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Periodic Solutions of Lienard Equations.

PIERPAOLO OMARI - FABIO ZANOLZN (*)

1. Introduction.

In this paper we extend and sharpen ealier results (~23~, [38])
concerning the existence of p=periodic solutions of the Li6nard vector
equation in Rm

under the following basis hypotheses which will be assumed throughout
the 01-map, g : continuous, A is
ac m X m (possibly singular) constant matrix, h : is continuous
and p-periodic.

It is well known that Li6nard equations are considered in several
problems in mechanics, engineering and electrical circuits theory.
Although the question of the existence of periodic solutions represents
only a first step in the study of the nonlinear oscillations of (1.1),
nevertheless the problem has been extensively studied in the literature,
for its physical significance [34], [33], [28], [31], [32]. The present work
provides an extension, to differential systems, of the following clas-
sical result, concerning the existence of p-periodic solutions of the
scalar equation

(*) Indirizzo degli AA.: P. OMARI: Istituto di Matematica Applicata;
F. ZANOLIN : Istituto di Matematica. University degli Studi, P.le Europa 1

34100 Trieste (Italy).
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with continuous and h p-periodic. Obviously (1.1’) is
x

a special case of (1.1), with 
o

THEOREM (Mizohata and Yamaguti [21]) . Let us assume

p

Then (1.1’) has a p-periodic solution for any h with f h(s) ds = 0.
o

Related results, for scalar equations, were obtained in the fifties,
by Reuter [29] and by Levinson [13], De Castro [33], Newman [22],
Cartwright and Littlewood [4], Opial [25] and others (see [33] or [28]
for a thorough survey). All these authors prove, at first, the bounded-
ness in the future, or in the past, of the solutions of the Cauchy Pro-
blems ; then they apply the Massera Theorem, or similar statements,
in order to get the existence of p-periodic solutions of (1.1’) (see [11], [36]
for the standard boundedness results).

More recently, topological degree tools have been used, even under
dissipativity type conditions for (1.1) or (1.1’), by Mawhin [15], [18],
[17], [32, Ch. XI], Bebernes and Martelli [1], Cesari and Kannan [5], [6],
Reissig [26] and Ward [35].

In our main result (Theorem 1, below) we consider a growth as-
sumption on the damping term, we already used in [23], [38] for less
general situations. Then we are able to extend the Mizohata-Yamaguti
Theorem and to improve a theorem of Mawhin [17], [32, Ch. XI, Th. 6.6]
which was not contained in our previous papers (quoted above).

The basic tool in the proofs is the following continuation type
theorem by Mawhin [16, Th. 4, p. 944], [32 (2), Th. 3.17], recalled here,
for reader’s convenience, in a simpler form.

THEOREM 0. Let f = f (t, x, y; 2): - con-

tinuous and p-periodic in t. Let us assume there is K &#x3E; 0 such that
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Then the equation x’== f(t, x, x’ ; 1 ) has a p-periodic solution.

In subsequent sections, using further assumptions on the non-
linear terms of equation (1.1), we allow a dependence and g on
the time variable and we treat also the case of a nonconservative

restoring field (not considered in Theorem 1 ) . Conditions ensuring the
uniqueness of the solutions are considered too. At last, using a version
of the above recalled Mawhin’s Continuation Theorem, suitable to
be applied to functional differential equations (see [18, Th. 4, p. 248]),
we examine the case of the Li6nard equation with delays

and obtain a variant of our previously given main result, which im-
proves [18, Th. 6], [37], [23] and [9, p. 326].

Although we restrict ourselves to the « classical  case, we point
out that all the results hold under Carathéodory-type assumptions [20].

