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Remarks on Existentially Closed Fields
and Diophantine Equations.

PAULO RIBENBOIM (*)

Introduction.

We begin with a simple proposition: an infinite field is always
existentially closed in any purely transcendental extension. This leads
to the consideration of solutions of diophantine equations in fields
K(t). In this respect, we extend a result of Natanson about Catalan’s
equation, to a much wider class of diophantine equations.

In the last section, we show that a field .g, with a non-henselian
valuation and algebraically closed residue field K cannot be existen-
tially closed in any henselian valued field extension E. This leads
to the conclusion that (whatever IZ/K is not a purely transcen-
dental extension. As corollaries, we obtain anew: K((X)) is not a purely
transcendental extension of K(X) and the p-adic field Qp is not a
purely transcendental extension of Q.

1. Let 8 be a commutative ring with identity, let R be a subring-
of S. We say (see [1]) that is existentially closed in S when every
system of polynomial equations and inequations

which has a solution in ~Sn has also a solution in ~n.

(*) Indirizzo dell’A. : Queen’s University, Kingston, Ontario, Canada.
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It is immediate that is c T are rings and subrings, if .R is
existentially closed in S and S is existentially closed in T, then 1~ is
existentially closed in T.

It is also easy to see ([1]) : Let S be an integral domain, let .I~ be
a subring of ~, let g be the field of quotients of R and L the field of
quotients of S. If R is existentially closed in 8 then K is existentially
closed in Z.

The following proposition is practically trivial:

PROPOSITION 1. If .g is an infinite field then K is existentially
closed in every purely transcendental extension of K.

PROOF. By transfinite induction and transitivity of the property
of being existentially closed, it suffices to show that .g is existentially
closed in the purely transcendental extension .K"(t). By the above
remark, it suffices to show that K is existentially closed in K[t].

Let ... , Xn] , and assume that
there exist u1(t), ... , un(t) E K[t] such that

and

Since .K is infinite, there exists an element a eK such that

Q,(a) 0 0 (for j = 1, ... , y 1). Moreover, since P=(t) = 0 then = 0

(for i = 1, ... , k). Thus, (ul(a), ... , un(a)) E .Kn is a solution of the

given system of equations and inequations, proving that K is existen-
tially closed in K[t]. 0

We deduce:

COROLLARY 1. Let .K be any infinite field. If f (Xl, ... , Xn) E
E K[X1, ... , Xn] has a non-trivial solution (u,, ... , un) (with each ui # 0)
in a purely transcendental extension of .g, then it has already a non-
trivial solution in K.

PROOF. Let ... , Xn) = X1X2, y Xn . We need only to apply
the proposition to the system
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For example, we may take f(X, Y, Z) = Xn + Noting
that this polynomial is homogeneous, we deduce that if Fermat’s

equation with the exponent n has only the trivial solution in Z, then
it has only the trivial solution in any purely transcendental exten-
sion of Q.

2. In this respect, much more is known concerning Fermat’s equa-
tion.

In 1879, Liouville ([3]) proved that if K = C (the field of com-
plex numbers), if C(t) IC is a purely transcendental extension, if n &#x3E; 2
and if f (t), g(t), h(t) satisfy f (t)n + g(t)n = h(t)n and gcd( f (t), g(t),
h(t)) - 1 then f (t), g(t), h(t) E C.

This result was generalized by Greenleaf [2], who showed that it
holds when .K is any field whose characteristic does not divide the

exponent n of Fermat’s equation.
Concerning Catalan’s equation, Natanson proved in [4] the fol-

lowing result:

PROPOSITION 2. Let m, n be integers greater than 2 and not divi-
sible by the characteristic of the field .g. If f , g E .g(t) (purely tran-
scendental extension of .g) and f m - gn = 1 then f , g E 2L

We use the very same method to extend Natanson’s result to a
wider class of equations.

PROPOSITION 3. Let m, n be integers greater than 2 and n not
divisible by the characteristic of the field .g. Let P(X) E have

degree m and distinct roots. If f, g E g(t) (purely transcendental exten-
sion of .~) and gn = P( f ) then f, g E K.

PROOF. We may assume without loss of generality that K is

algebraically closed. Indeed, assuming the proposition true for such
fields, if K is the algebraic closure of K, then f, K(t) _ K.

If f E .K then since K is algebraically closed, there
exists d E IT such that c = dn, hence g E ..K, because K contains the
n-th roots of 1. Similarly, if g = c e K and Q(X) = then

t is a root of Q (X) ; since .K is algebraically closed then 
Let
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Then

]From 4 it follows that

From gcd ( go , gl ) =1 it follows that

Hence hh’=1, in particular h, h’ E .K.
Let be such that dn = h’. Then

Since the roots ri i are all distinct then the polynomials f l- ri f o are
pairwise relatively prime, hence each is a n-th power:

Since m &#x3E; 3 the elements fl-r1fo, fl-r2fo, fl - r2 fo , which are in
the K-subspace of K[t] generated b~T f o , fl, must be linearly dependent.
So there exist bz E .g (i =1, 2, 3) not all equal to 0, such that

Actually b3 are all not zero, since gcd ( f o , = 1.

Let c, c- K be such that c" = bz (i = 1, 2, 3). Then
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By Greenleaf’s result on Fermat’s equation, quoted above,

This implies that hence f o, and this is against the
hypothesis. 0

It is quite easy to provide many applications of the above proposi-
tion.

