
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

J. CHABROWSKI
Dirichlet problem for a linear elliptic equation in
unbounded domains with L2-boundary data
Rendiconti del Seminario Matematico della Università di Padova,
tome 71 (1984), p. 287-328
<http://www.numdam.org/item?id=RSMUP_1984__71__287_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1984, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1984__71__287_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Dirichlet Problem for a Linear Elliptic Equation
in Unbounded Domains with L2 - Boundary Data.

J. CHABROWSKI

1. Introduction.

The main purposes of this paper are to investigate the Dirichlet
problem for the elliptic equation

in a half-space and a complement of a bounded open set. We shall
refer to the second problem as the exterior Dirichlet problem.

Given an open set Q c we denote by the Banach space
of functions u in Z2(S~) having weak (distributional) derivatives Diu.
(i = 1, ..., n) in L2(Q). A norm is introduced by defining

The closure of in Wl,2(Q) is denoted by A local space
consists of functions belonging to for every bounded

open set ,~’ such that S~.
To motivate our approach to the Dirichlet problem assume for

simplicity that .~ is uniformly elliptic and the coefficients c

(*) Indirizzo dell’A.: Department of Mathematics, University of Queens-
land, St. Lucia Queensland 4067, Australia.
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and f are measurable and bounded on SZ. A function u is said to be
a weak solution of the equation (1) if u E and u satisfies

for every v EWl,2(Q) with compact support in ,~. Let q E _L2(aS2)
and assume that there is a function ffJl E Wl,2(Q) such that q = ffJ1
on a,~ in the sense of trace. A weak solution in of the equa-
tion (1) is a solution of the Dirichlet problem with the boundary condi-
tion u = 99 on 8Q if The basic results concerning
the Dirichlet problem in W1,2-framework can be found in Ladyzhens-
kaja and Ural’ceva [16], Gilbarg and Trudinger [10] and Stampacchia
[24], [25]. In the above definition it is assumed that the boundary
data is a trace of some function belonging to Wl,2(Q). This condi-
tion is rather restrictive, because not every function in L 2 is the
trace of some function belonging to (see Lions and Mage-
nes [17] Theorems 7.5 and 9.4 Chapter 1). It is clear that the Dirichlet

problem with L2-boundary data requires a new definition. The first

attempt to define the Dirichlet problem with L2 -boundary data has
been made by Mikhailov who in a series of articles [11], [18], [19]
and [20] examined this problem in a bounded domain under the assump-
tion aij E CI(D) and bi, c E (see also Necas [22] and [23]). Similar
results were also obtained by Kapanadze [15]. The author and Thomp-
son [5] extended Mikhailov’s results to the equation with coefficients
satisfying some general integrability conditions. In the articles men-
tioned above the boundary 8Q belongs to C2. For the Laplace equation
the Dirichlet problem with L2-boundary data was solved in bounded
Lipschitz domains (see Dahlberg [8], Jerrison and Kenig [12], [13]).
We mention here that Jerrison and Kenig also extended their results
to bounded non-smooth domains for an equation with C’-eoefficients
(see [14]).

The plan of this paper is as follows. In sections 1-6 we examine
the Dirichlet problem in a half space. The main result is an energy
estimate (section 3, the inequality (19)) for the equation ~u + lu = f,
where I is a sufficiently large parameter. Next applying the result
of Bottaro and Marina [3] we establish the existence of a unique solu-
tion to the Dirichlet problem with L2-boundary data for the equation
(1) with the condition e(x) ~ Const &#x3E; 0. In sections 7, 8 and 9 similar
results are established for the exterior Dirichlet problem. Methods
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used in both cases are similar and presented in some details. We
point out that the assumptions on the coefficients ai~ for the Dirichlet
problem in the half space are considerably weaker than the correspond-
ing assumptions for the exterior Dirichlet problem. This follows from
the fact that the boundary of the half space is flat. Among the papers
devoted to study the boundary value problems in unbounded domains
we mention the work of Benci and Fortunato [2], in which the Dirichlet
problem with zero boundary data in a weighted Sobolev space has
been studied.

