
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

PAOLO SECCHI
Existence theorems for compressible viscous
fluids having zero shear viscosity
Rendiconti del Seminario Matematico della Università di Padova,
tome 71 (1984), p. 73-102
<http://www.numdam.org/item?id=RSMUP_1984__71__73_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1984, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1984__71__73_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Existence Theorems for Compressible Viscous Fluids
Having Zero Shear Viscosity.

PAOLO SECCHI (*)

Compressible viscous fluids have been studied by several authors
in the last twenty years. Existence theorems (local in time) for the
Cauchy problem in R3 were proved in 1962 by Nash [13], in 1971 by
Itaya [7] and in 1972 by Vol’pert-Hudjaev [23]. More recently, in
1980, Matsumara-Nishida [12] proved that the solution exists for all
time, provided the initial velocity is small, and the initial density and
temperature are close to constants. With regard to the initial-boundary
value problem, Solonnikov [17] in 1976 proved an existence theorem
for barotropic fluids (i.e. fluids for which the pressure depends only
on the density) with constant viscosities. In 1977, Tani [19] proved
the existence of a unique solution for the general case in bounded or
unbounded domains. (A complete survey of these papers can be
found in Solonnikov-Kazhikhov [18]). An existence theorem for the
initial-boundary value problem was proved also by Valli [20], using
an approach which is somewhat similar to ours.

In all these papers, the authors assume the shear viscosity p (or
« first coefficient of viscosity ») strictly positive and the dilatational
viscosity lz’ (or «second coefficient of viscosity))) to be such that

2tz + 3p’&#x3E; 0. In the present work, we assume p = 0 and u’ &#x3E; 0.

For the sake of convenience, we introduce the bulk viscosity C =
(2y + 303BC’)/3, so that we 0. A thorough discussion

(*) Indirizzo dell’A.: Dipartimento di Matematica, Università di Trento,
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of the meaning of these viscosity coefficients can be found in [14].
In [14], it is shown that there exist fluids for which ~C’ &#x3E; 100p and for
which the effects due to the dilatational viscosity are much greater
than the ones due to the shear viscosity. Concerning these matters
see also Chapman-Cowling [5].

The equations of motion that we study are obtained for instance
in Serrin [15]. In particular, observe that the principal part of the
system (I.I)i, or (1.6)1 (neglecting for simplicity the coefficient C) is
the operator L - - V div, which is not elliptic in the sense of Agmon-
Douglis-Nirenberg [1], since det = 0 for any real vector (see [1]).
This implies that (I.I)i is not parabolic in the sense of the definitions
given in Ladyienskaja-Solonnikov-Ura,l’ceva [9]). On the contrary,
it is parabolic in the sense of the generalized definition of Kato [8],
as .L is generator of an analytic semigroup in ~2(.~). Hence, equation
(I.I)i is interesting also from a mathematical point of view, since it
belongs to the class of parabolic equations only in a generalized sense
and not in the sense of classical definitions. Also, observe that the
equation (1.1)2 for the density is hyperbolic, while the equation for
the temperature is parabolic in case (1.1)s and hyperbolic in case (1.6),.
Concerning the boundary conditions and their physical meaning, see
for instance Serrin [16].

In this paper, we prove two existence theorems (local in time) for
two cases of the initial-boundary value problems, written in general
form. In the first case we take the coefficient of heat conductivity
positive, and in the second we take it equal to zero. The solution is
found in Sobolev spaces of Hilbert type.
A uniqueness theorem for this type of problems was first obtained

by Serrin [16]. Another uniqueness result, in a slightly more general
context (which, in particular, covers our cases), is proved by
Valli in [22].

Finally, we conclude our brief survey on compressible fluids, by
recalling the paper of Beirao da Veiga [2], where an existence theorem
for barotropic non-viscous fluids is proved, making use of a fixed point
argument, somewhat related to our method.

