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Asymptotic Stability Theorems
for Viscous Fluid Motions in Exterior Domains (*).

PAOLO MAREMONTI (**)

Introduction.

Let Y be a viscous incompressible fluid, filling the domain Q
exterior to v compact subregions of the euclidean three-dimensional
space 1~3. In this paper we shall study the attractivity of a given
motion mo of Y. As is well known, such a problem in the case Q
bounded has been investigated by several authors [1-3] and they proved
that, provided a suitable condition on the Reynolds number Be as-
sociated to mo is fulfilled, all perturbations satisfying the « energy
inequality » fall off as t - + oo in the L2 norm with an exponential
decay order. The key tool in proving this result is furnished by the
validity of the Poinear6 inequality. It is therefore quite natural to
expect that when one considers the case of an exterior domain, where
this inequality fails, the problem becomes much more involved and,
further, in general the above results no longer hold [4]. To solving
this problem the efforts of several writers have been directed [4-13].
In particular, we quote the results of [9, 11, 13] because of the strict
connection between them and the main theorems proved in the present
paper. In [9] the author shows that, provided the unperturbed mo-

(*) Work performed under the auspices of G.N.F.M. (C.N.R.). A I.A.M.
scholarship from C.N.R. is gratefully acknowledged.

(**) Indirizzo dell’A.: Istituto di Matematica « R. Caccioppoli ), via Mez-
zocannone 8, 80134 Napoli, Italy.
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tion mo satisfies some regularity assumptions ( 1) and the number .Re
is not « too large », all perturbations verifying the « energy inequality»
smooth out as the time increases and finally decay to zero in suitable
norms and with a suitable order of decay. In [13], among other things,
the result of [9] are improved as far as the order of decay is concerned,
but the unperturbed motion reduces to the rest. Finally, in [11] fol-
lowing analogous formulations for bounded domain (cf. [1-21) a varia-
tional approach to stability is proved under assumptions on the unper-
turbed motion mo larger than those considered in [9,13). In partic-
ular, in the case when mo is unsteady, no « infinitesimality » for large t
on the kinetic field v associated to mo is needed. However, results
proved in [11] hold for small initial data and no decay order is given
as t - + oo.

In this paper, y following the approach given in [11], y we give a
variational formulation of stability of motions in exterior domains.
To better explain our results, let us begin to denote by .R-1 the maxi-
mum of a suitable quadratic functional depending on perturbation
through the rate stress tensor of mo . We also assume that the kinetic
field associated to mo has a  nice » behaviour at large spatial distances
and, in the case mo unsteady, for large time as well. We start with
perturbations u to the kinetic field associated to mo satisfying the
« energy inequality » and prove that if Re  R there exists an instant T,
such that for t ~ T, u smooths out and ultimately decays to zero with
suitable order. In particular we have for mo steady

(1) As pointed out by the author to Professor K. Masuda, assumption 2’
made in [9] p. 298 should be strengthened. Professor Masuda kindly replied
that the right assumption to be made is the following

where z,a is the kinetic field associated to the unsteady unperturbed mo-
tion.
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and for mo unsteady

In the above, 11 - 11 represents the Z2-norm and the subscript t denotes
differentiation with respect to time. The above decay estimates mar-
kedly improve those given in [9], and coincide with those given in [13T
which are proved, however, only when mo is the rest. In this connection,.
it is worth remarking that, as noticed in [13] p. 674, the methods
employed in [13] are not able to give any behaviour for large t when
mo is different from the rest. Moreover, when mo is steady a suitable
coupling of methods of [13] and [9] would give an asymptotic behav-
iour which, however, is worse than that provided in (I).
Finally regarding (I)1 it seem interesting to remark that it is a con-
sequence of a sort Poinear6 inequality which we prove to hold for ut.
Obviously, this inequality is true a priori only along the solutions and,
in fact, the constant appearing in it depends on mo , on the initial
data of u, on Re and 1~.

