RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

UMBERTO MARCONI

On the uniform paracompactness

Rendiconti del Seminario Matematico della Università di Padova, tome 72 (1984), p. 319-328

http://www.numdam.org/item?id=RSMUP_1984__72__319_0

© Rendiconti del Seminario Matematico della Università di Padova, 1984, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the Uniform Paracompactness.

Umberto Marconi (*)

0. Introduction.

Uniform paracompactness was defined by M. D. Rice in [R] (this concept was actually used in a previous paper by H.H. Corson [C]). In $[H_1]$, [F], Tamano's theorem on paracompactness has been given a uniform analogue.

Countable uniform paracompactness has been discussed in $[H_1]$, $[H_2]$. In this work, we plan to discuss uniform μ -paracompactness. In § 1 definitions and basic properties are given.

In § 2 uniform analogues of Morita's product theorems for μ -paracompactness $[M_1]$ are obtained; finally, in § 3 countable uniform paracompactness is discussed, obtaining an analogue of Dowker's theorem.

1. Definitions and basic properties.

We will denote by uX a uniform space, by X the associated topological space, by fX the finest uniform space on the topological space X. Furthermore puX will denote the paracompact reflection of uX and $p^{\mu}uX$ the coarsest uniform space for which the uniform maps from uX to metric spaces of density μ are uniform.

A filter base \mathcal{F} of subsets of uX is said to be weakly Cauchy if for every uniform covering \mathfrak{U} of uX there exists an element $U \in \mathfrak{U}$ such that $U \cap F \neq \emptyset$ for every $F \in \mathcal{F}$.

(*) Indirizzo dell'A.: Seminario Matematico, Via Belzoni 7, 35131 Padova.

Let \mathcal{A} be a family of subsets of \mathcal{X} ; denote by \mathcal{A} , the family of all finite unions of elements of \mathcal{A} . A directed family is a family \mathcal{A} such that $\mathcal{A} = \mathcal{A}_{f}$. A family \mathcal{A} is said to be uniformly locally finite if there exists a uniform covering \mathcal{U} such that every $U \in \mathcal{U}$ meets \mathcal{A} only for a finite number of elements of \mathcal{A} .

Let μ be a cardinal number. Consider the following conditions on uX:

- 1) every weakly Cauchy filter base of cardinal $\leq \mu$ has a cluster point;
- 2) every directed open covering A of power $\leq \mu$ is uniform;
- 3) every open covering $\mathcal A$ of power $\leq \mu$ has an open uniformly locally finite refinement.

We have the following obvious implications: $1 \Leftrightarrow 2$ and $3 \Rightarrow 2$. Later we will prove that $2 \Rightarrow 3$.

DEFINITION 1. A uniform space uX is said to be uniformly μ -paracompact if it satisfies the above condition 1.

In $[M_1]$ a topological space X is said to be μ -paracompact if every open covering of X of power $\leq \mu$ has an open locally finite refinement.

Proposition 1. If uX is uniformly μ -paracompact, then X is μ -paracompact.

PROOF. Let \mathcal{A} be an open covering of power $\leq \mu$; \mathcal{A}_f , being a uniform covering, has a locally finite open refinement \mathcal{B} . For every $B \in \mathcal{B}$, consider a finite subset \mathcal{A}_B of \mathcal{A} such that $B \subset \cup \mathcal{A}_B$. Then the open covering

$$\{B \cap A : B \in \mathcal{B}, A \in \mathcal{A}_{B}\}$$

is a locally finite open refinement of A.

I don't know if a $T_{3\frac{1}{4}}$ μ -paracompact space is uniformly μ -paracompact in the fine uniformity. This occurs if X is a normal space.

Proposition 2. A normal space X is μ -paracompact if and only if fX is uniformly μ -paracompact.

PROOF. If X is a normal μ -paracompact topological space then every open covering of power $\leq \mu$ is normal in the sense of Tukey ([M₁] th. 1.1).

REMARK 1. There exist countably uniformly paracompact spaces that fail to be normal. Let X be a countably compact $T_{3\frac{1}{2}}$ non normal space, for example $\omega_1 \times (\omega_1 + 1)$. If uX is a compatible uniform space, uX is countably uniformly paracompact.

For the proof of $2 \Rightarrow 3$, we need a lemma. (I am indebted to A. Hohti for a suggestion which led to this lemma).

