
Let L be a finitely generated A-submodule of an A-module M4 which is
cogenerated by 

T hen every morphism of L in KA extends to a morp hism of M in K . ’

PROOF. See Corollary 2.3 of [6].

Let .R be a ring. A left ideal I of .R is completely irreducible if Bll
is an essential submodule of the injective envelope E(S) of a left

simple R-module S. A left .R-module .M is finitely embedded if its socle
is finitely generated and it is essential in M.

1.3. LEmmA. Let R be a ring, BK a quasi-injective le f t .R-module
with essential socle, A = End (BK). ..Let I be a right ideal of A such
that I = AnnA Annx (1). I f AnnE (I) is l. c. d. , then tor every right ideal
H of A containing I it is H = AnnA AnnE (H).

PROOF. Let H be a left ideal of A containing I and let

a E AnnA Annx (.H~). Then AnnK (a) &#x3E; AnnE (.g) and L = AnnE (1) &#x3E;

Thus _ n Ann (h) .
heH

Since L is l.c.d., I/AnnL (a) is l.c.d. and since Soc (BK) is

essential in BK, La is finitely embedded.
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Thus, by Lemma 8 of [5], there exists ... , such that

Since, by Lemma 1.1, the right ideal of A

is closed in the K-topology of A and J = AnnA AnnA (J), if a 0 j
there exists an x E AnnA (J) such that xa 0 0. Since Ann~ (J) _

n

r1 L, by (1) this is impossible.
i=i

Let R be a ring, ,K a left .R-module. We will say that R.K is finitely
lineally compact discrete (for short f.l. c. d. ) if every cyclic (and hence
every finitely generated) left .R-submodule of ,,K is l.d.c.

1.4. LEMMA. R.g is f.l.c.d. iff the Hausdorff completion f? of R
in its K-topology is linearly compact.

PROOF. Straightforward.

The following proposition unifies some known results ([9], Corollary 2
page 342, [6] Theorem 9.4, [8] Proposition 3.4 a)) which were proved
by the use of the same technique.

1.5. PROPOSITION. Let R be a ring, BK E R-Mod a selfcogenerator,
A = and Then L is linearly compact discrete iff for
any right ideal I o f A and tor any morphism f : I - KA such that Ker ( f ) &#x3E;

&#x3E; AnnA (L), f extends to a morphism f : A - KA. In particular BK is
f.l.c.d. iff is quasi-injective, while R.g is l.c.d. iff KA is injective.

PROOF. Assume that L is 1.c.d. and let I be a right ideal of A and
f : a morphism such that Ker (f) &#x3E; AnnA (L). Then f induces,
in a natural way, a morphism f : IjAnn (L) -~ .K~. Let be the

family of finitely generated A-submodules of I/AnnA (L). Since

(L) is embeddable in fl xA which is embeddable in KA, by
_ 

xEL

Lemma 1.2, for every j E J, extends to a morphism A jAnn (L) --~ jE’~
so that there exists = L such that 

coincides with the left multiplication by oe;. Now, write .H~ =
= h + AnnA (L) AnnA (L) where Ij is a finitely generated ideal of A. Then
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it is easy to prove that the system

is finitely solvable in L and hence-since .L is l.c.d.-it is solvable in
L. Let x E L be a solution of (1). Then for every
j E J, so that the left multiplication by x gives a morphism A - K,
which extends f .

Conversely assume that is such that for every right ideal I
of .A and any morphism f : I --+ KA such that Ker ( f ) (L), f
extends to a morphism A -* KA: Let

be a finitely solvable system of congruences in .L.
Then the morphism

defined by setting where .F’ is a finite subset of J

and aj E for every 9 E F, is well defined and Ker (g) &#x3E; Ann (L) .
By hypothesis g extends to a morphism A - .g~ so that there

exists an x E g’ such that x - x3 E AnnE = Note that,
since x? ELand Lj  L, x E L. Thus (2 ) is solvable in L.