In this paper we make frequent use of the Sobolev inequality

where

The most significant feature of this inequality lies in the independence
of the constant S of the domain S~ which makes possible to use it in
unbounded domains (see Federer [9]).

2. Traces.

Let Rt = &#x3E; 01. We denote a point x E Ri by x =
= (x’,xn), where x’= ... , I 

Throughout sections 2-6 we make the following assumptions about
the operator L :

(A) .L is uniformly elliptic in .Rn , i.e., there exists a positive
constant y such that

for all and $ e Rn , moreover (i, j = 1, ..., n).

(B) (i) There exist positive constants x and 0  a  1 such that

for all and all oo) .
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All constants in this paper will be denoted by C~ . The statement
« C, depends on the structure of the operator 1)&#x3E; means that Ci depends
on n, a, b, k, m, and the norms of the coefficients Daij, ai;, bi and
c in appropriate spaces. co 

In the sequel we shall need the following elementary lemmas.

is bounded independently of 6 E (0, T/2].

PROOF. Integrating by parts

Denoting the last integral by J and applying Young’s inequality
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we obtain

Taking s = (1 - y)/4 the result follows.
We also need the following simple observation.

LEMMA 3. let be a solution of (1 ). Then for every

where a positive constant C depends on the structure of the operator Land r.

PROOF. Let v = U02 where 0 E Using v as a test function
in ( 2 ) we obtain

It follows from ellipticity of L and the inequalities of Young and
Sobolev that

where a positive constant C depends on the structure of the operator
JD. Here we have used the fact that c = c1 + C2 with Cl E J~ and c, E 
To complete the proof put 0 = 0, , where 0, is an increasing sequence
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of non-negative functions in with the gradient bounded inde-
pendently of v and converging as v --~ oo to a non-negative function
f on lit equal to 1 for and vanishing for 

THEOREM 1. be a solution of (1) in ~. Then the

following conditions are equivalent :

PROOF. Let 0 C 38o C 1. Define a non-negative function q e C2
([0, oo)) such that = xn for and 21(x,,) = 1 for 
We may assume that q(rn) &#x3E; 6 for all and 0  6  60.

Let

where 0 is a non-negative function in Since for every 6 C x~
v( ~, xn) has a compact support in it follows from Lemma 5 that
v is an admissible test function in (2), hence

Denote the integrals on the left hand side of (4) by J1, ..., Je. It follows
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from the ellipticity of .~ that

By Young’s inequality

where a positive constant 01 depends on y and Similarly

where a positive constant C, depends on 11 bi ll,.. Now according to
the assumption (B iii)

where °1 E and 02 E By Hölder’s inequality

where 1/2* = 1 /2 - 11n. Now by Sobolev’s inequality
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were 8 depends only on n. Since we may assume 

we obtain by Young’s inequality

where a positive constant 03 depends on n, and y.
By Green’s formula we have

and by the assumption (B ii)

where a positive constant C,~ depends on and xi . Integrating
by parts



295

By the assumption (Bi) we obtain

where a positive constant C, depends on x, y and From the

last inequality we deduce the following estimate for J.,

where a positive constant 06 depends on x, and

. Inserting the estimates (5)-(10) into (4) we obtain
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If the condition (I) holds then by Lemma 1 the integrals

are bounded independently of 6. Now put 0 = 0,, where 0, is an
increasing sequence of non-negative functions in tending to
1 as v - oo with the gradient bounded independently of v. Letting
v - oo in (11) it follows from Lemma 3 that

The implication o I ~ II » follows from Lemmas 1 and 3 and the

Lebesgue convergence theorem.
To show that « II =&#x3E; I » observe that
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Now by Lemma 2 the condition (II) implies that the integrals

are bounded independently of 6. Repeating the argument from the
step «I =&#x3E;Tl)) the result follows.