LEMMA 1. If a covering A is locally finite, there exists an open covering B, with $|B| \leq |A|$, such that every element of B meets only a finite number of elements of A.

PROOF. Let $\mathfrak V$ be an open covering of X such that every member of $\mathfrak V$ meets only a finite number of elements of $\mathcal A$. For every finite subset $\mathcal F$ of $\mathcal A$ put $V_{\mathcal F}=\cup \{V\in \mathfrak V\colon V\cap A\neq\emptyset \text{ iff }A\in \mathcal F\}$. Then $\mathfrak B=\{V_{\mathcal F}\colon \mathcal F\in \text{finite subsets of }\mathcal A\}$ satisfies the required properties.

Proposition 3. Condition $2 \Rightarrow condition 3$.

PROOF. Let \mathcal{A} be an open covering of X of power $\leq \mu$. By proposition 1 and theorem 1.4 ch. VIII of [Du], it has an open locally finite refinement \mathcal{B} , with $|\mathcal{B}| \leq |\mathcal{A}|$. By lemma 1, there exists an open covering \mathcal{C} , with $|\mathcal{C}| \leq \mu$, such that every member of \mathcal{C} meets only a finite number of elements of \mathcal{B} . Since \mathcal{C}_f is uniform, \mathcal{B} is uniformly locally finite.

PROPOSITION 4. If uX is uniformly μ -paracompact, every uniform covering of power $\leq \mu$ belongs to $p^{\mu}uX$ and $p^{\mu}uX$ has a point finite base.

Proof. By [V] it sufficies to prove that every uniform covering of power $\leq \mu$ has a point finite uniform refinement. If U is a uniform covering of power $\leq \mu$, it has a uniform open refinement U of power $\leq \mu$ (argue as in the proof of th. 1.4 ch. VIII of [Du]). By uniform μ -paracompactness, U has an uniformly locally finite refinement. Therefore, by [Sm] th. 4.5, U has a locally finite uniform refinement.

From the above proposition we get the following

COROLLARY 1. uX is uniformly μ -paracompact if and only if every directed open covering \mathcal{A} of power $\leq \mu$ belongs to $p^{\mu}uX$.

2. Uniform products.

As for μ -paracompactness ([M₁] th. 2.1) uniform μ -paracompactness is preserved under products by compact spaces. When considered as

uniform spaces, compact (T₂) spaces are of course equipped with their unique admissible uniformity.

THEOREM 1. If a uniform space uX is uniformly μ -paracompact, and Y is compact, then $uX \times Y$ is uniformly μ -paracompact.

PROOF. Let \mathcal{F} be a weakly Cauchy filter base of power $\leq \mu$. Since the first projection $p_1: uX \times Y \to uX$ is a closed mapping, the filter

$$\mathcal{F}_1 = \{p_1(\overline{F}) \colon F \in \mathcal{F}\}$$

is a weakly Cauchy filter base of closed sets, with $|\mathcal{F}_1| \leq \mu$. Therefore there exists a point $p \in uX$ such that $(\{p\} \times Y) \cap \overline{F} \neq \emptyset$ for every $F \in \mathcal{F}$. The compactness of Y ensures the existence of a point $y \in Y$ such that $(p, y) \in \overline{F}$ for every $F \in \mathcal{F}$.

As usual, let I denote the closed unit interval, D the discrete two-point space $\{0,1\}$. It is well-known that a normal space X is μ -paracompact if and only if $X \times I^{\mu}$ is normal, or equivalently, $X \times D^{\mu}$ is normal ($[M_2]$; [D] for $\mu = \omega$). We plan to give analogous characterizations of uniform μ -paracompactness.

DEFINITION. We say that a uniform space uX satisfies property P for a compact space Y if whenever A and B are disjoint closed sets of $X \times Y$, there exists a uniform covering G of $uX \times Y$ such that for every $T \in G$ the sets $A \cap T$ and $B \cap T$ are far (uniformly separated) in $pfX \times Y$.

REMARK 2. By compactness of Y the uniform covering $\mathcal E$ of the above definition may be assumed of the form:

$$\mathcal{C} = \{ \mathbf{U} \times \mathbf{Y} \colon \mathbf{U} \in \mathcal{U} \}$$

for a suitable uniform covering U of uX.

THEOREM 2. Let uX be a normal uniform space. The following conditions are equivalent:

- 1) uX is a uniformly μ -paracompact space;
- 2) $p^{\mu}uX$ satisfies property P for every compact space of weight μ ;
- 3) uX satisfies property P for I^{μ} ,
- 4) uX satisfies property P for D^{μ} .