2. Notations and the main result.

Throughout the paper, the following notations are used. is
the m-dimensional real euclidean space with inner product (.1.) and

. 11 II 11 denotes the norm of a matrix, thought as a linear oper-
ator in (with respect to the usual orthonormal basis), i.e. II .11 11 is
the spectral norm for matrices. B(x, r) is the open ball centered at
x E Rm with radius r &#x3E; 0, and cl D denotes the closure of a set D c 
deg ( ’ , ’ , ’ ) is the Brouwer degree in is the vector space
of all the continuous maps Rå ~ R"’ of class ek and ek denotes the
vector space of the continuous and p-periodic vector valued functions
R ~ llgm, of class Ck; moreover, for x sup t E [0, 
In Co also the La-norm (q&#x3E;l) and the L2-scalar

’P 0 

product (u, V)2 == f (u(s)lv(s)) ds will be considered. Moreover, if x EO:,
0

x:== (the mean value of x) . R+ is the set of the non-
o

negative reals.
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We consider the space

For a map y E r, we define

We observe that T contains, for instance, all the uniformly continuous
maps since .1~ contains any map 1p: such that, for
every r &#x3E; 0, sup - - yl  ~"~  + 00.
If A is a constant matrix, we define

where is the transpose matrix of A.
For any fixed h E R-), let E(h) c C’(R, be the set of all

the functions .g, such that ,g’(t) = h(t), for every It is well
_ 

2)

known that E c Cl, provided that hEC0p and h = 0 (i.e. , = 0 .
In this case we can define 0

where H1 is the unique function of lowest norm in E(h). It is easily
checked that the following estimate holds

Finally, y for every number 0, we define

where g E OO(Rm, Rm) is the (nonlinear) vector field in equation (1.1).
W(.llZ’) is a closed set which has the following geometrical meaning:
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a point x e Rm belongs to W(M) if and only if the continuum (i.e.
compact and connected set) M)) has non-empty intersection
with every hyperplane of Rm passing through the origin.

With the above positions, we can state our main result.

THEOREM 1. Let us assume g = grad G, with G : Rm - R, o f class C1,
p

and = 0. Let cp(x) _ + and suppose grad F,
o

with .F’ : Rm - R, o f class C1, and such that

Moreover, let us suppose that, for every x E Rm,

holds, with

.F’inalty, let us assume

(w) for any .M &#x3E; 0, either W(M) is bounded, or there exists a map

and

(d) for each 

Then equation (1.1) has a p-periodic solution.

PROOF. Let us fix a number 8 &#x3E; 0, such that the matrix A has
no eigenvalue in the interval ]o, E]. Then the matrix A(2) := A -

(with I the identity matrix) is nonsingular, for

every 2 E [o, 1[. Now we set, for t E R, z, y E R-, 2 E [o, 1],

where q’(z) denotes the Jacobian matrix of q evaluated at x (q’(T) =
- g~2(x) + Hess f(r), when .F’ is of class C2) and observe that equa-
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tion (1.1) is equivalent to

Moreover, we note that (by definition of W(()),

Consequently, y assumption (w) ensures that g(x) ~ 0, for any z E Rm,
whose norm is large enough.

Hence, by definition of .A(~,), we have

for any z e Rm, whose norm is large enough.
Then, according to (d), we get

for R~r &#x3E; 0.
In order to prove the existence of p-periodic solutions of (2.1) (i.e.

of (1.1)) we apply Mawhin’s Continuation Theorem (Theorem 0); in
virtue of (2.2), we only need to find a constant K &#x3E; 0 (independent
of x( ~ ) and I) such that

holds, for any pair (x, I) E C~x]0y 1[~ solution of the equation

which is equivalent to x" - A).
Let x E C~ be a solution of for some A E ]0, 1[. Taking the

mean value of (a device used in [18, Th. 6], for g(x) = x), we



209

observe that

Then we get

because A(~,) is nonsingular, for every A E ]0, 1[.
p

Therefore a function exists such that fy(t) dt = 0 and y’(t) =
= g(x(t)), for every 0

We take now the inner product of (1.1,x) by y(t) and integrate be-
tween 0 and p, that is, we take the L2- scalar product of (1.1,x) by y.
By integrating by parts, we obtain (see [38, proof of Th. 1]).

and, for such that d(h), we get

At last, let us note that (A(1))~ = .Ad (i.e. independent of I) and

(A(1))~ = .~.$(~,). Therefore we have, since As(~,) is symmetric,

Via Cauchy-Schwarz and Wirtinger inequalities, we obtain



210

From equation (I,li) and using the estimates (2.5)-(2.9), we have

and hence the assumption (j) provides the existence of an a priori
bound (independent of x and Â) for the L1-norm of g(x), namely

