RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

TOMA ALBU

A remark on the spectra of rings with Gabriel dimension

Rendiconti del Seminario Matematico della Università di Padova, tome 72 (1984), p. 45-48

http://www.numdam.org/item?id=RSMUP 1984 72 45 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1984, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Remark on the Spectra of Rings with Gabriel Dimension.

TOMA ALBU (*)

All rings considered in this Note will be commutative and unitary. For such a ring $\Im(A)$ will denote the lattice of ideals of A and Spec (A) the topological space (endowed with the Zariski topology) of prime ideals of A.

Năstăsescu [N] has proved that if A and B are two commutative Noetherian rings having the lattices $\Im(A)$ and $\Im(B)$ isomorphic, then Spec (A) and Spec (B) are homeomorphic topological spaces. He gives also a counter-example to show that the result fails for arbitrary commutative rings.

The aim of this Note is to present a very short proof of the above result in a more general setting: A or B has a Gabriel dimension, and $\Im(A)$ is isomorphic to $\Im(B)$ not necessarily as lattices but only as partially ordered sets.

Denote by Spec $(A)_{\alpha}$ the set of maximal ideals of A, and if $\alpha > 0$ is an ordinal, denote by Spec $(A)_{\alpha}$ the set of prime ideals P of A such that each prime ideal Q of A properly containing P belongs to Spec $(A)_{\beta}$ for some $\beta < \alpha$. If A has a Gabriel dimension then it is well-known that Spec $(A) = \operatorname{Spec}(A)_{\alpha}$ for an ordinal α ; in this case the least such α is called the classical Krull dimension of A, denoted by cl K dim A. If the ring A has a Gabriel dimension as defined in [G-R], this dimension will be denoted by G dim A.

LEMMA [G-R]. If the ring A has a Gabriel dimension, then A is Gabriel simple if and only if A is a domain.

(*) Indirizzo dell'A.: Facultatea de Matematica, Str. Academiei 14 - R-70109 Bucharest 1 - Romania.

46 Toma Albu

THEOREM. Let A and B two commutative rings with unit element such that there exists an isomorphism

$$\varphi \colon \Im(A) \to \Im(B)$$

of partially ordered sets. Suppose that A has a Gabriel dimension. If P is an ideal of A and $\alpha > 0$ is an ordinal, then:

- (1) B has a Gabriel dimension and G dim B = G dim A.
- (2) B is Gabriel simple if and only if A is Gabriel simple.
- (3) $P \in \text{Spec}(A)$ if and only if $\varphi(P) \in \text{Spec}(B)$.
- (4) $P \in \operatorname{Spec}(A)_{\alpha}$ if and only if $\varphi(P) \in \operatorname{Spec}(B)_{\alpha}$.
- (5) $\operatorname{cl} K \operatorname{dim} B = \operatorname{cl} K \operatorname{dim} A$.

PROOF. (1) and (2) follow at once from the inductive noncategorical definition of the Gabriel dimension of a module, sketched in [G] and explicited in [L]. A proof that this definition is indeed the same with the original definition of the Gabriel definition by means of quotient categories may be found in [A].

(3) Suppose that $P \in \operatorname{Spec}(A)$; then A/P is a domain with Gabriel dimension, and by the Lemma, A/P is Gabriel simple. But the isomorphism

$$\varphi \colon \Im(A) \to \Im(B)$$

of posets induces an isomorphism

$$\varphi_P \colon \Im(A/P) \to \Im(B/\varphi(P))$$

of posets. According to (2), $B/\varphi(P)$ is Gabriel simple, and so, by Lemma, $B/\varphi(P)$ is a domain. Consequently $\varphi(P) \in \operatorname{Spec}(B)$.

(4) We proceed by transfinite induction. If $\alpha = 0$ and $P \in \operatorname{Spec}(A)_0$ then P is a maximal ideal of A, and then, since φ is an isomorphism of posets, $\varphi(P)$ has the same property; so $\varphi(P) \in \operatorname{Spec}(B)_0$. Let now $\alpha > 0$ and suppose that $P \in \operatorname{Spec}(A)_\alpha$. Denote $P' = \varphi(P)$ and let $Q' \in \operatorname{Spec}(B)$ with $Q' \supseteq P'$. Then $Q' = \varphi(Q)$ for same $Q \in \mathfrak{I}(A)$ with $Q \supseteq P$. By (3), $Q \in \operatorname{Spec}(A)$, hence $Q \in \operatorname{Spec}(A)_\beta$ for some $\beta < \alpha$.

By the induction hypothesis $\varphi(Q) = Q' \in \operatorname{Spec}(B)_{\beta}$, and consequently $P' = \varphi(P) \in \operatorname{Spec}(B)_{\alpha}$.

(5) follows immediately from (4). ■

COROLLARY 1. If the rings A and B are as in the theorem above then $\operatorname{Spec}(A)$ and $\operatorname{Spec}(B)$ are homeomorphic.

PROOF. The isomorphism $\varphi \colon \Im(A) \to \Im(B)$ of posets induces by the theorem a bijective map

$$\bar{\varphi} \colon \operatorname{Spec}(A) \to \operatorname{Spec}(B)$$

which is clearly bicontinuous.

COROLLARY 2 [N]. If A and B are commutative Noetherian rings with unit element for which there exists an isomorphism $\varphi: \Im(A) \to \Im(B)$ of lattices, then Spec (A) and Spec (B) are homeomorphic.

REMARKS. (1) The proof of Corollary 2 given in [N] uses essentially both the Noetherian condition on A and the fact that $\varphi \colon \Im(A) \to \Im(B)$ is a lattice isomorphism.

(2) The condition « A has a Gabriel dimension » is essential for Corollary 1 be true. To see this it is sufficient to consider the example given in [N]:

Let A be a rank 1 nondiscrete valuation ring with value group the additive group \mathbb{R} of real numbers; if $v: A \to \mathbb{R} \cup \{\infty\}$ is the valuation on A and $I = \{x \in A | v(x) \geqslant \pi/2\}$, then I is a nonzero ideal of A, $\mathfrak{I}(A)$ and $\mathfrak{I}(A/I)$ are isomorphic lattices, but $\operatorname{Spec}(A) = \{0, M\}$ and $\operatorname{Spec}(A/I) = \{M/I\}$, where M is the unique maximal ideal of A. Note that A has not Gabriel dimension.

REFERENCES

- [A] T. Albu, Gabriel dimension of partially ordered sets, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 28 (76) (1984).
- [G] R. GORDON, Gabriel and Krull dimension, in B. R. McDonald, A. R. Magid and K. C. Smith, Ring theory: Proceedings of the Oklahoma Con-

- ference, Lecture Notes in Pure and Applied Mathematics 7, Marcel Dekker, Inc., New York and Basel, 1974.
- [G-R] R. Gordon J. C. Robson, The Gabriel dimension of a module, J. Algebra, 29 (1974), pp. 459-473.
- [L] C. Lanski, Gabriel dimension and rings with involution, Houston J. Math., 4 (1978), pp. 397-415.
- [N] C. Năstăsescu, Collegamento tra il reticolo degli ideali di un anello e il suo spettro, Ann. Univ. Ferrara, Sez. VII (N.S.), 19 (1974), pp. 87-92.

Manoscritto pervenuto in redazione il 28 febbraio 1983.