PROOF. $1 \Rightarrow 2$. Let Y be a compact space of weight μ . Let \mathcal{B} be a directed basis of power μ for the open sets of Y. Let $\Delta = \{d_{\alpha} : \alpha \in \mu\}$ be a basis of power $\leq \mu$ consisting of continuous pseudometrics of Y, such that every open covering of Y has d_{α} -Lebesgue number 1, for some $\alpha \in \mu$. Denote by Γ the set of all triples (d_{α}, H, K) with $d_{\alpha}(H, K) \geqslant 1$, $d_{\alpha} \in \Delta$, $H, K \in \mathcal{B}$; of course $|\Gamma| \leq \mu$. Let A, B be closed and disjoint subsets of $X \times Y$. For every $x \in X$ put

$$A[x] = \{ y \in Y : (x, y) \in A \} , \quad B[x] = \{ y \in Y : (x, y) \in B \} .$$

For every $\gamma \in \Gamma$, let

$$V_{\gamma} = \{x \in X \colon A[x] \subset H, B[x] \subset K, \text{ where } \gamma = (d_{\alpha}, H, K)\}$$
.

From the compactness of Y follows that the family $\mathfrak{V} = \{V_{\gamma} : \gamma \in \Gamma\}$ is an open covering of uX of power at most μ .

Therefore there exists a uniform covering \mathbb{U} of closed sets such that every $U \in \mathbb{U}$ is contained in a finite union of elements of \mathbb{U} , that is $U \subset \bigcup_{\gamma \in \mathcal{F}_{\sigma}} V_{\gamma}$ for a suitable finite subset F_{σ} of Γ . For every $U \in \mathbb{U}$ the open covering of U

$$\{V_{\gamma_i} \cap U, ..., V_{\gamma_n} \cap U : \gamma_i \in F_v\}$$

is induced by the finite open covering of X:

$$\mathfrak{V}_{\scriptscriptstyle \mathcal{U}} = \{X \setminus U, V_{\scriptscriptstyle \mathcal{V}_1}, ..., V_{\scriptscriptstyle \mathcal{V}_n} \colon \gamma_i \in F_{\scriptscriptstyle \mathcal{U}}\}$$
.

By the normality of X, \mathcal{V}_{v} is a uniform covering of the space pfX. By corollary 1, covering \mathcal{U} may be taken belonging to $p^{\mu}uX$. Let

$$\mathcal{C} = \{ \mathcal{U} \times Y \colon \mathcal{U} \in \mathcal{U} \}$$
.

For every $V_{\gamma} \in \mathcal{V}$, there exist a pseudometric $d_{\gamma} \in \Delta$ and two open sets of Y, say H_{γ} , K_{γ} , such that for every $x \in V_{\gamma}$ we have $A[x] \subset H_{\gamma}$, $B[x] \subset K_{\gamma}$ and $d_{\gamma}(H_{\gamma}, K_{\gamma}) \geq 1$. If $F_{\sigma} = \{\gamma_{1}, \ldots, \gamma_{n}\}$ let $d_{\sigma} = d_{\gamma_{1}} \vee \ldots \vee d_{\gamma_{n}}$. Let σ_{σ} be an admissible pseudometric of pfX such that the covering \mathcal{V}_{σ} has σ_{σ} -Lebesgue number 1. Let $T \in \mathcal{C}$, $T = U \times Y$ for some $U \in \mathcal{U}$.

Let $(x_1, y_1) \in A \cap T$ and $(x_2, y_2) \in B \cap T$. If $\sigma_{\mathcal{U}}(x_1, x_2) \leq 1$ there exists some $\gamma_i \in F_{\mathcal{U}}$ such that $x_1, x_2 \in V_{\gamma_i}$ and therefore $y_1 \in A[x_1] \subset H_{\gamma_i}$,

 $y_2 \in B[x_2] \subset K_{\gamma_i}$. Therefore $d_{\sigma}(y_1, y_2) \geq d_{\gamma_i}(y_1, y_2) \geq d_{\gamma_i}(H, K) \geq 1$. Thus $(\sigma_{\sigma} \times d_{\sigma}) \big((x_1, y_1), (x_2, y_2) \big) \geq 1$ and therefore $A \cap T$ and $B \cap T$ are separated by a uniform covering of $p \notin X \times Y$.