The two last statements follows by the Baer’s criterion for quasi-
injectivity (see e.g. Proposition 6.6 of [6]) and that one for injectivity.

Let ~R be a ring. Recall that two left linear ring topologies on .R
are called equivalent if they have the same closed ideals.

1.6. THEOREM. Let A be a ring. A admits a right linearly compact
ring topology iff A = End (RK) where .R is a ring and RK is a finitely
linearly compact discrete and strongly quasi-injective left R-niodule
with essential socle. In this case

1) A is linearly compact in the topology í* having the right annihila-
tors of submodules o f RK which are linearly compact discrete
as a basis of neighbourhoods of 0.

2 ) ~* is the finest topology in the equivalence class of the K-topology
of A.

3) is strongly quasi-injective with essential socle.
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PROOF. Assume that (A, r) is right linearly compact and let UA
be an injective cogenerator of 13~ with essential socle, .I~ = 

By Lemma 6 of [5] í is equivalent to the U-topology ru of A so that
(A,1’u) is right linearly compact. Thus, by Theorem 0.4 ~ l7 is f.l.c.d.
and s.q.i. with essential socle.

Conversely, assume .R is a ring and RK is an f.l.c.d. and s.q.i. left
.R-module with essential socle. Thus by Lemma 1.4 and by Theorem
0.4 KA is s.q.i. with essential socle and A is linearly compact in its
.K-topology z~. Now to prove statements 1) and 2) it is enough to show
that í* is the finest topology in the equivalence class of z. By Lemma
1.3 every open-and hence every closed-right ideal of í* is closed
in T. Let r’ be a topology equivalent to T. To complete our proof
let us show that every open right ideal I of 1" is open in z* . Since I
is open in 7:’, which is equivalent to r, A/I is I.e.d. and moreover every
right ideal of A containing I is closed in z. In particular I is closed
in r so that, as KA is s.q.i., it is I = AnnA (L) where L = AnnA (I).
Let us prove that .L is l.c.d. To do this we use Proposition 1.5. Let
H be a right ideal of A and let t : be a morphism such that
Ker ( f ) &#x3E;1. Then, since A/I is l.c.d. and K has essential socle, Im( f ) is
finitely embedded. Thus, there exists a finite number 81,.", 8n of

n

simple A-submodules of KA such that and hence f
n i=1

extends to a morphism f : Let x = f (1 ). Then x = xl +
i=l n

+ ... + Xn where oe, E E(Si) for every i, and n Ann~ = 

_ 

i=l

Thus each Ann(x,) is closed in T and, since
it is completely irreducible, it is also open in r. Thus Ker(f) = H n
n Ker( f ) is open in the relative topology on H of r and, as is q.i.,
f egtends to a morphism A -* KA. Hence, by Proposition 1.5., .L is
l.c.d.

1.7. COROLLARY (Theorem 3.10 of [9]). A ring A is right linearly
compact discrete if and only if A = End (nK) where Rg is I.e.d. and

s.q.i. with essential socle.

1.8. COROLLARY (Proposition 4.3 of [8]). Let R be a ring and let
,,K be an A = End (RK). The following conditions
are equivalent :

(a) RK is acnd Soc (nK) is essential in nK.

(b) an injective selfcogenerator.
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(c) KA is an injective cogenerator of Mod-A.

(d) A is linearly compact in the discrete topology which is equivalent
to the K-topology o f A and Soc (RK) is essential in 1,K.

PROOF. (a) « (b) follows by Lemma 1.4, Theorem 0.4 and Proposi-
tion 1.5.

is trivial.

(a) =&#x3E; (c) and (a) =&#x3E; (d). Since we already proved (a) ~ (b), KA
is injective. By Theorem 1.6 A is linearly compact in the discrete
topology which is equivalent to the K-topology of A. Thus .KA is a
cogenerator of Mod-A. (d) ~ (a). By Theorem 1.6.

2. A characterization of strictly linearly compact rings.

2.1. LE&#x3E;rMA. Let B be a ring and let be a

family o f sel f cogenerators. If EB Mi is quasi-injective, then it is strongly
quasi-injective. 

