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BMO Continuity for Some Heat Potentials.

ANNA GBIMALDI-PIRO - FRANCESCO RAGNEDDA

UMBERTO NERI (*)

0. Introduction.

The problem discussed in this note arises from the study of the
temperatures of a nonsmooth domain D in Rn, controlled by surface
data which may be discontinuous and also unbounded. By tempera-
tures, we mean solutions of the (linear) heat equation

R+ = (0, oo). The bounded domain D is assumed to be a 01 domain
(as in [1], [3], etc.) with boundary aD. Given 0  T  oo, consider

the Initial-Dirichlet Problem

(*) Indirizzo degli AA.: A. GRIMALDI-PIRO e P. RAGNEDDA: Istituto di
Matematica per Ingegneri, Università di Cagliari, 09100 Cagliari, Italia; U.
NERI: Department of Mathematics, University of Maryland, College Park,
Md. 20742.

Work begun in July 1982 at U. of Cagliari, with the support of a grant by
the National Research Council of Italy (C.N.R.).
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as (X, t) E D X (0, T) tends to the boundary point (P,8) from within
a suitable approach-region with vertex (P, s) ; see [3], [4]. For smoother
domains and continuous data f such problems are classical. For C
domains and L’P data, if 1  p  oo then Fabes and Riviere [3]
obtained unique solutions u of (I.D.P.) given by double-layer heat

potentials of a suitable transform of the boundary data.
An attempt to extend these potential methods and results to a

more general class of integrable data f on aD X (0, T), as done for the
Laplace equation in [2], should start with th study of (I.D.P.) for a
dual set of data on the lateral surface. Such a class, might turn out
to be the subspace BoMOC defined below-of the class BMOC of
functions with caloric bounded mean oscillation on aD X (0, T). The

main result in this work is the boundedness of the caloric singular
integral operator J (see [3]) on this subspace. It is presented in order
to show certain differences from the corresponding steady-state si-
tuation (i.e., the Dirichlet Problem for du = 0), and to point out
the direction of some new research already in progress. We warmly
thank Professor Eugene Fabes for his generous help and continuing
interest in this project.

1. Definitions and preliminaries.

We shall consider in space-time n&#x3E;2, the cylinders

with lateral boundaries

and cross-section D, a bounded C" domain in Rn. Capital letters X, Y
will denote points in D (or R"), while P, Q will denote points of aD.
Letters t and s are used for time variables in R+. Along aD, we have
a continuous vector field NQ, the inner unit normal at Q E aD. For
all (X, t) we let

denote the fundamental solution of the heat equation. The kernel
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.g(.X’, t) of the double-layer heat potential is just the (spatial) normal
derivative of that is,

where  , &#x3E; is the euclidean inner product. Consequently, from well-
known estimates for T and its first partials it follows that (with various
positive constants C which may depend also on n)

and so on.
The kernel k(P, Q) == P - Q, Q ~ -~ of the harmonic double-

layer potential satisfies two basic properties on the boundary aD of
a 01 domain (see [1]):

(i) the truncations k(P, are uniformly bounded for

for all P E aD, where £Oft = area of the unit sphere in R". These proper-
ties are very helpful in the study of the boundary values of double
layer heat potentials as well.

To begin with, let us consider the singular integrals
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for each (P, t) E aD X R+ and any 0  B  t, where (for brevity) we
let dQ = dO’(Q) denote the surface measure on aD. Here, we have

For each (P, t) E S+ and Q E 8D, the change of variable

leads to the formula

where, as before, k(P, Q) = Note that for
all 0 C E  t, the inner integrals are positive and less than

Since it follows that for each fixed n &#x3E; 0 the

surface integral in (iii) is absolutely convergent. Thus, we may let
E - 0 inside ~...~ and redefine the function Jl(P, t) as the (conditio-
nally convergent) iterated integral

LEMMA 1.0. The function t) is bounded on S+ = 8D x R+.

PROOF. Letting s = in (1.4) yields
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where all inner integrals are positive and less than For each

t &#x3E; 0, we split the surface integral into two parts:

To estimate A, note that

if s &#x3E; lp - so that-with new constant c" &#x3E; 0-

Let now ro = the radius of the balls giving local coordinates for D
in the definition of C1 domain (e.g. [1]). We distinguish two cases.