 $2 \Rightarrow 3$. Obvious.

 $3 \Rightarrow 4$. Obvious, because D^{μ} is a closed subspace of I^{μ} .

Before proving that $4) \Rightarrow 1$) we need the following:

LEMMA 2. Let B a subset of $X \times Y$ and Y_0 a subset of Y. If B and $X \times Y_0$ are separated by the covering $\mathfrak{U} \times \mathfrak{V}$, then they are separated by the covering $\{X\} \times \mathfrak{V}$.

PROOF. Let $\mathfrak{U} \times \mathfrak{V} = \{ U_{\alpha} \times V_{\beta} \colon U_{\alpha} \in \mathfrak{U}, V_{\beta} \in \mathfrak{V} \}$. Thus

$$\operatorname{St}(X \times Y_0, \mathfrak{A} \times \mathfrak{V}) = X \times \operatorname{St}(Y_0, \mathfrak{V}) = \operatorname{St}(X \times Y_0, \{X\} \times \mathfrak{V}),$$

St
$$(B, \{X\} \times \mathcal{V}) = X \times (\cup \{V_{\beta} : B \cap (X \times V_{\beta}) \neq \emptyset\})$$
.

If the stars meet, there exist $V_{\beta}, V_{\beta'} \in \mathcal{V}, V_{\beta} \cap V_{\beta'} \neq \emptyset$, such that $V_{\beta'} \cap Y_0 \neq \emptyset$ and $(X \times V_{\beta}) \cap B \neq \emptyset$.

Let $y \in V_{\beta} \cap V_{\beta'}$ and let $x \in X$ such that $(\{x\} \times V_{\beta}) \cap B \neq \emptyset$. Then

$$(x, y) \in \operatorname{St}(B, \mathfrak{U} \times \mathfrak{V}) \cap \operatorname{St}(X \times Y_0, \mathfrak{U} \times \mathfrak{V}),$$

against the hypothesis.

PROOF OF $4 \Rightarrow 1$. For every $\alpha \in \mu$, let $p_{\alpha} : D^{\mu} \rightarrow D$ the projection on the α -th coordinate.

Let 0 be the point of null coordinates.

If $A = \{A_{\alpha} : \alpha \in \mu\}$ is an open covering of uX of power μ , the open set

$$\Omega = \bigcup_{\alpha \in \mu} A_{\alpha} \times p_{\alpha}^{-1}(0)$$

is a neighborhood of $X_0 = X \times \{0\}$.

Therefore there exists a uniform covering \mathfrak{U} of uX such that for every $U \in \mathfrak{U}$ the sets $X_0 \cap (U \times Y)$ and $(X \times Y \setminus \Omega) \cap (U \times Y)$ are far in $pfX \times Y$. By lemma 2 there exists an open covering \mathfrak{V}_{σ} of D^{μ} such that

St
$$(U \times \{0\}, \ U \times \mathfrak{V}_{v}) \subset \bigcup_{\alpha \in u} A_{\alpha} \times p_{\alpha}^{-1}(0)$$
.

Let F be a finite subset of μ such that

$$\bigcap_{\alpha\in F}p_{\alpha}^{-1}(0)\subset \mathrm{St}\left(0,\,\mathfrak{V}_{\overline{v}}\right)\,.$$

Let $y \in D^{\mu}$ such that $p_{\alpha}(y) = 0$ exactly for $\alpha \in F$. If $x \in U$, then $(x, y) \in \bigcup_{\alpha} A_{\alpha} \times p_{\alpha}^{-1}(0)$ and therefore $x \in \bigcup_{\alpha \in F} A_{\alpha}$.

Then the directed covering A_t is uniform and the proof is complete. From the proof of the above theorem we can deduce the following result.

COROLLARY 2. A normal uniform space uX is uniformly μ -paracompact if and only if for a suitable (and thus for every) compact space Y of weight μ and for a suitable (and thus for every) compact subspace Y_0 of Y the following condition is satisfied: for every closed subspace X of $X \times Y$ disjoint from $X_0 = X \times Y_0$, there exists an open covering of the form $W = \{U_{\alpha} \times V_{\beta}^{\alpha}\}$, where $\{U_{\alpha}\}$ is a uniform covering of Y, such that

$$K \cap \operatorname{St}(X_0, \mathfrak{W}) = \emptyset$$
.

Covering $\{U_{\alpha}\}$ may be taken belonging to $p^{\mu}uX$.