Now we write the equation (I.li) in the equivalent form

where Z( ° ) = z(., 1) ’ := - A(~,)g(x( ~ )) + h(.).
p

Let us observe that f z(t, Â) dt = 0 and, by (2.10), z is bounded in
the L1-norm : 0

We take now the L2 -scalar product of (2.11~,) by the function

- u( ~ ) : :== 2013~(.) (x being the mean value of x( .)) and get

In the above estimates we used the hypothesis gradf, an in-
equality in [32, Ch. XI, 7.8, p. 216] and (2.12).

Moreover, the assumption  OJ implies the existence of two
constants 0L co and k &#x3E; 0 such that

Therefore, using (2.13), (2.14) and Wirtinger inequality, we obtain
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Hence, we easily get a bound for the L1-norm of x’ = u’ :

and, as a consequence, we find bounded too

From Jensen inequality, if follows, for all ~x(t) - x(s) ~ c
 for any x E Cl. Therefore, if x is a solution of (1.1).), we
get, in virtue of (2.15),

Now, recalling (2.4) and the definition of the set W(M), we have

with .~ as in (2.17).
Let us take any map Le. )~(~)2013~(~))Ly).r2013~)+~y

and let x( ~ ) e C~ be any solution of (1.1~). We have

According to the mean value theorem, a point tl = 1p) E 10, p]
exists such that

The assumption (w), together with the estimates (2.18) and (2.19),
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implies the existence of to = Â) E [0, p] such that

with K7 a positive constant independent of x and Â.
From (2.17) we obtain now that lxl. is bounded

Finally, by a standard bootstrap argument, making use of (2.15),
(2.21) and the continuity of g~’ and g, (2.3) is proved for a suitable
choice of the constant .g. D

3. Remarks and corollaries.

It is easy to see that the hypothesis (j) in Theorem 1 can be changed
into

with a, b and c satisfying the same estimates as in (j).
Indeed, if (j’) holds, then (j) is verified with respect to 

- g(x), that is, + bly(x)l- c. Then our claim is
proved, since Ag(x) _ (- A) y(x) and ~~ = 11 - A. ~~ = .

In previous papers (see [23], [38], [24]) we examined some sign con-
ditions, less general than (w), in connection with nonlinear vector
fields for Li6nard systems, delayed Li6nard systems and higher order
differential equations. In particular we proved various sufficient
criteria which imply the validity of (w) r1 (d). For instance, (w) r1 (d)
holds in each of the following cases:

(i) g is a homeomorphism, (see [38]) ;
(ii) There is a non-singular matrix U such that (see [24])
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We also remark that the hypothesis

~w’ ) For any M &#x3E; 0, either W(M) is bounded or

which was assumed in [23] and [38], is a particular case of (w), with the
choice = := +1) (for each M).

At last, we point out that our sign condition (w) is invariant with
respect to (linear) changes of coordinates.

For a detailed examination of these conditions and of other more

general ones, see [24, Sec. 5].
Let us observe that, if we change (j) (respectively (j’ )) of Theorem 1

into

then the existence of p-periodic solutions of (1.1) is achieved, for any h
with mean value zero, provided that the other conditions ((w), (d), ...)
are assumed.

We notice that the estimate a &#x3E; is sharp (at least for a
class of Li6nard systems containing the second order linear differential
equations) in the sense that it cannot be relaxed, without further

hypotheses of nonlinearity on w and g, as the following example in R2
shows. Let us consider the coupled linear system

which does not possess p-periodic solutions (as elementary arguments
prove). Here, g~(x) = y(x) = a ’ x, 9~2(x) = 0 (V(992) = 0) 1 9(x) = x~
A = w2I + octoj, acoj, (99(X)lg(X)) = IIAdll/ro = a (where I
is the identity matrix and J is the skew-symmetric matrix in R2
defined by J(Xl I X2) = (- x2 , xl) ) .