The paper is subdivided into three main sections. The first one
is devoted to some mathematical preliminaries concerning embedding
theorems, the Stokes problem in exterior domains (subsection 1.1)
and to the statement of the main theorems (subsection 1.2). The

second section is devoted to the proof of stability of steady motions,
i.e., to the proof of (I). To this end, in subsection 2.1, we begin to
give some existence theorems and to prove (along the lines of [9,13,14])
that for t sufhciently large the perturbation smooths out in a suitable
sense. In subsection 2.2 after several preliminary lemmas we give
the proof of (I). Finally, section 3 is devoted to show the stability
of unsteady motions, i.e., to show relations (II). This is accomplished
by first proving existence theorems of the kind previously proved
in the steady case (subsection 3.1). In subsection 3.2 we give the
proof of (II).

Last but not least, the author wishes to express his deep grati-
tude to Professor G. P. Galdi for suggesting this research and for
helpful comments and suggestions.
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1. Preliminary results and statement of the main theorems.

1.1. Prel iminaries.

Throughout this paper we indicate by Q a Cl-smooth domain
exterior to v (&#x3E;0) compact regions of the euclidean three dimen-
sional space R~. For T &#x3E; 0 we set ,~T ._--_ ,~ X [0, Z") and denote by
~x, t) a given point in 

We introduce some spaces whose members are vector functions
u: S~ -~ .R~. Lp(!1) (p E [1, + 00]) is the usual Lebesgue space en-
dowed with the norm

in the case p = 2 we put Ilulls = Ilull. Moreover, = 1, 2, ... ,
is the Sobolev space of functions u which are square summable over Q

together with their m-th (generalized) derivatives inclusive. As is
well known, W§’(Q) is a Banach space equipped with the norm

were

We shall set 1t;a the completion of in ~’$ (S~). Furthermore
we let

For I .X Banach space we denote
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the set of functions f: (a, b) - X such that

Analogously, y denoting by I an interval in R, by C(I; X) we indi-
cate the set of functions f : I --~ X which are continuous from I

into X. A natural norm in this (Banach) space is

As is well known [15] where

By PH - P we denote the projection operator from L’l. into H. The

following lemma can be proved (cf., e.g., [16])

LEMMA 1.1. Let W e W22 r1 HI be a solution to

then

where Go is a constant depending on the geometry on Q. In this

connection we notice that, throughout the paper the symbol C.
(n = 0, 1, ...) will be used to denote a positive constant depending
at most on the geometry of SZ and on the « size » of the motions
whose stability is to be investigated. The precise value of en is
unessential to our aims and therefore it will be omitted.

In the following lemmas u, a and b denote vector functions on Q,
( -, - ) denote the scalar product in L2(Q) and a is a positive real
number.
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PROOF. We employ the Holder inequality with exponents 6, 3,
and 2 to obtain

Since

(1.4)

taking into account ( 1.1 ) 2 from (1.3) we have

From this last relation we deduce (1.2)1. Concerning (1.2)~, we notice
that from Holder inequality we obtain

From (1.4) and Cauchy inequality we thus deduce (1.3)2.
Applying again Holder inequality with exponents 6, 3 and 2,

and taking into account (1.1)2 we have

Employing the Cauchy inequality we finally recover (1.2)3.
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PROOF. The proof of this lemma is analogous to that of Lemma 1.2
with b = Pd u and 2 ~ _ ~ .

LEMMA 1.4. Let u, aid Then,

PROOF. Applying Schwartz inequality and the following

we obtain

Therefore both relations (1.6)1 are deduced from (1.7) after a suitable
application of Cauchy inequality. On the other hand, taking into
account
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and employing Holder inequality in (1.6)2 and (1.6)3 with exponents
6, 2 and 3 and 3, 2 and 6 respectively, we have

From these last relations we deduce (1.6)2 and ( 1.6 ) 3 .