REMARK 1. It follows from the proof Theorem 1 that the condi-
tion (II) implies:

As an immediate consequence we obtain ,

COROLLARY 1..Let u E be a solution o f (1) in 
that one of the conditions (I) or (II) holds. Then there exists a function
q E and a sequence 6, - 0 as v - oo such that

for every 

THEOREM be a solution o f (1) in R:. Suppose
that one of th e conditions ( I ) or ( II ) holds. Then there exists a function
~ E such that

for every Y E L2(Rn-1).

PROOF. Since ~)2 dx’ is bounded, say and ann(x’, 6)
~n-l

continuous and bounded it follows from Corollary 1, that



298

It suffices to show the existence of the

and v(x) = 0 elsewhere, where 77 oo)) is the function introduced
in the proof of Theorem 1. Taking v as a test function in (2) we obtain

Since for every 0  y  1

"ri "n

and Y has a compact support, the Lebesgue dominated convergence
theorem implies the continuity of

Now

By the Lebesgue dominated convergence theorem and the previous
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part of the proof, the right hand side of the last inequality tends to
0 as b - 0 and this completes the proof.

Our next objective is to establish the L2-convergence of u( ~, ð)
to 99 as 6 - 0. To do this we first show that the norm of u( ., ð) converges
to the norm of 99. The result then follows by the uniform convexity
of the space L2.j

THEOREM 3. Let U E IVI,2 (R,+,) be a solution of (1 ). Suppose that
one of the conditions (I) or (II) holds. Then there exists a function 99 E L2
(Rn_1) such that

PROOF. If Il E 1’1’ ~’Z~lLn~~ then by the argument used in the proof
of Theorem 1 we obtain

where q is the function introduced in the proof of Theorem 1. Define
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it is clear that . Thus

We shall show that

.and

(15)

Indeed
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Here we have used the fact that u is a solution of (1) and the identity
(2) with the test function

where 27 is the function introduced in the proof ’of Theorem 1.
To prove (15) observe that 

.

Using the conditions (I), (II) and Lemma 1 one can show that
We only restrict ourselves to the term J,.
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Integrating by parts the term J3 can be written in the following form

Hence by the assumption (B ii)

where a positive constant C depends on xl, n and (~== 11 ...I
n -1). By Lemma 1 the first integral on the right hand side tends
to 0 as 6 -~ 0. Now by H61der’s inequality

It follows from the condition (I) that

and consequently by the condition (II) the second integral on the
right hand side of (16) also tends to 0 as 6 - 0. It follows from (~.3),
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(14) and (15) that

To complete the proof observe that the norms

are equivalent in 

3. Energy estimate.

Consider the elliptic equation of the form

in where A is a real parameter.
The results of section 2 suggest the following definitian of the

Dirichlet problem.
A weak solution

is a solution of the Dirichlet problem with the boundary condition

The main result of this section is the following energy estimate.

THEOREM 4. Let I be a solution of the Dirichlet problems
(17), (18). Then there exist positive constants d, Ao and C independent
of ’11, such that
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for all A&#x3E; where a positive constant C depends on the structure
of L.

PROOF. Since is a solution of the Dirichlet problem
for certain 30 &#x3E; 0 and consequently

by Theorem 1 the condition (II) holds. All constants appearing in
the proof are indepenent of 8 and depend on the structure of L and
may vary from line to line. By the same considerations as in the proof
of the step  I =&#x3E; II » of Theorem 1 we show that

~o, whereq is the function introduced in the proof of Theorem 1.
Letting 6 - 0 we deduce from the last inequality

It follows from (20) and (3) (see Lemma 3) that
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Now adding the inequalities (3) and (21) we get

By a similar manner (see the proof of the step « I =&#x3E; II » of Theorem 1)
we obtain

Now inserting (22) into (23) we obtain
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Now we make use of the following fact: for every 0 ~ ~O  1 and 0  d  1

Thus (19) follows from (22) and (23) provided A is sufficiently large
and d sufficiently small.

. Dirichlet problem in Ri.

We are now in a position to establish the existence of a solution
to the Dirichlet problem.