A simple linear example with qi = 0, q:&#x3E;2 = A = 0 shows that
the hypothesis v(~2)  m is sharp too.
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Now we briefly discuss some consequences of our Theorem 1, yet
we will not examine in detail the corollaries that can be also directly
deduced from our previous results (like Theorem 1 in [38]).

We think that it is fairly clear that the present result is a full
extension of the one produced in [38], where the simplest case A = I,
qJ2 = 0 and the less general sign condition (w’) (in place of (w)) were
considered. Now, let us observe that, in the scalar case (m = 1), the
matrix A is symmetric (Ad = 0) and w admits an integral. Thus, if
we take 99 = CP2 = 0 and V(CP2) = 0, we immediately prove the
following

COROLLARY 1 ([38, Cor. 3]): (m = 1 ) . Ass2cme there are two constants
b &#x3E; ~ h - All and d &#x3E; 0 such that, tor any d,

hold. Then equation (1.1’) has a p-periodic solution.

It is easily checked that Corollary 1 fits out Mizohata-Yamaguti’s
Theorem as well as it extends lots of the existence results recalled in
the introduction; for instance [29], [12], [26], [8], [15, th. 5.4], [2, Th. 2,
c ~ 0] [35], [6, Case I] are all contained in our theorem.

Our result generalizes also Theorem 6.6 in [32, Ch. XI] for vector
equations (this fact was not obtained in [38]). Indeed, in [32, Ch. XI,
Th. 6.6] it is assumed A nonsingular and g(x) = x, qJ2(X) = 0, =

= = (k &#x3E; 0, q &#x3E; 1) for Ixllarge enough.
Hence (w) and (d) are trivially satisfied as well as (jj) holds for
a = -~- oo.

At last we present a corollary of Theorem 1 in which the sign
condition (w) is fulfilled as a consequence of an assumption (condi-
tion (rr) below) on the recession function J,. We recall, following
[3, Ch. II], the definition of the recession function associated to a
vector field g:

(see [3], [30] for the main properties of J,).
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For the sake of simplicity, we restrict ourselves to the case = 0

(so that V(q2) == 0) .

COROLLARY 2. Let us suppose h E Im (A) and assume there is a

vector z E Rm, with Az = h, such that

and

hold.

Then the vector Li6nard equation (1.1), with qJ = grad .F’, g =

- grad G, has a p-periodic solution (h is the mean value of h).

We observe that the ratio considered in (r) is defined, at least

for ~x~ large enough (this is a consequence of (rr)) . A sufficient condition,
for the validity of (rr), is, for instance,

Then it seems convenient to choose as z the element of minimum norm
in A-1(h).

PROOF. We shall apply Theorem 1 to the equation

which is equivalent to (1.1). Let us set g(x) : == g(x) - z, :=

h(t) -1~. Obviously, g(x) = grad G(x), with G(x) = G(x) - (zlx) and h
has mean value zero. We evaluate now in order to prove (j )
of Theorem 1 (recall == 0).

From hypothesis (r) and elementary properties of the ((Iim inf
we have that there are two constants d &#x3E;||Ad||/w and such that
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holds for every x E Rm. Hence we have

with b &#x3E; ITill = and a suitable choice of 
and c &#x3E; 0.

The hypothesis (rr), together with the lower semicontinuity of J.
(see [3, p. 259]) implies that &#x3E; 0. From the

Ivi =1
definition of g we have JrD ( y) = Jg(y) - Then we immediately
obtain lim inf (g(ty) I y) &#x3E;Jg(y)&#x3E;e &#x3E; 0 for each Iyl =1. Hence it fol-

1/

lows the validity of the sign condition (ii-3) which, as already stated,
implies (w) and (d). The proof is therefore complete. 0

At the end of this section we give a variant of Theorem 1 in which
the conservative component rpl of the dissipative term 99 possesses a
potential function .F which appears as a « guiding function » [10] for
the restoring field g. Indeed, we can prove the following

COROLLARY 3. Let us assume, as in T heorem 1, g = grad G,
99 = with = grad .F’, rp2 E rand  roe Moreover, let us

suppose

Then equation (1.1) has a p-periodic solution for any h with mean
value zero.