PROOF. To obtain (1.8)1, we notice that

where the inequality

has been employed. Therefore, (1.8)1 follows from this last relation
along with the use of Young and Cauchy inequality. Analogously,
to prove (1.8)2 we notice that it follows from Holder inequality with
exponents 6, 3 and 2 and again Young inequality. Finally, it is

where use has been made of [18]

Using Young and Cauchy inequality in (1.9), (1.8)3 follows.
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LEMMA 1. 6..Let u, aeL3(Q). Then

PROOF. We have

Since

(1.10), is a consequence of (1.11)-(1.12). Estimates (1.10)2 and (1.10)3
are easily obtainable by applying suitable Holder inequality and
noticing that

For the proof of the first part of Lemma 1.7 below cf. also [19].

LEMMA 1.7..Let 99 (t) c- 01 (to, + oo) such that 

with a(t) ‘dt &#x3E; to . A.ssume, moreover, that for 0

then
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Moreover, if

,necessarily

PROOF. We proceed per absurdum. Since qo  3f2 ( 6), by con-
-tinuity there exists t* &#x3E; to such that  6, t* ), and 99(t*) = 6.
We shall show that this leads to a contradiction, thus proving t = + oo.
In fact, from (1.13)1 we have Bit E [to, t*]

.and hence

which shows (1.14). Assume now ’ Then multi-

plying ( 1.13 ) 1 by ( t -~- ~8 ) we de duce

Setting z(t) = (t + fJ)q;(t) from (1.15) we obtain

whith is equivalent to
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From this relation we deduce

Integrating (1.16) over [to , t] it follows

whith gives

thus proving the lemma.
We end this section by recalling a well known theorem. For

a, b &#x3E; 0 we set

where the derivatives are taken in a distributional sense. It is known

that W(a, b) endowed with the norm

becomes a Hilbert space. Denoting by [X, Y]O, 0 c 8 c 1, the inter-
mediate space [20], the following lemma holds [20].

LEMMA 1.8. I f f E W (a, b), then

1.2. Statement of stability results.

Let Y be an incompressible viscous fluid filling the region SZ. We
assume that the motion of Y is governed by the Navier-Stokes equa-
tions. In this section we state the problem of the attractivity of a
motion mo of Y with respect to perturbations to initial data. As is
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well known, indicating by (u, n) the perturbation to the kinetic and
pressure fields associated to mo, we have that (u, n) is a solution to
the following initial boundary value problem:

In the above u, = au(x, t)lat, a is the velocity field associated to ~ao
and Re is the Reynolds number associated to a. Throughout this
paper, we shall replace the letter a in (1.17) with w or v according
to whether the motion mo is steady or not. Concerning a, we make
the following assumptions:

i) There exist such that

uniformly in

uniformly in t &#x3E; 0 ,

ii) there exists M4&#x3E; 0 such that

iii) there exists (in a suitable function space) the maximum (2)
of the following functional

(2) The existence of Max in H, under suitable hypotheses for un-
perturbed motion, has been proved by G. P. Galdi in [11~. Cf. also remark (2)
below.

(3) With D we denote the rate stress tensor associated to a.
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Moreover, setting

where Re is the Reynolds number associated to v (resp. zu);

iv) we suppose that v is continuously differentiable function
of x and t ; moreover

Finally, y we suppose that WE L3(Q).
Now we give the following definition of weak and strong solutions

to equations (1.17).

DEDINITION 1.1. A field u: (T = + oo) is said to be a
weak solution of (1.23) if and only if

h,) for some given

h8) the equation

is satisfied

for almost all s &#x3E; 0 and with t &#x3E; s.
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The existence of a weak solution for every perturbation uo E H(Q)
has been proved by G. P. Galdi in [10].

DEFINITION 1.2: A field u: S,~T -~ .R3 is said be a strong (or ctacs-
solution if and only if

c) u satisfies system (1.17) almost everywhere.