CASE 1. If then while exp (...)
 exp (-1 ) on the region of integration. Hence,

I I 
- 

.,. v v ,,, , ,

which is a geometric constant depending only on D and n.

CASE 2. If then we are inside a coordinate neigh-
borhood with P = (x, Q = (y, 99(y)) etc. and we have again

since the Gauss-Weierstrass kernel is an approximate identity.
In order to estimate B, we can first rewrite it in the form



294

But, by formulas (i) and (ii) above, we have

and the truncated integrals are uniformly bounded in 8 = 2ýf. For

Bay integrating 8"’2-id8 yields (with another c,, &#x3E; 0)

another geometric constant. QED.

The anisotropic BMO space corresponding to the homogeneity
of the heat equation is defined in terms of integral averages over the
following sets in S+ = 8DxR+: if (Q, t) e S+ and r &#x3E; 0, then

is called a caloric sur f ace disc with center (Q, t) and radius r.

DEFINITION 1.1. A function f E has caloric bounded mean
oscillation on S+ in symbols, f E BMOC(S+)-if

LJ l J j

where the sup is taken over all discs 4 as in (1.5), = u~(4 ), and

letting = = dQ dt, as before.
As usual, BMOC functions are determined up to additive constants.

Since (see below) the integral operator J to be studied does not preserve
constants, but transforms them into bounded functions, we are led
to the following notion.



295

DEFINITION 1.2. A function f e has bounded behavior at
t=0 if

where the sup is taken over all surface balls

The function space

of all caloric BMO functions with bounded behavior at t = 0, will

be equipped with the complete norm

Averaging the estimate only over those

surface discs 4 = r2), as in (1.7), it is easy to see that Bo(f)
is finite if and only if

In fact, the anisotropic John-Nirenberg Inequality f or BMOC implies
that 11fll* is equivalent to

Consequently,

are all equivalent norms for BoMOC. In particular, for p = 1, we see
that the property of bounded behavior of an f E BMOC is not due
to eventual cancellations of f(P, t) as t - 0+, since f could be replaced
by If I in formula (1.7).



296

2. Continuity of the heat potential on BoMOC.

The boundary values of the double-layer heat potential, with
ZQ density f on S+ = aD X R+, give rise to the singular integral operator

with kernel

for all P, Q in 2D and 0  8  t  oo. In [3], it is shown-explicitly
if p = 2, but the general case then follows by standard techniques
of singular integrals-that J defines a bounded operator on Lv(S+)
for all 1  p  oo. Using this result, we will show here that J is also
bounded on BoMOC(8+).

Note first that for constant data f = c, we have

the function in (1.4) which, by Lemma 1.0, is bounded on S+. Let
us rewrite it in the form

where, as before

Let us show that, for large times, t) becomes asymptotically
flat, at a given rate over caloric surface discs of aD xR+.
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LEMMA 2.1. For each d = + r2) there exists a constant
C(4) &#x3E; 0 such that, if to &#x3E; r2 then

with some en independent of P, t and d .

PROOF. Let to &#x3E; r2 and split J1 as follows:

For all (P, t) E  t  2to. So, by (2.2), (2.2’) and the Mean Value
Theorem we have-for varoius constants cn-that

Since dim( aD) = n -1, an affine change of variables shows that the
term ~...~ is uniformly bounded in P and to . Hence, since r2  to,
we see that for each P e aD and t E (to, to + r2),

Let and recall that

From (2.2) and (2.2’), we may write, with C,~ = 1~(n/2) mn/2,
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and then split the surface integral over - Q  5r and - Q &#x3E; 5r,
say. Setting

we have to estimate

For A(P), since and integrating
sn/2-1 ds we see (for various constants cn) that

since here. For C(P), noting that whereas

IQ - 5r, and using the Mean Value Theorem, we see that 1
is majorized by

Hence, as before, we obtain

Next, in view of (ii) and of the desired estimate (2.3), we induce the
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« constant »

which depends also on the parameters Po, to and r. Thus, it remains
to estimate the integral

Estimating ~...} as done for A(P) and [...] by the Mean Value Theorem,
we see that

for some new Cn. Finally, we have

for another Cn, and the proof of the lemma is complete. QED.
For any g E .Li ~(s+), we set (as in (1.9) above)

with sup taken over all L1 = (0, r2) and 0  2r  diam( aD). Then,
the operator J in (2.0) satisfies the following property.