PROOF. Sufficiency is proved in the same way as the implication $4 \Rightarrow 1$ of theorem 2.

Necessity: the same theorem ensures the existence of a uniform covering $\mathfrak U$ of $p^{\mu}uX$ and, for every $U\in\mathfrak U$, of an open covering $\mathfrak V_{\sigma}$ of Y such that

$$K \cap \operatorname{St}(U \times Y_0, U \times \mathfrak{V}_{\overline{v}}) = \emptyset$$

for every $U \in \mathcal{U}$.

We claim that $K \cap \operatorname{St}(X_0, \mathfrak{W}) = \emptyset$, where $\mathfrak{W} = \{U \times V : U \in \mathfrak{U}, V \in \mathfrak{V}_{\sigma}\}$. In fact, if $(x, y) \in \operatorname{St}(X_0, \mathfrak{W})$, there exist $U \in \mathfrak{U}$ and $V \in \mathfrak{V}_{\sigma}$ such that $V \cap Y_0 \neq \emptyset$ and $(x, y) \in U \times V$.

Therefore $(x, y) \in \text{St}(U \times Y_0, U \times \mathcal{V}_U)$ and so $(x, y) \notin K$.

Recall that if uX and vY are two uniform spaces, the semiuniform product uX * vY is the uniform space whose uniform coverings are those coverings which are normal with respect to the coverings considered in the above corollary 2.

If $p^{\mu}uX$ admits a point finite basis, the coverings of this form, $\{U_{\alpha} \times V_{\beta}^{\alpha}\}$, are a basis for the uniform coverings of $p^{\mu}uX * vY$ (see [F]). Therefore, by proposition 4, theorem 2 may be stated in a much nicer form, which generalizes results found in $[\mathbf{H}_{1}]$, $[\mathbf{F}]$.

THEOREM 3. Let uX be a normal uniform space. The following conditions are equivalent:

- 1) uX is uniformly μ -paracompact;
- 2) For every compact space Y of weight μ and for every closed subspace $Y_0 \subset Y$, whenever A and $X \times Y_0$ are disjoint closed subsets of $X \times Y$, they are uniformly separated in uX * Y,
- 3) If A a closed subspace of $X \times I^{\mu}(X \times D^{\mu})$ disjoint from $X \times \{0\}$, A and $X \times \{0\}$ are uniformly separated in $uX * I^{\mu}(uX * D^{\mu})$.

PROOF. It sufficies to prove $1 \Rightarrow 2$. By corollary 2, there exists a covering $\mathfrak{W} = \{U_{\alpha} \times V_{\beta}^{\alpha}\}$, where

 $\{U_{\alpha}\}\$ is a uniform covering of $p^{\mu}uX$ and, for each α ,

 $\{V^{\alpha}_{\beta}\}$ is a uniform covering of Y, such that

$$A \cap \operatorname{St}(X \times Y_0, \mathfrak{W}) = \emptyset$$
.

If S is a uniform star refinement of W, we have $\operatorname{St}(A, S) \cap \operatorname{St}(X \times Y_0, S) = \emptyset$.

3. Countable uniform paracompactness.

The characterization of uniform countable paracompactness has a form which is more expressive than the general case. Equivalence $1 \Leftrightarrow 2$ of the following theorem is a uniform analogue of Dowker's theorem in [D].

THEOREM 4. Let uX be a normal uniform space. The following conditions are equivalent:

- 1) uX is countably uniformly paracompact;
- 2) For every closed subset B of uX * I disjoint from $X_0 = X \times \{0\}$, B and X_0 are uniformly separated in uX * I.

3) X is countably paracompact and for every zero set Z of βX disjoint from X there exists a uniform covering \mathfrak{U} of uX such that $Z \cap \operatorname{cl}_{\beta x} U = \emptyset$ for every $U \in \mathfrak{U}$.

PROOF. $1 \Rightarrow 2$. Follows from theorem 3. $2 \Rightarrow 1$. Let $f: D^{\omega} \to I$ be the map $f(t) = \sum_{i=0}^{\infty} (t_i/2^{i+1})$, where $t = (t_i)_{i \in \omega}$.

Consider the map $\tilde{f}: X \times D^{\omega} \to X \times I$ so defined: $\tilde{f}(x,t) = (x,f(t))$. \tilde{f} is continuous and closed and furthermore if A is a closed subset of $X \times D^{\omega}$ disjoint from $X_0 = X \times \{0\}$, $\tilde{f}(A)$ is disjoint from $\tilde{f}(X_0) = X \times \{0\}$.