THEOREM 1.1 (attractivity of steady motions). Let mo be a steady
motion and let w satisfy assumptions i)-iv). Moreover, let Uo E Hand
u be a weak solution corresponding to uo . Then there exists To ~ 0
such that u becomes strong Moreover, there exist constants

A, y B, Ai i and Bi (&#x3E; 0) such that f or T E (To, To -~-- B) the
following estimates hold:

THEOREM 1.2 (attractivity of unsteady motions). Let mo be an

unsteady motion and let v satisfy assumptions i)-iv). Moreover, let

Uo E Hand u be a weak solution corresponding to uo . Then there
exi8 tg To E [0, A’ (A’ is a constant) such that u becomes, strong

Moreover, there exist some constants Ai (&#x3E; 0) such that for
Y E (To, To -E-1) the following estimates hold:
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REMARKS. (1) We notice that apart from (regularity)) assump-
tions (i.e. behaviour at large spatial distances and large times) on
the unperturbed motion, the theorems we give are based upon a varia-
tional formulation of the same kind of that introduced in [1-2] for
bounded domains and in [11] for exterior domains. In this regards,
we recall the importance of such a formulation both for applications
[3, 21-22] and the connection between linear and non linear stabi-
lity [3, 19, 23].

(2) It is important to stress that i f mo is steady and Vw E 
all the assumptions i)-iv) are automatically satisfied with the only excep-
tion, of course, of condition (1.18). This can be easily checked by
suitable coupling the results of [24], Corollary 2 and [13], Theorem l.
On the other hand it is well known that the class of solutions verifying
the above hypothesis, (the so-called D-solutions) is certainly non void
(cf., e.g. [25]). Therefore, in the class of D-solutions condition (1.18)
is sufficiente for stability in the sense of Theorem 1.1 (4). This theorem

therefore, improves on analogous results proved in [5, 9, 11, 13]. More-
over, we should also notice that the orders as t --* -E- oo derived in
Theorem 1.1 are better than those proved by the Authors of [9,13].

(3) When the unperturbed motion mo is unsteady Theorem 1.2
should be compared with analogous results of K. Masuda [9] and
G.P. Galdi [11]. As pointed out by the author to Professor K. Masuda,
the hypothesis on vt in Assumption 2’ on p. 298 of [9] is to be

strenghtened to the following

Therefore, it is worth remarking that our assumptions on the unper-

(4) It is needless to say that both strong and weak solutions to (1.17)
belong, for figed t, to the class H. In fact, from known results [29], it fol-
lows 
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turbed motion do not require any specific behaviour as t - + o0

(only ii) is needed here). In any case, the order of decay proved in
this paper is better than that given in [9]. As far as paper [11] is

concerned, the assumptions there made on ~no are better than ours,
(in particular, no « infinitesimality» at large t is needed). However,
results proved in [11] hold small initial data and no decay is given

- + oo.

2. Asymptotic stability of steady flows.

2.1. Existence theorems with smooth initial data.

Under suitable hypothesis on the unperturbed motion mo (steady
or not) we have the following (local in time) existence theorem for
strong solutions.

THEOREM 2.1. Let assumption i) be satis f ied and let "0 E HI, then
there exists one and only one classical solution (u, n) to the system (1.17).
in Q X [0, T*):

PROOF. The first statement is a particular case of a theorem proved
by V.A. Solonnikov (cf. [26], Theorem 10.1). The second is an imme-
diate consequence of Lemma 1.8 when we notice that for 0 = 1/2 the
following relation holds true (cf. [17])

We notice now that in order to obtain a global existence theorem
from the preceding one, it is sufficient to prove that the solution u
of the Theorem 2.1 verifies an uniform estimate of the type
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We shall show that this is possible provided II Uol1Hl is sufhciently
small.

To this end, we propose some lemmas.

2.2. Let (u, n) be a solution to system (1.17), and let iii)
be satis f ied. Then

and

where

PROOF. It can be easily seen that multiplying, in L2(Q) both
sides of (1.~.7)1 by u we have

Hence, integrating (2.4) over [0, t], Vt  T*, and taking into account
iii) we deduce both (2.2) and (2.3).