THEOREM ~, ~ ~,o Assume that r1 (i =1,
..., n) and that Then for (Rn_i ) there
exists a unique solution of the Dirichlet problem (17), (18) in 

PROOF. Let (qm) be a sequence of functions in converging
in L2(Rn_i) to the function 99. Put

~rn = 1, 2, .... . It follows from [3] that there exists a unique solution
in &#x3E; of the Dirichlet problem
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By Theorem 4

for where C is a positive constant independent of p and q. Con-
sequently is the Cauchy sequence in the norm

and the result follows.

THEOREM 6. Suppose that the essumptions of Theorem 5 hold and
moreover 0 Then for there
exists a unique solution to the Dirichlet problem (1), (18) in 
and moreover

where C is a positive constant depending on the structure of the operator L.

PROOF. Let lo be a sufficiently large positive constant. By Theorem
5 the Dirichlet problem

has a unique solution in loc n satisfying the energy estimate (25).
On the other hand in virtue of Theorem 1.1 in [3] the Dirichlet problem
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has a unique solution in ~W1~2(.Rn ) and moreover

where C is a positive constant. Thus the function u = ~o -f- v is a
solution of the problem (1), (18) and it is obvious that

where C is a positive constant. To obtain the estimate (25) it suffices
to derive the estimate of the form (23) for sup ~)2 dx’ and then

Rn_1

use the final part of the argument of the proof of Theorem 4 and the
inequality (27).

The next result establishes the relation between the solution of
the Dirichlet problem in and T~1’2(.Rn). We point out here
that by a solution of the Dirichlet problem in we mean a

solution of (1) with the boundary condition in the sense of trace (see
Introduction).

THEOREM 7. Suppose that the assumptions of Theorem 6 hold, that
and that there exists a f unction such that

q;l(X’, 0 ) _ ~p(x’ ) on Rn-l in the sense o f trace. Then the solution o f the
Dirichlet problem (1), (18) in solution of the same problem
in 

PROOF. It follows from [3] that the Dirichlet problem Zu = f
on .Rn and u = y on Rn-l has a solution in which is also a
solution in The result follows from the uniqueness of the
solutions in of the problem (1), (18).

5. Weighted estimate of the gradient.

It is well known that a solution of the Dirichlet problem for the
Laplace equation
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where q; EL2(Rn-t) satisfies the following relation
-"n

The question arises whether the inequality,
RTn

remains true for the solution of the problem (1),
(18) in c (see [26] p. 82-83). The following theorem contains
a partial answer to this question.

THEOREM 8. Suppose that c(x) &#x3E; Const &#x3E; 0 orc 7 c E +
+ bi = 0 (i = 1, ..., n) and f = 0 on X - Let u be a solution

of the Dirichlet problem (1), (18) in Then

where a positive constant C depends on the structure of the operator L.

PROOF. Let be an increasing sequence of functions in C2([o, oo))
converging to rn on [0, c&#x3E;o) with properties: i7,(x,,) = xn for 
q(rn) &#x3E; 3 for xn &#x3E; 2 60 and ~D2~v ~ are bounded indepen-
dently of v. q, may be chosen to be constant for large Xnè i, Taking

as a test function in (2) we obtain

We denote the sum of the second and third integral by J1 and integrat-



310

ing by parts we obtain

where a positive constant C, depends on m.,, sup ID*17,1 and
sup ID2,7,1. Similarly the fourth integral Jg can be estimated in the
following way

where a positive constant O2 depends on "1’ and supID77,1.
+

Finally using the ellipticity and the fact that c is bounded below by
.a positive constant we obtain

etting v - oo and 6 - 0 we derive from the last inequality
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where positive constants C3 and Õ3 depend on the structure of the opera-
tor .~. Now applying the energy estimate (25) we obtain (28).

REMARK 2. The estimate (28) can be extended to the nonhomo-
I

geneous equation provided
1

6. Estimate of derivatives of’ the second order.

In this section we replace the assumptions (B i) and (B ii) by the
following condition

( k, i, j, = 1,...,’n), where b and x1 are positive
constants.

THEoRF,3i 9. u be a solution in loc of the problem (1), (18).
T hen

where C is a positive constant depending on the structure o f L.