PROOF. At first we note that (grad &#x3E; 0,
( 0), for ~x~ sufficiently large and so, by Poinear6-Bohl Theorem [20
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Prop. II.19], 1 deg (g, B(0, R), 0) _ ]deg (CPl’ B(0, R), 0) 1 for 

From a result in [10] (see also [20, Prop. 11.21, p. 23]) we have

deg (grad.F’, B(0, .R), 0) :A 0, for each .I~ large enough and therefore (d)
is proved.

Now we repeat the proof of Theorem 1 (as far as step (2.17)) and
look for a priori bounds for the solutions of (1.1~).

From assumptions (si) (i = 1, 2) and the, previously proved,
estimates (2.~)-(2.9), it follows that there is a constant such that

for any x E C~ solution of (1.1~), for some ~e]0,l[.
Hence, we also get, using (2.4), (2.14), (2.10) and (2.16),

Then, according to the mean value theorem, a point to = t,(I, x) E [0, p]
exists such that

From (3.1) and the growth assumption on (grad we get
(2.20) (of the proof of Theorem 1) again. Then the result follows through
the same arguments already employed. 0

4. Related results.

In this section we deal with a more general situation than in the
previous chapters. Indeed, we examine now the case of a Li6nard-
type system in which the restoring field g is not necessarily a conser-
vative map. Moreover, we allow an explicit dependence on time both
in g and in the dissipative term 99.



218

Accordingly, we consider the vector equation

where A is a m X m constant matrix, C’(R X R-, Rm) and g E
CO(R x Rm, Rm) are p-periodic in the f irst variable and h E Co. For the
sake of simplicity, throughout the present section, we also suppose
p

f h(t) dt = o.
0

In order to get the existence of p-periodic solutions to (4.1), a
restriction on the growth of g with respect to 99 (see (k) below) will
be assumed, together with a sign condition on g (the (ka) below) which
is closely related to the rate of growth of g too. We remark that
the results in this section do not extend Theorem 1 (Sec. 2), even
if they cover some situations more general than the foregoing ones.
We shall give only the mean features of the proofs, since they follow
arguments which are similar to those developed in the preceding
sections.

Now we list some conditions we are going to use in the following.

(k) There are a constant a &#x3E; 0 and a continuous map b : [0, p] X Rm - R+
such that, tor all x E l~m and t E [0, p],

Assumption (k) is a growth restriction on g which recalls a similar
one considered by Br6zis and Nirenberg in [3] (with = x~ .
A further hypothesis on the map b( ~, ~ ), involved in (k), is made

(by) There is a constant y ~ 0 such that

uniformly with respect to t E [0, p].

Finally, a sign condition is given

(ka) There are a constant 6 &#x3E; 0 and a non-singular matrix U, such that
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uniformly in t, with

Now we can state the following

THEOREM: 2. Let us assume 99(t, x) = + P2(t, x) with g~l =

- grad F, .F’ E R) and P2 E C°(R X Rm, such that, tor each
0153, y E t E [0, p]7

holds, with 0 L  (JJ an d 

Moreover, suppose that (k), (by) and (k6) hold with

(kkk) y  min {2, 6} -

T hen equation (4.1 ) admits a p-periodic solution provided that

PROOF. We just outline the main steps of the proof. As in Theo-
rem 1, we define

with A (A):= A - (1 -,Z) sl, 8 &#x3E; 0 small enough.
Condition (ko) implies

_ 

p

&#x3E; 0; with f as in Theorem 1 and g(z) : _ z) dt, 
and therefore (p) of Theorem 0 holds. 0

In order to verify (a) we are looking for an a priori bound for the
(possible) solutions (x, A) E 0: X ]0,1[ of the equation

(which, for A = 1, is equivalent to (4.1)).
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Observe

Let y E with 9 = 0 and y’(t) = g(t, x(t)) = (gox)(t), and take the
L2-scalar product of (4.1~,) by y. ) . We easily get

On the other hand, taking the L2-scalar product of (4.1,a) by - ~( ~ ) =
== - 0153( .) + x, and using (kk), we have