We are now in a position to prove the following global existence
theorem:

THEOREM 2.2. Let i) and iii) be 
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and . Suppose for some 6 &#x3E; 0

then there exists a classical solution (u, 1£), VT* &#x3E; 0.

PROOF. Multiplying in L2(Q), both sipes in (1.17)1 by P4u and
taking into account (2.1) we have

According to Lemma 1.3 it is possible to increase (2.5) to obtain

Choosing 77 = 1/5 into (2.6) and taking into account lemma (1.7) we
prove the theorem.

REMARK. 1 We explicitly observe that the condition

can be omitted whenever

Such a condition, for example, will be employed in the sequel for an
analogous result (cf. Lemma 2.4).

We now want to prove that for every initial perturbation uo E 
we can be determine a T &#x3E; 0 such that the weak solution corresponding
to uo becomes classical T for this kind of problem cf. also [9, 13-141.
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To this end, we begin to recall the following uniqueness theorem essen-
tially due to J. Sather and J. Serrin [28].

THEOREM 2.3. Let u and u’ be two weak solutions to system (1.23).
Let iii) be satisfied and let u’ E Is (0, T; L8’(Q)) with s and s’ such that

From the Definition 1.1 of weak solution, it follows obviously,
that (0, + oo) can be considered as the union of two disjoint open
sets 0 and 8’ such that

Of is a set Lebesgue measure zero.
Taking into account Theorems 2.1 and 2.3 is easy to deduce the

following lemma.

LEMMA 2.3. Let to E 0. Setting uo = u(x, to), then there exists an

interval [to , to + T) where the weak solution becomes classical (i.e. enjoys
properties a) and b) of Theorem 2.1).

LEMMA. 2.4. Let u be a weak solution to system (1.17). Then there

exists an instant To ~ 0 such that u becomes a classical solution To .

PROOF. From the energy inequality we deduce the existence of
T1 &#x3E; 0 such that for some 8 &#x3E; 0

Setting

there exists To E [Tl’ such that
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In fact, if 8~2, Vt e T,] rl 0, since [Ti, T,] n Of is still
a set of Lebesgue measure zero, we have

contradicting h,).
Thus from (2.7) and (2.8) we have

Now, consider a solution having uo = u(To) E HI as initial data. Ac-
cording to Theorem 2.2 such a solution exists and the lemma

follows as a consequence of Lemma 2.3.
In order to obtain the time estimate appearing in Theorem 1.1,

we shall first construct suitable solutions to problem (1.17). To this
end we may employ, y for example, y a variant of the usual Faedo-
Galerkin method in the way suggested in [13] to which the reader
is referred for details. Let be an increasing sequence of com-
-pact subdomains of R3 invading S~ and let and 

-eigenfunctions and eigenvalues respectively of the Stokes operator
Pd in i.e.

We set

:and require that the coefficients enm(t) are solutions of the following
-(ordinary) initial value problem
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It is easy to check that verify the following relations

In the above, for the sake of simplicity, the superscript m has been
omitted. The right hand side of (2.9) can be increased by employing
inequalities (1.5), thus obtaining

On the other hand, since

and choosing q == 1/6 in (2.13), by a well known lemma we deduce

where F(8) and P(8) are two continuous functions in [0, T*) with
.F(o) = -lfi(0) _ 11 Vu(T) 11 2 and where T* depends on II and .Re.
From ( 1.1 ) we have
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which along with (2.14) implies

where F(s) is a suitable continuous function of s. Let us now con-
sider (2.10). Applying (1.2) we deduce ,

Taking into account

from (2.16) we also have

Since estimates (2.14)-(2.17) hold uniformly with respect to m we
can select a subsequence which by standard argument can be proved
to converge to a solution to (1.17) in T*). To obtain a solu-
tion on the whole of Q we can employ the methods suggested in [13]
and since the proof is routine it will be omitted.