PROOF. It follows from Theorem 8.8 in [10] (p.173) that u E
We shall first show that for every r &#x3E; 0

Indeed, taking v = Dkw, where w E with compact support,
as a test function in (2) and integrating by parts we obtain
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Now let w = where 0 is a non-negative function in
such that W = 0 for and xERn-l.

Then

Applying the inequalities of H61der, Young and Sobolev we deduce
from the last equation that

where a positive constant C depends on the structure of L. Now put
where (Py is an increasing sequence of non-negative functions

in with supports in on 

and with bounded independently of v. Letting v - 00 the ine-
quality (30) follows. To establish (29) let

where 77 is a function introduced in the proof of Theorem 1. By (30)
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~,u is an admissible test function in (31) and

We may assume Applying the inequalities of Young,
Holder and Sobolev we easily derive from the last inequality the follow-
ing estimate
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where C is a positive constant depending on the structure of the opera-
tor L, and the result follows.

7. Exterior Dirichlet problem. Preliminaries.

Let Q c Rn be a complement of a bounded closed set with boundary
8Q of class C2. we consider the equation (1). Let x E Q, we denote
by r(x) the distance from x to 3D.

We make the following assumptions

There exists a positive constant y such that

for all x E .~ and ~ moreover aij E L’(92) r1 (i, j = 1, ..., n).
We also assume that  xr(x)-a (i, j = 1, ... , n) in some neigh-
bourhood N of the boundary 8Q, where x &#x3E; 0 and 0  a  1 are cons-

tants and that Dkaii N) (k, i, j = 1, ..., n).

(~2) bi E f E 22(Q) and c E + Ln(,Q) (i = 1, ..., n).
It follows from the regularity of the boundary 8Q that there is

a number ~o &#x3E; 0 such that the domain 

with boundary possesses the following property:
to each ro e 8Q there is a unique point ro(so) = xo - where

v(xo) is the outward normal to 8Q at xo . According to Lemma 1 in
[10] p. 382, the distance r(x) belongs to C2(Q - if 6, is sufficiently
small. We extend r(x) as positive function of class C2(Q) and
denote this extension again by r(x). We may assume that N c Q - Do..

Let xa denote an arbitrary point of 8Qd. For fixed 6 E (0, let

and



315

where IA I denote the (n - 1)-dimensional Hausdorff measure of A,
and vo(xo) is the outward normal to at xo. Mikhailov [19] proved
that there is a positive number Yo such that

We will use the surface integral

where u E and the values of son are understood in
the sense of trace.

Let Ro be a positive number such that Qo c  .R~ for
every R &#x3E; Ro . Set 

°

for all ..R &#x3E; .Ro .
In the sequel we shall need the following estimate: if

and p is a constant in [0,1), then

for 6 E (0, ðo/4], where .~1 is a positive constant independent of 6 and u.
This inequality can be established by the same argument as in the proof
of Lemma 2; in the proof we use the inequality (32).

Moreover it is easy to see that if M(6) is bounded on (0, ~o] then
for every p E [0,1)
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for all 6 E (0, bo/21, where M1 is a positive constant independent of
~ and u.

THEOREM 10. Let u be a solution of (1 ) belonging to Wlo~(SZ). Then
the following conditions are equivalent

PROOF. We only sketch the proof because it is identical to that
of Theorem 1 in [5]. Fix an .R &#x3E; and let 0 be a non-negative func-
tion in such that = 1 for lxl c.R and Ø(x) = 0 for Ixl &#x3E; 2R.

Suppose that holds. Thus u E ) for every &#x3E; .Ro and
(34) holds. It is clear that

is an admissible test function in (2) and

By Green’s formula (see [21], p. 139) we have
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and

By the ellipticity condition and the inequalities of Young and Sobolev
we derive from (35), (36) and (37) that

Now choose q _ 0,, where (Wr) is an increasing sequence of non-
negative functions in converging to 1 for with IDØ,I
bounded independently of v. Letting 6 - o and v - oo the result
easily follows.