Hence, the following estimate is obtained

Now, inserting (4.4) into (4.3), dividing by 1 &#x3E; 0 and using (k),
we have

Making use of (kv) we get

and, from (4.4) and (4-5), also

with suitable positive constants.
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Hence, by means of (bY), we obtain

Now, let us set p : = min t E [0, p]} = I and v(t) = x(t) -

x(t*). Then an easy computation gives

We claim: there is a constant 0, such that, for any x E Cp, solution
of (4. 1A),

Hence, we can conclude that and are bounded, via (4.8)
and (4.7), and the thesis follows as in the proof of Theorem 1. We
prove now the claim. Let us assume it does not hold: there is a se-

quence ))n of solutions of (4.1Â,) such that e,, - + 00. Let us

compute

Let us observe that lim 1, uniformly in t c- [0, p].
fi-+ 00

Then, passing to the lim inf into (4.9), y using the Fatou’s Lemma
and taking into account ~&#x3E;~y we have
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and a contradiction is obtained for a choice of q small enough. D

We remark that Theorem 2 holds too, if we replace (ki) with the
following (classical) sign condition, we already examined in Section 3,

( ii-1’ ) There is a nonsingular matrix U such that

and every t E [0, p].

In this case (kkk) simply becomes : y c 2.
In order to prove this result, we repeat the proof of Theorem 1

as far as the step (4.7); then, following the same argument given in
[19 proof of Th. 1], we achieve the thesis.

Besides we point out that condition (by) may be weakened (if
either (ka) or (ii-l’) is assumed) taking

There is ao &#x3E; 0 such that b(t, x) for ~x~ ~ ~ &#x3E; 0 and every
e[0,p], I

where ao is a (small) suitable constant, which may be computed by
means of the coefficients of the equation (4.1).

Now we state a variant of Theorem 2, which can be regarded as
a counterpart of Corollary 3, in the present situation. Indeed, the
potential map .F’, such that grad f _ will appear as a (guiding
function » for the time dependent restoring field g. Accordingly, let
us consider the following condition

(ea) There is a constant 6 &#x3E; 0 such that

uniformly in t, with

COROLLARY 4. Let as assume, as in Theorem 2, q;(t, x) = +
-E- x), with q;1 = grad F, .1~ E R) and q;2 E CO(R X R-, Rm) sat-
isfying (kk), with and let 
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and suppose

uniformly in t .

let (by) and (eo) hold, together with

Then equation (4.1) has a p-periodic solution, provided that

(kkk) ~min{2~}.

PROOF. Let us define f(t, x, y; A) aa in Theorem 2. First, we note
that, by assumption (ea),

(s &#x3E; 0, small enough), for Izl sufficiently large. Then, using some
arguments already employed (i.e. Poincar6-Bohl Theorem, con-

dition (eee) and Lemma 6.5 in [10]), we have ideg (1, .B(0, ~), 0) ~ _
= I deg (g, B(0, R), 0) = I deg (g~l, B(0, R), 0) 10 0 and (fl) of Theorem 0
follows.

Now we carry on the proof of Theorem 2 as far as the step (4.8) ;
only the final claim needs a lightly different proof. Indeed, from
(4.3), (4.5) and (4.6), we have

with dl, da two suitable positive constants. Then, using (kk) as in
Theorem 2, it follows, from (4.5) and (4.6),

Consequently, (by) implies
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and hence

holds (compare to (4.9)). Finally, (ea) gives the result, through the
same device employed in the proof of the claim in Theorem 2. C)

We point out that in all previous results we have also implicitly
proved that the set of the solutions to (1.1) and (4.1) is compact (non-
empty) in the space Cp endowed with the norm x r-.~ 

More detailed informations about the structure of the solution set

may be obtained, assuming further conditions on the coefficients of
the equations (see [2], [27]).
We end this section stating the following uniqueness result concern-

ing the equation

which is a particular case of (4.1) with g(t, x) = x.

PROPOSITION 1..Let A be non-singular and assume

for each t and y.

Then equation (4.11) has at most one p-periodic solution.