2.2. Stability of steady motions : proof of Theorem 1.1.

First of all we notice that owing to the uniqueness Theorem 2.3
the solution constructed by the Galerkin method and assuming u(x, T)
as initial data coincides with the solution derived in Lemma 3.1 and

assuming in T the value u(x, T) (5).
Therefore, we have

(5) Obviously, also the coefficients of equation (1.17) which in this case
depend on t must be evaluated for t &#x3E; T.
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where by U we have denoted the solution constructed by the Galerkin
method. In this subsection, as usually done previously, we shall con-
tinue to denote by u the Galerkin approximations and their limit as
well. Moreover we shall still adopt for the time variable the symbol t
(instead of s).

We give some preliminary lemmas.

LEMMA. 2.5. Let u be a solution acnd let To denote the instant
of time after which the solution becomes strong. Setting:

with

there exists

such that

PROOF. We commerce by considering inequality (2.6). Choosing
r~ = 1~6 we deduce
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Then, taking into account (2.7) it follows

We claim that putting

there exists T E [To, TI] such that

In fact, assuming per absurdum that

we deduce, in particular,

contradicting (2.20).

LEMMA 2.6 (8). Let u be a weak solution and To be the instant of
time after which the solution becomes strong. Denote by T ( ~ To) the
instant of time such that

(6) For the proof cf. also [11].
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Then

PROOF. Let u~ be the m-th Galerkin approximation assuming in
t = 0 the data u(T). It is easily verified that

Let us now consider relation (2.10). Since

increasing the right hand side of (2.10) with the aid of (1.2) we obtain

Setting n = 1, E = 1/7 and t -- 0 in (2.23) from (2.22) we have

Let us now consider relation (2.12) which for the reader sake we rewrite
in the next line

As usual, the superscript m has been dropped in (2.23)-(2.25). From
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(1.6) and (2.25) we thus recover

Moreover, from (2.11) it easily follows

which we claim to imply

To prove this last assertion it suffices to notice that from (2.24) we
obtain

By continuity it is possible to determine a right neighborhood No
of t = 0 such that

Integrating (2.26) over No we deduce

Relations (2.27), (2.29) and (2.18) imply

thus proving (2.28). Finally, once (2.28) has been obtained, (2.29)
holds uniformly in Therefore, the lemma is completely proved.

The following lemma, which is crucial to prove the time behaviour
quoted in Theorem 1.1, shows the validity of a sort of Poinear6
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inequality holding for the L2-norm of ut. In this connection it is

worth remarking that the main difficulty for obtaining time decay
for solutions in unbounded domains is conneted to the fact that in
this case the Poincare inequality a priori fails along solutions ([8, 4]).
However, y in the following lemma we shall prove that it is always
possible to find a constant 3l (&#x3E; 0) depending on the data of the
problem such that L2 -norm of u, is bounded by Ql times the L2-norm
of Vui rised to a suitable power.

LEMMA 2.7. Let u, To and Lemma 2.6 above. Then the

following inequality holds

where

PROOF. Let us consider relation (2.10). Since

taking into account (1.10) we have

Therefore, after a simple manipulation (2.30) follows from (2.21)2 and
(2.31).

From the above lemma we have

COROLLARY 2.1. Let u, T and To be as in Lemma 2.7. Then
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PROOF. From (1.6)2 and (2.7) we deduce

Now, we increase the right hand side of (2.12) by (2.34) to obtain

Since (2.30) implies

from (2.35) we deduce

and hence

In the last inequality we have taken into account (2.21)1. Setting
in (2.36)

we have

from which (2.32) follows.
The preceding Corollary proves (1.19) and (1.20) of Theorem 1.1.
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It remains to show (1.21) and (1.22). To this end, multiply both sidles
of (1.17)1 by PL1u in L2(Q) to obtain

Increasing the right hand side in the above through (1.5) and taking
into account

we obtain

Choosing = 1/7 in the last relation proves (1.22). To prove (1.22)
we recall the following inequality [17]:

Choosing m = 1 and p = 6 (2.37) and (1.1)1 we thus deduce

which shows (1.22).