Now suppose that the condition (Ill) holds. By (35) and (36)
we have

Using (33) and the inequalities of Young, Holder and Sobolev, it

is easy to see that M(6) is bounded on (0, 5o].
Our next objective is to prove that u has a trace on aS~ in L2(ôQ).

We first state the following preliminary result, which is easy to prove
(see Theorems 2 and 3 of Section 2).

THEOREM 11..Let be a solution of (1). Assume that

one of the conditions (Ii) or (III) holds. Then there exists a function
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such that

for every g E _L2(aQ).

To prove that - 99 in L2(ôQ) we show that

and the result follows from the uniform convexity of
~SE

_ _

Fix .R &#x3E; .Ro, E (0, ~o] we define the mapping lJ2R -~ by

where xa(x) denotes the nearest point to x on and = xa~2(x)
for each x E 3D. Moreover &#x3E; 5/2 and x8 is uniformly Lipschitz
continuous. Note that if u E then u(r’) E for each
..R &#x3E; Ro .

To prove L2-convergence of we shall need the following tech-
nical lemmas

LEMMA 4. I f rif and then

5. If gEL2(QR) and r!fEL2(QR) and suppose that
is bounded on (0, ~o], then a.,

with inner product (norm) denoted 
with inner product (norm) denoted
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THEOREM 12. Let u E loc be a solution of (1 ) such that one of
the conditions (11) or holds. Then there is a function 99 c 
such that u(xa) converges to 99 E 

PROOF. The proof is similar to that of Theorem 4 and is the repeti-
tion of the argument given in the case of bounded domain (Theorem 4
in [~]) .

Since B1.BB1 and 11.112 are equivalent it sufficient to show that there
is 99 E L: such that lim u(xi) = 99 in By uniform convexity of2 2

.~2 it suffices to show that

By Green’s theorem we find that

Let 0 be defined as in the proof of Theorem 10, then

Consequently we obtain

for 6 E (0, 30], since = x on ,SZa,2R and = 1 on DR. We show
that
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and

since = on aS2.
The relation (38) follows from Lemmas 4 and 5. To establish (39)

we use (2) with a test function v given by the following formula

Theorem 12 justifies the following definition of the Dirichlet problem.
A weak solution of (1) is a solution

of the Dirichlet problem with the boundary condition

B. Energy estimate for the exterior Dirichlet problem.

Assume that the distance function r(x) is extended into S~ in such
a way that

on &#x3E; Ro), where 1~1 is a positive constant.

Let q~ E and consider the following Dirichlet problem in
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where A is a real parameter. If A&#x3E; 10 (10 sufficiently large) then by
Theorem 6 in [5] there exists a unique solution. The boundary condi-
tions (44) is understood in the sense of L2-convergence and by (43)
we mean that Wlt2(QR) for every function P E such that
P =1 in some neighbourhood of Ix _ Rand P = 0 on Q - 

LEMMA 6. Suppose that r satisfies the condition (E) and let u be a
solutions in loc ) of the Dirichlet problem (42), (43) and (44). Then

there exist 10 &#x3E; 0 (sufficiently large) and d &#x3E; 0 (sufficiently small) such
that

for all R &#x3E; .Ro, where positive constant Âo, d and C depend on the struc-
ture of the operator and acre independent o f R.

PROOF. The energy estimate (45) was essentially proved in [5].
We repeat the proof to show that the constants 0, d and Ao are indepen-
dent of R. Let

on 

elsewhere .

By Green’s theorem
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Now applying Holder y Young and Sobolev inequalities we obtain

-where a positive constant Ci is independent of .Z~. On the other hand
we have

Letting 8 - 0 in (47) we obtain

It follows from (48) and (49) that

-where O2 and 03 are positive constants independent of .R. Now observe
that by the assumption (E) we have
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where and

where and consequently

Similarly

Choosing d sufficiently small and Ao sufficiently large the result follows
from (48), (49), (50), (51) and (52).