PROOF. One easily sees that it is enough to give a proof for I finite.
In this case a proof similar to that one of Lemma 2.5 in [3] works.

Let R be a ring and let We will say that RM is E-quasi-
injective (for short E-q.i.) if every direct sum of copies of is q.i.
Moreover we will say that R.lVl is w-quasi-injective (for short co-q.i.) if

is quasi-injective. The definitions of E-strongly quasi-injective
(for short E-s.q.i.) and w-strongly quasi-injective (fort short co-s.q.i.)
module are given in an analogous way.

The following useful lemma is a trivial consequence of Lemma 2.1.

2.2. LEMMA Let .R be a ring and let 1Vl E .R-ltlod be a selfcogenera-
tor. Then is is Z-q.I. (ro-q.i.).

2.3. PROPOSITION. Let .R be a ring, BK E B-Mod a selfcogenerator,
A = End (BK) and The following statements are equivalent :

( a) RL is artinian.

(b) For every right ideal I of A, for every set X, and tor every
morphism f : I --~ such that f extends
to a morp hism A -~ .g~ ’.
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(c) every right ideal I o f A and f or every morphism f : 
such that t extends to a morphism 

PROOF. (a) ~ (b). Assume RL is artinian and let f : as

in (b). Proceeding in a similar way as in Proposition 1.4 define f :
IjAnnA (L)-~X~, and h and note that for j EJ, f (.H’~) is contain-
ed in an A-submodule .M of which is a finite direct sum of copies
of KA. Thus since RK is a selfcogenerator, using Lemma 1.2 it is easy
to prove that extends to a morphism M. Hence,
for every j e J, there exists an Xi e such that tlHI coincides with
the left multiplication by Xi. It is = 0 and hence 

= = Z~. Hence the system

is finitely solvable in Let 10 E J be such that Ann, (1;) is a minimal
element of the non empty family (Annz of submodules of the
the artinian left .R-module L. Then is a solution of the system (1)
so that left multiplication gives a morphism A - K(’) which
extends f .

(b) ~ (c) is trivial.

(c) ~ (ac) Assume Lao== L ~ L1 ~ ... ~ Ln ~ ... is a strictly decreasing
sequence of submodules of .L and, for any let Yn E 
Since Rg is a selfcogenerator and A = End(nK), left multiplication
by yn defines a morphism p,,: A - KA such that

Let I Ann, (Zn) and let p: A -~ KN be the diagonal morphism
nEN

of the fln’s. It is easy th check that p(I) K(N) so that fl induces a

morphism fl: I ~ K(N). Note that, since yn E .L fo every n 

AnnA (.L). By hypothesis flextends to a morphism ..A.. -~ .g~~~.
Thus there exists an such that For every n 

let 1t:n: ~~~~ -~ .g be the canonical projection. Then there is a 
such that 1t:noil = 0 for every Since = fln =1= 0 for every
n, we get a contradiction.

2.4. REMARK. Let B, L and A be as in Proposition 2.3 and
let X be an infinite set. Assume that for every right ideal I of A and
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for every morphism f : I - such that (L), f extends
to a morphism A - g~’ . Then .L satisfies (c) of Proposition 2.3 and
hence it is artinian.

We will say that a left R-module M is artinian finitely generated
(for short artinian f . g. ) if every cyclic, and hence every finitely generat-
ed, left .R-submodule of .M is artinian.

The definition of noetherian finitely generated (for short noetherian
f. g. ) module is given in an analogous way.

Recall (see [2] and [7]) that a topological ring (.R, i) is a topologi-
cally left artinian ring (for short (R, i) is a TA-ring~ if, for every
I E :F-r, 9 RjI is left artinian.

The definition of topologically left noetherian ring (for short TN-

ring) is given in an analogous way (see [1]).

(.R, -r) is a strongly topologically left artinian ring (for short (.R, i)
is an STA-ring~ iff it is both a TA-ring and a TN-ring (see [7]) .