3. Asymptotic stability of unsteady flows.

3.1. Existenoe theorems with smooth initial data.

In the case when the unperturbed motion mo is not steady, the
results established in section 2.1 continue to hold as in the steady
case. Moreover, under the assumptions made, these results can be
further improved. In fact, it is possible to determine explicitly the
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value of To and to determine for the solution of Theorem 2.2 an asymp-
totic behaviour of u in the Dirichlet norm. The above results are proved
in the next lemma.

LEMMA 3.1. Let u be a weak solution. Then there exists To E
E (0, 11 uo )) 2(R/ (R - Be)) such that

where

with Ms, C,,, and C,, such that

and

and h is any positive number. Moreover,

PROOF. Starting from

by employing an argument previously used several times, we determine
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such that

On the other hand, according to Lemma 2.3, the weak solution becomes
a strong solution in [To, To + T) for some T &#x3E; 0. However, in this
time interval the solution is uniformly bounded. In fact, from (2.6)
we deduce

Choosing q = 1/5 in (3.2 ), by an obvious meaning of the symbols
from (3.2) we deduce

where C23 and 0,, denote the coefficients of IIVuII4 and respec-
tively. Since C ~  hj2 there exists a right neighbourhood No of To
such that

Integrating this relation we obtain

Therefore, is defined and bounded Furthermore, applying
the second part of Lemma 1.7, we deduce (3.1).

REMARK. We notice that to obtain a global existence theorem
analogous to Theorem 2.2, we may reduce the assumptions on initial
data to a condition connecting the Dirichlet norm of u with its
L2-norm. In fact, it is enough to assume
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In this case the proof is quite analogous to that of previous lemma
and therefore, it will be omitted.

3.2. Stability of unsteady motions: proof of Theorem 1.2.

First of all we notice that the Galerkin approximations assuming
u(x, T) as initial data VT &#x3E; To verify the estimates proved in Lemma 3.1

Furthermore, y the following inequality holds true VT&#x3E; To

Then (3.1) (or equivalently (3.6)) proves (1.23) of Theorem 1.2. In
order to show (1.24) we propose the following lemma.

LEMMA. 3.2. Let u be a weak solution and To the instant after which
u becomes strong. Then, there exists T E [To, To -f-1] such that

with

PROOF. Choosing in (3.2) ~ = 1/6 we deduce

Theorefore, there exists T E [T~, To + 1] such that
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In fact, assuming per absurdum

it would follow

which contradicts (3.8). Thus, relations (3.5) and (3.9) imply (3.7).
For the proof of the next lemma cf. also [11].

LEMMA 3.3. Let u, To and Lemma 3.2. Then there
constant A~ such that

PROOF. Let us consider equation (2.10) for the m-th Galerkin

approximation Um and relation (2.21) which in the case of unsteady
unperturbed motions becomes (the superscript m is dropped for the
sake of simplicity)

Taking into account (1.8) and the following obvious inequality

from (2.10) we obtain

(1) The coefficients are evaluated for t ~ T.
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Choosing 1/3 and noticing that

we have

Therefore, we also deduce ’

Let us now consider equation (3.11) and increase its right hand side
through (1.6) to obtain

Choosing E1= (2/11) ((R-Re)/R) we thus obtain with a suitable choice
of constants C2g, C,,

which implies
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With an obvious meaning of symbols, inequalities (3.12)-(3.14) yield

Integrating this last differential inequality, y we deduce that for the
m-th Galerkin approximation, the following inequality holds

We now prove that (3.10) is a consequence of (3.16). In fact, from
(3.6) we have

where Ko denotes the coefhcient on the right hand side of (3.6). There-
fore, from (3.16) we have

Since

setting

(8) The estimate is evaluated for t ~ T, i.e.
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it follows

Hence

This last relation along with

imply (3.10).
The previous lemma proves (1.24). To complete the proof of

Theorem 1.2 it suffices to proceed exactly as we did for the proof of
the stability in the steady case.
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