1. Statement of the problems and main results.

Let Q be a bounded connected open subset of R3. Assume that
the boundary h is a compact manifold of dimension 2, without bound-
ary and that S~ is locally situated on one side of r. r has a finite num-
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ber of connected components ... 7 rl such that (i = 1, ... , m)
are inside of and outside of one another. Set QT - ]0, T[ xQ,

]0, Let n be the unit outward normal vector to T.
Let us denote by v = v(t, x), ~ _ e(t, x), 0 = 0(t, x) the velocity

field, the density and the absolute temperature, respectively. The

equations that we want to study are

We shall also consider problem (1.6) (obtained from (1.1) setting
X = 0 in (1.1), and neglecting the boundary condition (1.1)5). We
denote by b the time derivative, b = b(t, x) the external force field
per unit mass and r = r(t, x) the heat supply per unit mass per unit
time. The pressure p = p(e, 0) and the speeific heat at constant volume
c~ = ev(e, 0) are known functions of ~o and 0, the coefficient of bulk
viscosity ~ = C(e, 0, v) and the coefficient of heat conductivity X =
::.= x(e, 0, v) are given functions of e, 0 and v; 01 = 01(t, y) (y c
is the assigned temperature on Finally Vo = vo(x), and

0o = are the initial data.
Let us denote by OO(Q) the space of continuous (and bounded)

functions on SZ and by Ck(Q) (k positive integer) the space of functions
with derivatives up to order k in CO(D). If m is a positive integer,

is the Sobolev space of functions with m derivatives in L2(Q);
we shall denote its norm by 11 11m and by 11 ’ the norm of L2(S~).
For the definition of H8(T) (s not integral) see for instance Lions-
Magenes [10]; we shall denote its norm by 11 ’ ~~ 8,r. If ~ is a Banach

space, .L2(0, T ; X), L°’(0, T ; X), H"’(0, T ; X), T ; X) are the

spaces of X-valued functions in .L2, 7L. g~ and respectively.
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We shall denote by Hji~(0, T ; X) the space with

0°([0, T]; X) and 6"([0, T] ; X) are the spaces of
X-valued continuous and Holder-continuous (with exponent x) func-
tions, respectively. We shall denote the norm of T ;
.Hm(S~)), + oo, by the norm of the space -

, the norm of

We prove the following results.

THEOREM A. Let .1~ be of class C4. Suppose b e with

ML-3.1

Assume that the (necessary) compatibility conditions

are satisfied.
‘Then there exist T’ E ]0, To],

-with div v E L2 (0, T’; H3(,Q)), e E 00([0, T’]; ~1 H2 (0, T’; Hl(,Q))
with 6 E T’ ; H2(Q)) such that ~O &#x3E; 0 inQT’ and 0 e g4’2(QT.) such
that (v, is a solution of (1.1) in QT..

THEOREM B. Let F be of class C3. Suppose b E with
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Assume that the (necessary) compatibility conditions I

2. - Proof of Theorem A.

We suppose that S~ is simply-connected. For the case ,~ not simply-
connected see Remark 2.1. We shall prove Theorem A by the con-
struction of three successive fixed points.

Let T E ]0, To].

where A is a positive constant, which will be specified in (2.41).

such that

(B will be specified in (2.25)).

such that for each t E [0, T] div q = 0

will be specified in (2.8)).
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Then there exists a unique solution v of the elliptic system

such that and Here and in

the sequel, C will denote every generic constant ; we shall denote by
i5(-) a non-decreasing function of all its arguments, depending also
at most on the data of the problem Q, T , b, r, p, Oy, C, W, 01, v1, 7 eo 80.