Finally recall that (.R, i) is strictly linearly compact (for short sJ.c.)
iff it is a complete and Hausdorff TA-ring.

For technical convenience we state the following lemma whose
proof is straightforward.

2.5. LFMMA. Let ,R be a ring, let Rg E R-Mod and let z be the K-topo-
logy o f R. Denote by (.R, 1’r) the Hausdorff completion o f (R, -r). Then :

(a) (R,7:) is a TA-ring -~ (1~, i) is a TA-ring ~ BK is artinian
f . g.

(b) (R, -r) is a TN-ring ~ (.1~, z) is a TN-ring ~ R.K is noethe-
rian f.g.

(c) (.R, i) is an STA-ring « (fi, i ) is an STA-ring ~ BK is
both artinian f .g. and noetherian f .g.

(d) (R, -r) is strictly linearly compact ~ (.R, i) = f) and ,K
is artinian f .g. « (R, -r) is linearly compact and RK is arti-
nian f . g.

..lVloreover, it RK is a selfcogenerator then:

(e) KA artinian f .g. noetherian f .g.

(f) KA noetherian t.g. artinian f . g.
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REMARK. Since RK has a natural structure of -ll-module and since,
with respect to this structure, every subgroup of K is an .R-submodule
iff it is an R-submodule, it is clear that all the statements of lemma
above hold if one writes nK instead of RK.

2.6. PROPOSITION. Let (.B~ T) be a linearly compact ring, nU an
injective cogenerator o f bT with essential socle, A = End(R U) . Let z*
be the finest topology in the equivalence class of 1’. Then (R, ~*) is strictly
lineally compact iff every linearly compact discrete submodule o f UA
is finitely generated. In this case every topology equivaclent to r coincides
with 1’.

PROOF. Recall (see Theorem 1.6) that is faithfully balanced
and that UA is f.l.c.d. and s.q.i. with essential socle. Moreover 1’*
has the left annihilators of submodules of U~ which are linearly
compact discrete as a basis of neighbourhoods of 0.

Now if (R,’r*) is strictly linearly compact then it is clear that
there is not any topology in the equivalence class of z~* coarser than 1’*.
Thus r* = r and every topology equivalent to r coincides with T.

In particular 7:* coincides with the U-topology of ,R. Hence if L is
a linearly compact discrete submodule of U~, there exists a finitely
generated submodule .H of UA such that so that

LH. As (R,7:) is s.l.c., RU is artinian f.g. and hence, by Proposi-
tion 2.5 e) UA is noetherian f.g. It follows that L is a finitely generated
A-module.

Conversely, assume that every linearly compact discrete submodule
of UA is finitely generated. Then 1’* coincides with the U-topology
of JR and UA is noetherian f.g. By Lemma 2.5 e) and a) (R, í*) is strictly
linearly compact.

The following result was suggested to me by D. Dikranjan.

2.7. COROLLARY. Let (R, T) be a linearly compact ring and 
that the Jacobson radical o f R, J(.R), is zero. Then (~, z) is strictly linearly
compact.

Consequentely (R, 7:) is topologically isomorphic to a topological
product n EndDX(VX) where, tor e vector space over

Ae~

the division ring DÂ and is endowed with the f inite topology.

PROOF. It is easy to see (cf. [5] Theorem 14) that for the minimal
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injective cogenerator R U of i3« we have, in this case,

where (S.1).z,,A is a system of representatives of the isomorphism classes
of the left simple R-modules of 131". Thus each S, is fully invariant in
B U and hence, setting A = End (R U), it is straightforward to prove
that U, is semisimple. Then every l.c.d. submodule of UA has finite
length.

By Proposition 2.6, (.R, -r) is strictly linearly compact and, in parti-
cular, i coincides with its Leptin topology. Thus the last assertion of
the Corollary follows by the classical Leptin’s result (see [5J, Theo-
rem 14).

