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Double Resonance and Multiple Solutions
for Semilinear Elliptic Equations.

P. N. SRIKANTH (*)

SUMMARY - In this paper we consider nonlinear elliptic problems under the
assumption of Double Resonance in the sense of [2] and prove multi-
plicity results.

SUNTO - In questo articolo consideriamo problemi ellittici nonlineari sotto

l’ipotesi di duplice risonanza nel senso di [2] e proviamo risultati di mol-
teplicita.

1. Introduction.

In this paper we consider second order nonlinear problems like

where Q is a bounded domain in Rn with smooth boundary 8Q, 4 is
the Laplacian and g E C2 (R). We suppose that the behaviour of g at
infinity is such that we have double resonance in the sense of (2) below
(see also Berestycki-De Figueiredo [2]). We prove in this case similar
multiplicity results as in [1] and [3] where non-resonating problems
are considered.

(*) Indirizzo dell’A.: T.I.F.R. Center, Bangalore 560012, India; Inter-

national School for Advanced Studies, Trieste, Italy.
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2. In this section we state and prove the main theorems. We use
X to denote the space the space of functions which are H61der
continuous in ,~ with exponent a and vanish on OS2. We use also

denote the eigenvalues of 2013 J, with zero data on the boundary
and we denote by (q;k) the corresponding eigenfunctions. We also recall
the fact I change sign in S2. Also whenever we write

we implicitly suppose Xk is a simple eigenvalue.

THEOREM 1. Let k &#x3E; I be such that  Ak  2k+,, and let g : R - R
be a 02-function such that

Suppose further g(0) = 0 and g’(0) is such that

then the equation (1) has at least one non-trivial solution.

THEOREM 2. With g as in Theorem 1, we assume further there
exists a such that

then (1) has at least two non-trivial solutions.

REMARK 1. We will state results of similar type when k =1
(i.e. Åk = Ål) in section 3.

PROOF of THEOREM 1. Define gn: by
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clearly,

and

Hence gn( --~- oo) strictly increases to and strictly decreases
to Åk as 

Consider now the equation

clearly u == 0 is a solution of (7).
Since

and since gn(0) - g’(0) as n - oo, we have from (6) and (3), for large n

Notice that (8) implies (7) has at least one non-trivial solution. This
fact is easy to show using a degree argument. In fact, note that u - o
is a non-singular solution of (7) with Leray-Schauder index (-1 ) k-1.

Defining = where Gn is the Nemytski op-
erator induced by gn on X one can show that, from g[( + oo) belongs
to Âk+l)’ implies there exists an Rn &#x3E; 0, such that

(See for ex: [1] page 637). This then implies (7) has at least one non-
trivial solution by the additivity of Leray-Schauder degree.

Let (un) be a non-zero solution of (7) for each n, i.e. u. satisfies
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LEMMA 1. There exists a constant C independent of n, such that
II  C.

PROOF. Suppose oo, setting wn = unlllunllx, we have from (8)

Notice that, since is bounded, directly from (9) we have
that is bounded. Hence in Cl-strongly (subsequence)
and v ~ 0 in S~. This leads to, from (10), 9

Hence from (11) we have,

Notice that (13) is the same as equation (2.10) of [2]. One can argue
as in [2] to show that such a w fl 0 cannot exist. We briefly sketch
the arguments.

It can be shown that if v satisfies (13), then v = wo -~- vl, where
vo E ker (d + 2k) and Vl E ker (d + 2k+,). Then (12) implies that

Now taking inner product with v, and inner product) , we
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obtain

and

Now from (12) and (16), we have

whereas from (12) and (15), we have

This implies

Now (15) and (17) imply,

and (16) and (17) imply

Let Ao = SZ : v,(x) ~ 0} and (r E S~ : v,(x) ~ 0}. From (12)
and (18) it follows kv(x) - 0 on Ao . But if Ao =A 0 i.e. if wo is .not
identical zero, then from unique continuation property of elements in
ker(d + ~,k) this is leads to 0 a.e. on S~. But this is a con-

tradiction, for being perpendicular to the first eigenfunc-
tion must change sing. Hence Ao must be empty i.e. wo = 0. In this
case = but (19) now leads to a contradiction, for from (19)

But this again cannot hold for Vl changes sign in SZ. This proves the
Lemma 1.

PROOF or THEOREM 1 COMPLETED. From the Lemma and from
the equation (9), we have from the classical estimates that is
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bounded in Hence exists a subsequence which we shall not
distinguish such that in X. We claim u#0.

Suppose then consider again,

Again from the boundedness of (g(t)lt), we have from the corre-
sponding equation which satisfies, that is bounded. Hence

wn - w in C1-strongly (subsequence) and w w 0, because 
Hence taking limit as n - oo, we have

But we know ~,k_1 C g’ (0 ) C ~,k by hypothesis (3). Hence a contradic-
tion. Hence in X. From now proves the exist-

ence of at least one nontrivial solution. This completes the proof of
Theorem 1.

Before we proceed to prove the Theorem 2, we prove the following
Lemma and also make certain observations which we shall use in the
course of the proof of Theorem 2.

LEMMA 2. The equation (1), under the hypothesis of Theorem 1,
cannot have a solution in the span of ·
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PROOF. First we show (1) cannot have a solution q, q satisfying
= 

Suppose this is not true, then this leads to

Since is an eigenfunction corresponding to 1 (21) is the

same as,

But 99 changes sign in Q, hence for x in a neighbourhood of (r E S~ :
= 0} we have

But this implies g’(0) _ in contradiction with our assumption (3).
Hence, if (1) has a solution in the span of then it show

be of the form u = q + 1jJ, where w is an eigenfunction corresponding
to and y in the span of and 1jJ =1= 0 because of the above
proven fact.