9. Existence of a solution of the exterior Dirichlet problem.

It is clear that one can deduce from Lemma 6 the existence of a

solution of the Dirichlet problem (42), (43) and (44) in -Wl,2
As an immediate consequence of Lemma 6 we obtain

THEOREM 13. Suppose that the distance f unction r satisfies the condi-
tion (E) . Let 99 E and f (x)2r(x) dx  oo. Then for every À;;;. Ào

there exists ac unique solution of the Dirichlet problem (42), (40) and (41)
in and moreover

where a positive constant 0 depends on the structure of the operator L.
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PROOF. For fixed .R &#x3E; .Ro consider a solution vR of the problem
(42), (43) and (44) and set vR(x) = 0 for lxl &#x3E; .R. It follows from the

energy estimate (45) that there exists a sequence vR tending weakly to
a solution of the problem (42), (40) and (41).

From now on introduce the following assumption on the distance
function r

(F) The distance function r(x) on is extended to a function
in C2(,~) such that r(x) = 1 on S~ n ~ .Ro~.

It is obvious that condition (F) implies (E).

THEOREM 14. In addition to the hypotheses and (A2) assume
that bi E (i = 1, ..., n), c E + and c &#x3E; Const. &#x3E; 0

on Q. let and Then there exists a unique solu-
tion u of the Dirichlet problem (1 ), (40) and (41) in and moreover

where a positive constant C depends on the structure o f Z.

The proof is similar to that of Theorem 6 and therefore is omitted.
We only point out that we again use here the results of Bottaro and
Marina [3].

Under our assumption a solution in of the problem (1),
(40)-(41) belongs to By the same argument as in the proof
of Theorem 9 one can establish the following estimate of the derivative
of the second order of a solution in of the problem (1), (40)
and (41).

THEOREM 15. Suppose that the assumptions of Theorem 14 hold.
Let ’U be a solution in of the problem (1), (40) and (41). Then

where C is a positive constant depending on the structure of the operator ~.
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We mention here that the estimate of the derivative of the second
order of a solution of the exterior Dirichlet problem in ~2~2(S~) was
obtained by Acanfora [1].

10. Case c ~ 0.

To establish the existence and the uniqueness of a solution of the
Dirichlet problem we have assumed that c ~ Const &#x3E; 0. If the coeffi-
cient c is only non-negative one can also construct a solution but
belonging to a different function space. Namely introduce the space
~1,2(Rn ) equipped with the norm

and similarly for the exterior Dirichlet problem the space Jf’1,2(Q)
with the norm

where r s atisfies the condition (.F’). By Theorem 7 a solution of the
Dirichlet problem (1), (18) belongs and by Theorem 14 a
solution of the exterior Dirichlet problem (1), (40) and (41) belongs
to y~l~ 2(,~) .

Now denote by (D(Q)) the completion of 
with respect to the norm

By Sobolev’s inequality (D(S2) c ~2*(S~)), whence

c (-D(S2) c 
THEOREM 16. Suppose that the assumptions (A) and (B ) hold. Let

f e .L2 (.I~ ) a’nd lfJ e and moreover assume that b e 
(i = 1, ..., n), and on Then there exists a sol’U-
t’ion ’U to the Dirichlet problem (1), (18), belonging to the space W1,2(R+n) +
+ 
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Here the boundary condition (18) is satisfied in the following
sense:

for every .R &#x3E; 0

PROOF. Consider the Dirichlet problem

where the boundary condition is understood inthe sense of L2-conver-
gence (see section 3). If Ao is sufficiently large then by Theorem 5
there exists a unique solution uo belonging to the space T~1’2(.Rn ).
On the other hand by the result of Chicco [7] the Dirichlet problem

has a solution in D(X). It is clear that v + uo is a solution of (1),
(18) in T~’1’2(.Rn ) -~- D(.Rn ). The L2-convergence in the sense (54) follows
from the fact that

In a similar manner one can establish

THEOREM 17. Suppose that the assumptions (A1) and (A2) hold.

.Let 99 E and moreover assume that bi E (i =1, ..., n),
c E Ln/2(,Q) and c(x) ~ 0 on 92. Then there exists a solution of the Dirichlet
problem (1), (40) and (41) in + D(SZ).
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