In the following tl1eorem we sum up all the main relations between
the properties of a selfcogenerator R~ E R-Mod and those of the Haus-
dorff completion of .R in its K-topology.

2.8. THEOREM..Let .R be ac ring, BK E R-Mod a selfcogenerator,
A = (-R7 f) the Hausdorff completion of If, in its K-topology.
T hen :

a) (.R, ~) is I.e. ~ R.K is KA is q.i.
b) (R, z) is sJ.c. ~ BK is artinian f . g. ~ KA is E-q.i. ~ KA

is 

c) BK is Z. c. d. ~ KA is injective.
d) R.K is artinian ~ KA is E-injective ~ KA is co-injective.

I f moreover BK is s. q. i. then :

a) (R, f) is I.e. and Soc(R.iK) is essential in BK ~ KA is s.q.i.

(3) (.R, f) is 8-1-C- is I-S-q-i- ~ KA is CO-q-i-

y) R.K is I.e.d. with essential socle ~ KA is an injective cogenerator
o f Mod-A.

ð) BK is artinian ~ K is a E-injective cogenerator of Mod-A ~
-~ AA is noetherian.

PROOF. Assume BK is a selfcogenerator. Then

a) follows by Proposition 1.5,
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b) follows by Proposition 2.3 and by Proposition 6.6 of [6] after
observing that, for a non-empty set X, the K-topology and
the K(x)-topology of A coincide,

c) follows by Proposition 1.5,

d) follows by Proposition 2.3.

Assume now Rg is s.q.i. Then

a) follows by Theorem 0.4,

fl) follows by Theorem 0.4, Lemmata 2.5 and 2.2 and by b),

y) follows by Corollary 1.8.

6) The first equivalence of 6) follows by d) and y). Now if Mod-A
has a E-injective cogenerator then it is well known that A
is right noetherian. Conversely if .A is right noetherian then,
as Rg is a selfcogenerator and .9. = End(Rg) it is straight-
forward to prove that ~IT is artinian.

REMARK. Statement c) is Theorem 9.4 of [6].
Statement d) could be deduced from Theorem 9.4 of [6] and Proposi-

tion 3 of [4]. Statement 3) was already proved, in a different way,
in [7] (see [7], Lemma 4.12).

It is natural to ask when, in the hypothesis of Theorem 2.8, Rg
and g~ are both E-s.q.i. Following theorem gives an answer to this
question.

2.9. THEOREM. Let R be a ring and let RK e R-Mod be an s.q.i.
module. Then, in the notations o f T heorem 2.6, the following statements
are equivalent:

(a) Every finitely generated submodule of Rg has f inite length.

(b) Every f initely generated submodule o f has f inite length.

(c) R and A are both strictly linearly compact in their K-topologies.

(d) Rg and are both E-strongly quasi-injective.

PROOF. (a) =&#x3E; (b) Since Rg is artinian f.g. by Theorem 2.8 .K~
is Since Rg’ is s.q.i., R by Theorem 0.4. Thus

( b ) follows by Lemma 2.5 e ) and f ) .
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(b) ~ (a) Since BK is s.q.i., (a) follows by Lemma 2.5 e) and f ).

(a) ~ (c) Since (a) ~ (b), (c) follows by Theorem 0.4.

(c) ~ (d) As .R is s.l.c. in its K-topology, by Theorem 0.4 &#x26;K.4
is faithfully balanced and KÂ is s.q.i. (d) follows now from
Theorem 2.8.

(d) =&#x3E;(a) By Theorem 2.8 ,K and KA are both artinian f.g.

Since ,K is s.q.i. (a) follows by Lemma 2.5 e).

2.10. PROPOSITION. Let R be a ring and let K E R-Mod be an
t.l.c.d. and s.q.i. module with essential socle, A = End(.,,K). Then A
is s.l. c. in its K-topology ~ .K~ is artinian t. g. ~ BK is noetherian
f.g. ~ BK is ~ BK is 

PROOF. By Lemma 1.4 and Theorem 0.4, RKA is faithfully balanced,
K is an s.q.i. module and A is linearly compact in its K-topology.
Thus by Lemma 2.5 d) A is s.l.c. in this topology « .g~ is artinian
f.g. Now, by Lemma 2.5 e) and f ) KA is artinian f.g. ~ Rl~ is noethe-
rian f.g. The other equivalences follow by Theorem 2.8.