Now consider the problem

LEMMA 2.1. There exists a unique solution ~o of problem (2.2),
such that

PROOF. As v E 0°([0, T]; we can construct the solution e
by using the method of characteristics. Set t, x) = z(J) , a, t E [0, T],
x E where is the solution of

(such a solution is global since v .n = 0 in E2.). Then the solution
A _--_ log ~O of

is given by

From this expression one obtains e(t, x).
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Applying the operator Dr to (2.2),, where y is a multi-index with
multiplying for and integrating over Q, one easily gets

and so e e L’(0, T ; H3(,Q). Since t, x) E 0°([0, T] x [0, T]; 
and, for each E [0, T], z(O’, t, x) is a C1 diffeomorphism from S~
onto D, with aS2, one obtains e E 0°([0, T]; H3(Q)) (see Bour-
guignon-Brezis [4], Lemmas A3, A5, A6). Directly from the equation
we have T ; g2(S~)). Finally, one has

where

Now consider the following equation (formally obtained by taking

where _--_ ~), ~ - C(e, Õ, v). As for equation (2.2), we can con-
struct the solution ~ by using the method of characteristics. Moreover
one has the following results:

LEMMA 2.2. Let ~ be the solution of (2.3). Then
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.Moreover, for each t e [0, T],

PROOF. Applying the operator Dv to (2.3)1, where y . is a multi~-
index with y ~ c 2, multiplying for and integrating over .~,
one gets .

from which one has

From Gronwall’s lemma one has (2.4). By the same arguments used
to prove one 

From (2.3)1 one obtains

,Observe that, by interpolation, from 0 E H4,2(QT) one obtains 6 e
E 00([0, T]; H3(Q)) with

where C is independent of T (see Lions-Magenes [11]); hence one has

.Analogously from b e one obtains b E TO]; Hl(,Q)).
In order to prove (2.5), observe that, by the general formula .

and since
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one can write (2.3) as

Applying the operator div to both side of (2.7) one gets

from which (2.5) follows.
Finally, by (2.7 )1 we have

since for each ~. Hence, for each t E [0, T],

We can now construct a fixed point of the map 0,: 99 --&#x3E;- ~. In fact,
choose

Then from estimate (2.4) one sees that there exists Ti E ]0, Ta] such
that the set

satisfies ~~[~S~] ~~Sl ·
81 is obviously convex, bounded and closed in Xl - C°([0, T1]; H1(Q)).



82

As is bounded in Ti ; Hl(.Q)), is a bounded subset
of 01([0, Pl]; n C°([0, Pl]; H2(Q)). From the Ascoli-Arzelà

theorem, is relatively compact in XI.
Let now rp E 81, in Xi. Then the solutions vn of the

elliptic system (2.1) (where converge to v in

Tl]; H2(Q)). From (2.2) one obtains

Hence from the Gronwall’s lemma one has eft - e in C°([0, PI]; 
Finally, y by evaluating in a standard way, one has

and consequently ~2013~ in Xi.
Then 0,, is continuous in the topology of From the Schauder

fixed point theorem, y there exists 92 = ~. Let v be the corresponding
solution of (2.1). Ti ; HI(Q)) n L°(0, Ti; by dif-
ferentiating in t system (2.1), we get Tx; H2(S~)) n Ti;

From (2.2) we obtain 6 E .H1(o, TI; Moreover, from

one has v(O) = va in Q.
Then we have the following result:

THEOREM 2.1. For each y, 0 satisfying hypotheses (H1), (Hz) re-
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such that (v, e) is the unique solution of

PROOF. We have only to prove the uniqueness of the solution.
Let (v’, e’) be another solution of (2.9); set $’ ~ rot v’. From

we have ]] (v - v ’ ) (t ) ]] 1  6 ]( ( § - 8 ’ ) (t) 11 for each tE[O,Tl]. From the

equation (2.9) for e we get

From equation (2.9 )1, one obtains

Then
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hence, from Gronwall’s lemma, as (e - e’)(0) = 0, (~ - ~’)(0) = 0, one
obtains e = e, ~ = ~’ in QT1. From (2.10) one has v = v’ in QT1. n

Construction of the second f ixed point.

Let T E ]0, T11; consider the problem

where

First we define the operator A, in H2(Q) setting

(we have ooEH3(Q), XoEH3(.Q)).
The following result holds.

LEMMA 2.3. For any I E C with Re ~, ~ 0, ~, + A, is an isomorphism
from D(Ax) (endowed with the graph norm) into H2(Q).

Moreover one has, for each 0 E D(A1),

where the constant C does not depend on Â.