PROOF. Let x, y E 0’ v be two p-periodic solutions to (4.11). Then,
by difference,

We set z(t) := x(t) - y(t). Passing to the mean value in (4.12), we
have ..Az( ~ ) _ .Az = 0; hence 2 = 0, for A is nonsingular. Let Z e C.1
such that Z’ = z, Z = 0. Taking the L2-scalar product of (4.12)
by Z, with obvious computations, we get

which, together with (u), gives x(t) = y(t), for each t. 0
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Proposition 1, in connection with an existence theorem for equa-
tion (4.11) extends to the systems a classical result for the scalar case
[14, p. 10]. A linear example can be easily found in order to show
that the assumption (u) is sharp.

5. Functional differential equations.

Now we present a version of Theorem 1, concerning the existence
of p-periodic solutions to the functional differential system of Li6-
nard type

where, following [18, ~ 7], ~(8), - r c 8 c s, is a m X m matrix whose

elements have bounded variation, g~ : l~m is a C3’-map, g : R-
is continuous, h : R - Itm is continuous and p-periodic. For sake of

v

simplicity, we shall assume fh(t) dt = 0.
8 0

We define X 
-r

THEOREM 3. Let us suppose, as in T heorem 1, g = grad G,
q = g~2, with q;l = grad .F’, íp2 E rand  w. Moreover, let us
assume

Finally, let us suppose that (w) and (d) hold. Then equation (5.1) has
ac p-periodic solution.

PROOF. Let us fix a number 8 &#x3E; 0 such that the matrix X has no

eigenvalue in the interval ]0, E]. Setting, for Â E [0, 1], := -

8

(1, the identity matrix), y
- M - e(1 - Â)I, we have (by our choice of 8) the matrix non-

singular for any I E [0,1 [.
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Let us consider the equation

which, for A = 1, is (5.1). We define

f is continuous and p-periodic in t.

T is continuous and maps bounded sets into bounded sets. Moreover,
Tc = Mg(c), for any constant map 

Under the above positions, (5.IA) is equivalent to

Now, in order to get a p-periodic solution of (5.4,), we can employ a
version of Theorem 0, suitable to be applied to functional differential
equations, which can be directly deduced from Mawhin’s General-
ized Continuation Theorem [7, Th. IV. 1], [20, Th. IV. 1].

Indeed, there is a constant K such that

for any (x, I) E C9 X ]0, 1[ solution of (5.4A).
Moreover, y for each .R ~ ro &#x3E; 0, 7

’ 

The statement (5.6) follows immediately from (d). For proving (5.5)
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we repeat the argument in Theorem 1, making use of some devices
introduced in [18, proof of Th. 6]. In detail, at first we observe

Then, passing to the mean value in (5.1Â), À E ]0, 1[, we have

M(À) g o x = 0 and therefore

Let y E C~ with y’(t) = g(x(t)), y = 0. We take now the L2 -scalar pro-
duct of (~.la,) by y. From Lemma 3 in [18], we have

increasing functions. Hence, through the same

computations as in Theorem 1, we obtain:

From assumption (S2)’ a bound for is achieved. The remainder
of the proof is straightforward. C7

REMARKS. (1) In the particular case where it is assumed M non-
singular = x, ~p2(x) = 0, = (k &#x3E; 0, q &#x3E; 1),
for Ixllarge enough, we obtain Theorem 6 in [18].

(2) Whenever the matrix is chosen in such a way that
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with íj E R (~ = 1, ... , ~n) and A = ((at~)), a m X m constant matrix
(A 0 0), we can relax (S2) into

This can be proved as above, defining

that A = ~’ has no eigenvalue in the interval ]0, 2s]. Then, a direct
computation shows that II  IIA II, for A E [o,1], and that (5.8),
(5.9) become, respectively,

In this version, Theorem 3 extends results in [37], [23] and [9, p. 326].
Furthermore, the estimate is sharp, as a linear counter-
example shows.

(3) A functional differential version of the other results in Sect-
ions 3 and 4 could be derived as well (with the only restriction of con-
sidering in all cases g = g(x), i.e. g not dependent on the time variable).
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