LEMMA 2.2. There is a constant M &#x3E; 0 such that
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PROOF. Fix such a 4 and denote the characteristic func-
tion of 4* = 4r2 ) . Then,

by the L2-estimate in [3], Theorem (1.1). Hence, (2.5) holds for f xl ·
Since f = fxll + tV2 with ~2 = 1 - Xl’ it suffices to show that there
is a constant .NI &#x3E; 0 such that

If S,. has center then &#x3E; 2r for all (Q, s) ~ d ~ with
0  8  t, and also Hence, the left-side of (2.5’)
is dominated by

For each Q here, let ..d = lpo - Q/2 &#x3E; 4r2 and T = (t - 8), so 0  T  r2)
Since exp (- A/i) T-(n+2)/2 is strictly increasing on 0  z~  2A/(n + 2)
and 2A/(n + 2) &#x3E; 8r 2/(n + 2) = cnr2, it follows that on S, X (0, r2)

So, by Schwarz’s inequality, we obtain

THEOREM 2.3 The operator J is bounded on BoMOC(S+).
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PROOF. Let f E BoMOC(S+) and fix any disc L1 = SIX (to, to + r2)
in S+. * If to 8r2, say, we observe that, by (2.5) above,

Hence, for all such « initial discs » L1, we have

for some constant Co &#x3E; 0 independent of f and 4. In particular, J f
has bounded behavior at t = 0.

If to &#x3E; 8r2, it is more convenient to write L1 in the form:

where

with Po E 8D, and to let J* = d 2r(Po, to) = ~2r X (to - 4r2, to + 4r2).
Applying Lemma 2.1 (with an obvious change of notation), there exists
a constant C(4*) such that, V(P, t) e J and with various on &#x3E; 0,

by Holder’s inequality (with p = n + 1, so - n/(n + 1) and

(2r) n) . Since 2r, it follows that

with p = (n + 1). Therefore, for all d in question, we have

for some Ol &#x3E; 0, independent of f and J.
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Next, we let xl = the characteristic function of L1*,

and choose constant Jf(4) given by

Since we have

As before, by Theorem (1.1) of [3],

Hence, by (2.7) and Schwarz’s inequality,

where, with dP = as usual,

In remains to show that for some 63 &#x3E; 0 independent
of L1 and f .

The integrand of (2.8’) is majorized by

where the kernel .K(P, Q; t - s) is defined in (2.1). Adding and sub-
tracting K(P, Q; to - s) and using the Mean Value Theorem, we see
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that

for some I between t and to, and some intermediate point P between
Po and P. Thus, substituting into (2.8’ ) and using Minkowski’s integral
inequality, we get

To get some uniform estimates on Bl note that for any (P, t) E L1,
It - toB  r2 and  r. So, by (1.2) and (1.2’), we have:

But, for all (P, t) E d and all (Q, 8) ft 4 *, if ~P - Q~  r or if (Po - 
then Ito &#x3E; 4r2. From this, it follows easily that in all cases

Now, for all jEN, consider the dyadic dilations L1; « (Po , to),
so that d 1= L1* and, if j &#x3E;2, 7 d is the concentric caloric surface disc
with sizes (2’r; 22’r 2) . As before, we note that, for all j &#x3E; 2,

whereas

Moreover,
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So, for all j &#x3E; 2,

for all and (Q, s) ~ d ~_1. Simplifying constants, (ii) yields

Substituting (iii) into (2.9) and recalling that d* = dl, we obtain

Since the discs 11; have measure equivalent to 211+1 2(1-1)(n+’) rn+’, we
deduce that, for some new C &#x3E; 0,

Moreover, by standard BMO argument, we have that

Thus, substituting into (2.10), we conclude at once that 
This completes the proof of Theorem 2.3.
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