PROOF. Consider the problem
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where f E H2(Q), Â E C. By well-known results on elliptic problems,
one gets a unique solution 0 E D(A1), for any A E C with Re ~, ~ 0.
Multiplying (2.13) by and integrating over Q, one easily obtains

By this inequality one has

Then

from which (2.12) immediately follows. D

Then one has:

LEMMA 2.4. Let .I’ E 01 E H7/2,7/4(ET), 00 E H3(Q). Assume
that the (necessary) compatibility conditions

are satisfied. Then there exists a unique solution of

problem

Moreover,

where C does not depend on T.
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PROOF. The traces 0,(0) and 6,(0) on 1’ belong H5"(F) and 
respectively to. Hence one can find a + oo[ X F)
such that Y7(0) = 01(0), = 81(0), and

where the constant C does not depend on T.
Now, we can extend 0, -1J’ from [0, T] xr to R XF in such a way
that the extension P(O, -1J’) E .H’~~~’~~(R X 1~’), = 0 for

.t  0 and

where the constant C does not depend on T (extension by reflection
around = T : see Lions-Magenes [10], Theorem 2.2, chap. 1, and The-
.rem 11.2, chap. 1). Hence we have extended 81 to ~1- P(Bl --- ~’) 
and ~eJ?~’~(]0~ + with

Now, the compatibility conditions (2.15) are necessary and sufficient
-to find a function H E + oo[ X Q) such that

:and the following estimate holds:

-where the constant C does not depend on T.
Now we can find the solution of

Since Lemma 2.3 holds and the condition i
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is satisfied, we can apply Theorem 5.2, chap. 4 of Lions-Magenes [11],
and we find a solution e E H4’2(QT), verifying

where C does not depend on T.
The function 0 = ~ + e is the solution of (2.16) and by (2-18),

(2.19), (2.20) we get (2.17). n

Thanks to Lemma 2.4, we can now solve problem (2.11).

LEMMA 2.5. There exists a unique solution 0 E H~4’ 2 (Q~) of pro-
blem (2.11). Moreover the following estimate holds:

where and the constant 01 does not

depend on T.

PROOF. As one can easily verify, y we have

Recall that, if T ; X), where X is a Banach space, then

and, if T ; X ), then

Then we have
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Moreover

The compatibility conditions (2.15) are satified since (1.4), (1.5) hold.
Then we can apply Lemma 2.4 and find a unique solution 6 E .g4’2(QT)
of problem (2.11). From (2.17), (2.22), (2.23), (2.24) we get (2.21),
observing that

where C does not depend on T. 0

Now, we can construct a fixed point of the map lJJ2: Õ - 0.
Choose

r

Then, by estimate (2.21), there exists T2 E ]0, T1] such that the
convex set 

’

satisfies
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82 is bounded in C°([0, T2]; H3(Q)) n Ci([0, T~]; .H1(~G)) ; hence, by
the Ascoli-Arzela theorem, it is compact in C°([0, T2]; H1(Q)).
Let 8~, 6 E S2, 8~ -~ 8 in .X2. Let (vn, (v, e) be the corresponding
solutions of (2.9) (where div Vn == div v = 11’); set $~ - rot v.

Then, from (2.1) and (2.9)~, we obtain

From (2.9),, one gets

Then, adding (2.26) to (2.27), one has e in X2, $n-$ in
C°([0, T~] ; LQ(,~)) ; hence vn - v in X2 .

From (2.11)1 one gets, after some calculations,

hence 0n - 0 in C°([0, T2]; L2(Q)). Since 0 E 82, which is compact
in X2, we have 8n ~ 8 in X2. Then 0, is continuous in the X2 to-
pology. From the Schauder theorem there exists a fixed point 0 = 0.
Let (v, e) be the solution of (2.9), given by Theorem 2.1, correspond-
ing to the fixed point 0. Then we have

THEOREM 2.2. For each y satisfying hypothesis (Hi), there exist
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is the unique solution of

PROOF. We have only to prove that the solution is unique.
Let (v’, c’,0’) be another solution of (2.28). Set ~ =- rot v,

E1 = rot v’. As in the proof of the continuity of ~2 , one obtains,
from (2.1), (2.28)2 and (2.28),, respectively,

From (2.28),, one has
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Construction of the third f ixed point.