Since $\hat{f}(A)$ and $\hat{f}(X_0)$ are separated in uX * I, A and $X \times \{0\}$ are separated in $uX * D^{\omega}$. The conclusion follows from the implication $3 \Rightarrow 1$ of theorem 3.

- $1\Rightarrow 3.$ Obviously X is countably paracompact (proposition 1). Let Z be a zero set of $\beta X \setminus X$. Z=Z(f) for same $f\in C(\beta X), \ f\geq 0$. Let $A_n=\{x\in X: f(x)>1/(n+1)\}$. The countable open covering of uX, $\mathcal{A}=\{A_n: n\in\omega\}$ is uniform because $\mathcal{A}=\mathcal{A}_f$. Furthermore, for every $n\in\omega$, $Z\cap \operatorname{cl}_{\beta x}A_n=\emptyset$.
- $3\Rightarrow 1.$ Let $\mathcal{A}=\{A_n\colon n\in\omega\}$ be a directed open covering of uX. From the countable paracompactness of the normal space X, there exists a countable open covering of cozero sets, $\{\cos(f_n)\colon n\in\omega\}$ where each f_n is continuous and bounded, such that $\cos(f_n)\subset A_n$ for every $n\in\omega$; we may also assume that $\cos(f_n)\subset\cos(f_{n+1})$, for every $n\in\omega$. Let $Z=\bigcap_{n\in\omega}Z(f_n^\beta)$, where f_n^β denotes the extension of f_n to βX . There exists a uniform covering \mathfrak{A} of uX such that $Z\cap\operatorname{cl}_{\beta X}(U)=\emptyset$ for every $U\in\mathfrak{A}$. Therefore, by the compactness of βX , for every $U\in\mathfrak{A}$ there exists an index $n_U\in\omega$ such that $Z(f_{n_U})\cap U=\emptyset$; thus \mathcal{A} is uniform.

REFERENCES

- [C] H. Corson, The determination of paracompactness by uniformities, Amer.
 J. Math., 80 (1958), pp. 185-190.
- [D] C. H. DOWKER, On countably paracompact spaces, Canad. J. of Math., 3 (1951), pp. 219-224.
- [Du] J. Dugundij: Topology, Allyn and Bacon, Inc. (1966).

- [F] J. FRIED Z. FROLIK, A characterization of uniform paracompactness (1982), to appear.
- [Ha] A. HAYES, Uniformities with totally ordered basis have paracompact topologies, Proc. Cambr. Phil. Soc., 74 (1973), pp. 67-68.
- [H₁] A. Hohti, On uniform paracompactness, Ann. Acad. Sc. Fenn., ser. A, Math. Diss., 36 (1981).
- [H₂] A. Hohti, A theorem on uniform paracompactness (1981), to appear.
- [I] J. R. ISBELL, Uniform spaces, Math. Surveys n. 12, Amer. Math. Soc., Providence, Rhod Island (1964).
- [K] A. Kucia, On coverings of a uniformity, Coll. Math., 27 (1973), pp. 73-74.
- [M₁] K. Morita, Paracompactness and product spaces, Fund. Math., 50 (1962), pp. 223-236.
- [M₂] K. Morita, Note on paracompactness, Proc. Jap. Acad. 37 (1961), pp. 1-3.
- [M₃] K. Morita, Cech cohomology and covering dimension for topological spaces, Fund. Math., **87** (1975), pp. 31-52.
- [P] J. Pelant, Cardinal reflections and point character of uniformitiescounterexamples, Seminar Uniform spaces (1973-74), Prague, pp. 49-158.
- [R] M. D. RICE, A note on uniform paracompactness, Proc. Amer. Math. Soc. 62.2 (1977), pp. 359-362.
- [Sc] E. V. Scepin, On a problem of Isbell, Soviet Math. Dokl., 16 (1975), pp. 685-687.
- [Sm] Smith, Refinements of Lebesgue covers, Fund. Math., 70 (1971), pp. 1-6.
- [T] H. TAMANO, On paracompactness, Pacific J. Math., 10 (1960), pp. 1043-1047.
- [V] G. Vidossich, A note on cardinal reflections in the category of uniform spaces, Proc. Amer. M. S., 23 (1969), pp. 55-58.

Manoscritto pervenuto in redazione in forma riveduta il 3 Ottobre 1983.