+ y is a solution of (1), we have

Then taking L2-inner product with u, we have

But from u = 92 + ~ 0, we have

whereas, by (4), we have
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hence (23) and (24) lead to a contradiction. This proves the Lemma.
Before we proceed further we specify the notations we employ.Domain of (- 4 ) = D(- 4 ) = H2(Q) m H((Q), where H2(Q) and

are the usual Sobolev Spaces.

P will denote the orthogonal projection of L2(Q) on 
Po will denote the orthogonal projection of on 

Moreover, we remark that for gn defined as in (4), i.e. , y

we have

for large n. Also from (6) and (8)

and

and

Using a result proved in [3], the following Lemma can be proved
regarding the solutions of the equation

LEMMA 3. Equations (26) has at least two nontrivial solutions
ui(i = 1, 2) such that if POUi = Sig9k , then one of the sils is strictly
positive and the other strictly negative.
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SKETCH OF THE PROOF. Notice that solving

is equivalent to solving

The idea of the proof is to fix s E R and to show that (28. a) admits
unique solution v(s) and then analyse the following function defined

from R to R:

We discuss F. later and return now to the unique solvability of
(28) for we need some of the details later. The unique solvability of
(28 a) is established by a saddle point argument which we sketch.

Define Jn : D(A) - R
by

where

Notice

Setting we notice that Hn,
is strictly concave for fixed v, and of course with s fixed, which we
have emphazised already. Also is strictly convex for fixed vl .
These follow because of the nature of gn . In fact, with obvious notations,
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we have,

and

The existence and uniqueness is now obtained through a saddle
point argument.

Going back to .F’n(s) defined in (29), y it can be shown (because
of the fact g§( + oo) E (~,k, A,,+,)) that both the following limits are

strictly negative

However F’ ’(0) because of (8) becomes strictly positive. These facts
together with = 0 imply the existence of two numbers and

one positive and other negative such that = 0 (i = 1, 2).

PROOF or THEOREM 2. In the light of our observation above, if
we now set un = vl(sn) + V2(Sn) -~-- to be a nontrivial solution of (26),
then assuming we have chosen un with sn positive, we will show sn +-&#x3E; 0.
One can argue in an identical way to show gn -~-~ 0, if Un is chosen such
that sn  0. These then imply the existence of two non-trivial solutions
from (1). Notice that all the arguments used in the proof of Theorem 1
hold in the setting in which we are working to prove Theorem 2. That
is, is bounded and in L2(Q) do hold. Moreover the

following estimate

holds, where C is a constant independent of n.
We now assume (33) and finish the proof of Theorem 2. Suppose

then from (33) it follows that Vl(Sn) - 0 in L2(Q). Now, since
is bounded and since un cannot converge to zero in 
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we have from

0 in ~o(~3) (Note we use .L2-estimates and the fact
gn(un) is bounded in L2(Q)). But since 0 and Vl(Sn) ~ 0, we have
that u belongs that the span of Moreover u satisfies

But this contradicts Lemma 2. Hence the theorem follows if we estab-
lish (33).

LEMMA 4. The estimate (33) holds.

PROOF. Setting

we define

Then it is easy to verify

Note, here we have used v2(sn)) = 0, because they are the
saddle points of 1n(Vl -~- V2 + 8ncpk) in our notation. Now observe that



340

using (25) and Holder’s inequality, it follows that

Since we know II + IIv2(sn) II) is bounded (this is because un =
= -E- V2(sn) --f- s,,99, and we have proved is bounded), we
have from (37)

But since

This then implies the existence of a constant which we shall still
denote by C such (33) holds. Hence the Lemma. This then completes
the proof of Theorem 2.

3. In this section we consider the case of double resonance when
Âk = Âl the first eigenvalue. That is, we assume g is such that

In this case one cannot hope to prove theorems like Theorem 1
and 2 proved above with identical assumptions. This due to the fact

that, in proving that (13) has no trivial solution we have used the
fact that any nontrivial solution of (13) must change sign in SZ. How-
ever if we consider the equation corresponding to (13), y in the case
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when Âk == i.e.

we cannot claim that non-trivial solutions have to change sign. This

is because the eigenfunctions corresponding to ~,1 have a constant sign
in Q. To circumvent this difficulty we impose suitable Ladesman-
Lazer type conditions as in [2]. In fact we will assume g to be such

that :

for some constant Cl

-where &#x3E; 0 is an eigenfunction of - L1 corresponding to the eigen-
value ~,~

Once these assumptions on g are made, one can argue as in [2] to prove
that (40) has nontrivial solution. Hence, in the light of these observa-
tions, it is clear that if suitable hypothesis is made on 9 then one can
prove theorem similar to Theorem 1 and theorem 2, in the case when
Âk we now state the theorems without proof.

THEOREM 3. Suppose g : R - R is a C2-function satisfying (39) and
(41), suppose in addition g(0) = 0 and g’(0) is such that

then the equation (1) has at least one non-trivial solution.

THEOREM 4. Suppose g is as in Theorem 3 and suppose further
there exists a so that

then (1) has at least two non-trivial solutions.
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REMARK 2. In [2] only existence theorems are proved in the case
when g exhibit double resonance. No multiplicity results are proved.
Moreover the existence results are proved using a degree argument
which cannot be used in proving multiplicity results.

REMARK 3. Both in [1] and [3] multiplicity results are proved only
in the case of non resonance our results show that identical multiplicity
results as in [1] and [3] can be proved even if there is double resonance.
In this sense our results are completely new and to the best of our
knowledge do not seem to have been proved before.
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