Finally, let us consider the problem (formally obtained by taking
the divergence of b + + in Q
and writing div v = ~,v or 11’, and by taking the scalar product of the
same equation with the outward normal n on 1’-’)

where T E ]0, T.], §o = ~o, vo) &#x3E; 0 in ~2.
Let us define the operator A, in the space setting

(we have Co E H3(Q)).
Then we have

LEMMA 2.6. For any A c- C with Re~&#x3E;~o&#x3E;0, ~ -~-- AZ is an iso-

morphism from D(A2) (endowed with the graph norm) into H’(S2)..
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Moreover, for each w E D(A2), Re ~, ~ Âo, one has

where the constant C does not depend on A.

PROOF. Consider the elliptic problem

where g E A E C. Then for any A E C with lo &#x3E; 0 there

exists a unique solution W E D(A2). Multiplying (2.31) by w and
integration over Q, one obtains

from which one gets

where C does not depend on A. Multiplying (2.31) by div 
and integrating over SZ, one has

from which one obtains

Then one has
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Hence

from which, as one has (2.30). F-1

LEMMA 2.7. Let

Assume that the (necessary) compatibility condition

holds. Then there exists a unique solution

r1 H-(O, Z’; of problem

Moreover

where C does not depend on T.

PROOF. As in the proof of Lemma 2.4, one can extend E from
[o, T ) X 1-’ to in such a way that the extension

where C does not depend on T.
Now, compatibility condition (2.32) is necessary and sufficient to find
a function U E g3’3/2(’~0, + oo~ such that
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and the following estimate holds:

where C does not depend on T.
Let us consider the problem

Since Lemma 2.6 holds, we can apply Theorem 3.2, chap. 4 of Lions-
Magenes [11], and find a solution 

"

such that

where C does not depend on T.
The function w = W -~- ZT is the solution of (2.33). By (2.35),

(2.36), (2.37) we get (2.34). D

We can now solve the problem (2.29).

LEMMA 2.8. There exists a unique solution w E L2(o, T; 
n T; Hl(Q) r1.H’~(o, T; L2(S~)) of problem (2.29). Moreover w

satisfies

where O2 does not depend on T, and

PROOF. First, one easily verifies that p, C E 00([0, T]; H3(Q)) f1
f1 Hl(O, T; H2(Q)) r1 H§~(0, T; Hl(Q)). Then, proceeding as in the
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proof of Lemma 2.5, we obtain

where C~ does not depend on T.
Compatibility condition (2.32) is satisfied since (1.3) holds. Then,

by Lemma 2.7, we have a unique solution wEL2(O, T; .Hs(SZ)) n
of problem (2.29). By interpolation w E 0°([0, T];

where C does not depend on T.
Observing that, if f E Hi(0, T ; L2(SZ)), then

by (2.~9)1, we get

From (2.34), (2.39), (2.40) we get (2.38).
Finally, we have

by the boundary condition (2.29)2.
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As

by (1.2), we have

We now prove that there exists a fixed point of the map ~3: y~ --~ w.
In fact, choose

Then there exists T’ E ]0, T2] such that, by estimate (2.38), the con-
vex set

satisfies ~’3.
By interpolation and a Sobolev imbedding, Sa is bounded in

hence by the Ascoli-Arzelh
theorem, it is compact in X~ - 0°([0, T’] ; Let lpn, 1jJ E S3 ,
y~n --~ y~ in Let (vn, (v, py 0) be the corresponding solutions
" I I I - .....", -’

From system (2.1) for Vn - v, and (2.28)2 respectively, one has
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From (2.28)1 and (2.28)3’ one obtains (by (2.42))

Then, adding (2.43), (2.44) and (2.45), one has in 

in 0n - 0 in 00([0, T’]; L2(Q)) and in L2(0, T’; .gl(SZ)). Finally,
from (2.29)1, taking account of the boundary condition (2.29)21 we get

from which one has in 0°([0, T’]; L2(Q)). Since wn, w E ~’3
which is compact in we have wn - w in X3. Then 0, is continu-
ous in the X3 topology. From the Schauder theorem there exists a
fixed point = w. Let (v, e, 0) be the corresponding solution of (2.28).