As a corollary we get the following result which is analogous to
Theorem 1.6.

2.11. COROLLARY. Let A be a ring. A admits a right strictly linearly
compact ring topology A = End(BK) where R is a ring and RK an
f.l.c.d. E-strongly quasi-injective le f t .R-module with essential socle. In
this case A is s.t.c. in its K-topology.

PROOF. Follows by Proposition 2.10 and Theorem 1.6.

The following theorem, which is analogous to Theorem 0.3, charac-
terizes topologically left artinian rings.

2.12. THEOREM. Let (R, -r) be a topological ring, (.R, f) the .gaus-
dorff completion of (R, -r) and z* the Leptin topology of 7:. Then, with
the notations introduced in 0.2, the following statements are equivalent :

( a) (R,7:) is a TA-ring (i. e. (P7 i) is strictly linearly compact) .
(b) If BK is a cogenerator of and A = End(,,K), then KA is

(w-q.i.).
(c) z = r* and there exists a cogenerator K of 13« such that, setting
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(d) Let the minimal cogenerator of b1’, T = Fnd(,U).

Then Ui is (co-s.q.i.) and 7: = 7:*. 
’

PROOF. (a) =&#x3E; (b) Since is a TA-ring every module of b1’ is
artinian f.g. Now (b) follows from Theorem 2.8.

Then R.K is a cogenerator

of ’6,. By Theorem 2.8 RK is artinian f.g. so that, for every 
is left artinian.

(a) ~ (c) Since (a) .~ (b), this is trivial.

(c) =&#x3E; (a) By Theorem 2.8 RK is artinian f.g. Since BK contains
the minimal cogenerator of by Lemma 5 of [5], (a)
follows.

(a) ~ (d) Since (a) « (b), (d) follows by Theorem 0.3 and
Lemma 2.2.

(d) =&#x3E;(c) is trivial.

The following proposition characterizes STA-rings.

2.13. PROPOSITION. In the hypothesis of Theorem 2.1, let R U
be the minimal cogenerator of T = End(R U). The following state-
ments are equivalent:

(a) (jR? r) is an STA-ring.
(b) T = -r* and RU and UT are both 

(c) RU is s.q.i. and T, endowed with its U-topology is a strongly
topologically right artinian ring.

(d) TA-ring and RU isE-s.q.i. 

PROOF. (a) =&#x3E; (b) By Theorem 2.1 of [7] RU is s.q.i.
Thus Theorem 2.7 applies.

(b) ~ (c) By Theorem 2.9.

(c) =&#x3E; (d) By Theorem 2.9.

(d) ~. (b) By Theorem 2.8.

(b) ~ (a) By Theorem 2.9.
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Commutative TA-rings were extensively studied in [7] (see [7],
section 6). Following proposition gives a further characterization of
these rings.

2.14. PROPOSITION. Let (R, r) be a commutative topological ring,
it U the minimal cogenerator of b1’. The following statements are equivalent :

(a) (R, r) is a (strongly) topologically artinian ring.

is a topologically noetherian ring.

PROOF. First of all note that (R, T) is a topologically artinian
ring iff it is a strongly topologically artinian ring (see Proposition 3.9
of [7]). Thus

(a) ~ (b) follows from Proposition 2.13.

(b) (e) Since R U is it is straightforward to prove
that r) is a topologically noetherian ring (see Theorem 15
of [1]).

(0) ~ (a) 1 = Ann, (x). Then Roe is noethe-
rian and thus the ring RjI is a commutative noetherian

ring. Since Roe is a finitely embedded R/I-module, from the
general theory of commutative noetherian rings, it follows
that .Rx is artinian.
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