Then, from (2.28)1,
(2.29)1 and (2.29)2 0 implies 0), we have

hence V = 0 in i.e. the equation is satisfies in Qy. Finally, y
from (1.1)1, one has v E H2(0, T’; .L2(,~)).

REMARK 2.1. Assume that is not simply-connected. Then

(see Foias-Temam [6]) there exist N vector fields = 1, ... , N,
defined in ,~, which are a basis for the linear space of the solutions of
the system rot u = 0, div u = 0 in ,~2, u. n == 0 on r and such that

u(j» - blj (( ~ ) denotes the scalar product in 12(D)) . N is the
number of cuts needed to make Q simply-connected.
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Given y, %, q as in instead of solving successively (2.1),
(2.2), one simultaneously finds (by a fixed point argument, see for
instance BeirAo da Veiga-Valli [3]) a solution (v, e) of

Then one proceeds as in our proof, in the same way.
One has only to observe that we shall have v(O) = vA from the

system

Moreover, equation (1-1), is satisfied, since we have

where the last equation follows from (2.46)~.

REMARK 2.2. One can solve our problem also for the following
boundary conditions for the temperature 8 (with the obvious modi-
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fications in the compatibility conditions):

where k is a given positive constant and ~~N~’~(2~). ·
REMARK 2.3. Instead of (2.29), one can solve the problem (directly

obtained by (1.1 ))

The operator A3 - - V div is not elliptic (see Agmon-Douglis-
Nirenberg [1]). First one solves the problem lu + = f E L2(s2),
finding by the Lax-Milgram lemma the solution in the space
~ - - . - , - . ...._~~.. _ ,..., . _ . _ ..~ _ ..-.. -

isfies the inequality (2.12), so that one can solve (2.47) by means of
Theorem 5.2, chap. 1 of Lions-Magenes [11], as for the problem (2.11).

Then one proves, if T is small enough, that there exists a fixed
point y = div u. By (2.47)1 and (2.46),, one has 
in QT and (it 2013~, u(t») = 0 in [0, T], I = 1, ... , N. Hence

from which u = v in (~r.

3. Proof of Theorem B.

The proof is similar to the one of Theorem A. We start from y
as in (HI) ,tnd 99 as in (H,,), while we take 6 E 00([0, T]; .H~(S~)) such
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that e (0 ) = 0o in Q and (that we specify later). One finds
the first fixed as in the proof of Theorem A. Then, ins-
stead of (2.11 ), one considers the problem
- 2! -- :-

We solve it by the method of characteristics, as the equation for the
density o. Observe now that L2(0, T; H3(Q)) f1 LOO(O, T; H2(Q)) is an
algebra and consequently y~2 E L2(o, T; H~(S~)) ; hence F’ E L2(o, T;
H3(Q)), and then one obtains 0 E CO([O, T] ; H3(Q)); from the equation
(F’ belongs also to Z°°(0,T;jB~))) one has 6eZ~(0,T;~(~))n

Then2 if one takes B’ &#x3E; ~~ e° ~~ 3 , there exists T’ small enough such that 0
belongs to the convex set {0 E 0°([0, T"] ; H3(Q)): 6(0) = 00 in D,

It is not hard to show that the map % - 0 has a fixed
point. The remainder of the proof is as the third part of the proof
of Theorem A. 0

REMARK 3.1. Proceeding as in Valli [20] (see also [21]), we can
obtain analogous results also for the problem
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where p = ¡t(e, 0, v) &#x3E; 0, v) &#x3E; 0 and is equal to zero. The
third equation is solved by the method of characteristics as in the
proof of Theorem B.
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