If and m is not divisible by the characteristic
of .K’, we have Natanson’s result.

If P(X) = 1- Xn we have Greenleaf’s result.
If P(X) =1 -~-- X + X2 + ... + X--l + Xm and v,, m + 1 are not

divisible by the characteristic of .g, we may apply the proposition.
Etc.....

3. In this section, we shall indicate some results about valued
fields; the valuations are not required to be of height 1.

PROPOSITION 4. Let (K, ro) be a valued field which is not hense-
lian, having algebraically closed residue field. If (.K, 11) is a henselian
valued field, extension of (K, v ), then .g is not existentially closed
in E. .

PROOF. Let Av denote the valuation ring of v, let K be the residue
field of (K, v). For each polynomial f E A[X] let f denote its canonical
image in K[X].

Since (.K, v) is not henselian, there exist monic polynomials f, 
E A,~ [X ] such that 1 = gh, h) = 1, deg ( g) &#x3E; 0, deg (h) &#x3E; 0, and
such that there does not exist polynomials g’, h’c- A~,[X] such that
f = g’ h’, g’ = ~, h’ = h, deg ( g’ ) = deg ( g) . We choose f of minimal
degree with the above property.

We show that f has no roots in .~. Indeed, if b E .g and f (b) = 0
then b is integral over Av , hence bEAv. So f = with t

and f,(b):71-- 0; in particular, fi is monic. Let v* be the
natural extension of v to .g(X), defined by

Then We have
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therefore g~ = I = and, say, h(b) = 0, hence g(b) ~ 0. So
where k c- A,[X] is a monic polynomial. Therefore

f 1 = gk, with k) = 1.
We have deg k &#x3E; 0. Indeed if deg k = 0 then k = 1 so

which is against the hypothesis. By the minimality of f , there exist
polynomials such that

It follows that

which is a contradiction. So f has no roots in K.
On the other hand, the residue field 11 contains X, which is alge-

braically closed. Since f has a root in K C IZ and (.~, IV) is henselian,
then f has a root in .K.

This shows that K is not existentially closed in .K. 0

PROPOSITION 5. Let (.K, v) be a valued field which is not hense-
lian. If IV) is a henselian valued field, extension of (g, v), then

is not a purely transcendental extension.

PROOF. We assume first that the residue field .K is algebraically
closed. By Proposition 4, .g’ is not existentially closed in E. Since

is not finite (otherwise v is trivial and (K, v) would be henselian), y
by Proposition 1, ElK is not a purely transcendental extension.

Now we assume that K is not algebraically closed. Let Ka denote
the algebraic closure of I~. We claim:

( * ) There exists an algebraic extension such that:

1 ) v has a unique extension w to L,

2) L = Ka.

Assuming (*), we continue the proof. If ElK is a purely tran-
scendental extension, then is purely transcendental and 
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is algebraic. Let iv be the unique extension ’Of u to .9-L, so (KL, w)
is again a henselian valued field. Moreover, the restriction of w to L
must be equal to w, which is the only extension of v to L.

Now we observe that (.L, w) is not henselian. Indeed, since (K, v)
is not henselian, there exist at least two distinct extensions 
of v to the algebraic closure Ka of .g’; we may assume L. Since
the restrictions of must be equal to w then (L, w) is not hen-
selian. 

_

Since L is algebraically closed, by Proposition 4 L is not existen-
tially closed in KL, hence by Proposition 1 IZLIL is not purely tran-
scendental, which is a contradiction.

It remains to establish the claim (*), which is in fact well-known.
We include the proof for completeness.

Consider the family of all algebraic extensions .L of .g (contained
in a given algebraic closure such that

1 ) v has a unique extension w to L,

2) LClla.

It is immediate that this family has a maximal element, which
we still denote by L. We show that L 

If there exists y ft L, let be a monic polynomial
such that is the minimal polynomial of y over L; let
n = deg (1) &#x3E; 1. Therefore f is irreducible in A w [X ] , and since A w
is a B6zout domain, f is also irreducible in L[X].

Let c E La (algebraic closure of L) be a root of f , let L’= L(c) and
let w’ be any extension of w to L’. Then w’(c) &#x3E; 0, because 
and f is monic. Thus the residue field L’ contains L(c). From f (c) = 0,
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it follows that [L(c) :L] = n so [L’ :L] ~ n. This implies that L’= L(c)
xnd w’ is the only extension of w to L’.

From the decomposition of f into linear factors (in its splitting

field is a valuation of L" extending v, then

-each 0 i E A w" . Hence , are all the roots

of 1, hence there exists i such that i5i = y. The above consideration

(with c = ei) shows that . against the maximality of .L.
’This concludes the proof. 0

As corollaries, we have the following results already established
in [6] .

COROLLARY 1. If .g is any field, then .g~~X~~ is not a purely tran-
scendental extension of K(X).

PROOF. The field is not henselian with respect to the X-adic
-valuation. On the other hand, g~(X~~ is the completion of .g(X), rela-
tive to the X-adic valuation. So it is a henselian field, with respect
to the natural extension of the X-adic valuation. By the proposition,
X((X)) is not a purely transcendental extension of .K(X). 0

COROLLARY 2. If p is any prime number, the field Q, of p-adic
numbers is not a purely transcendental extension of Q.

PROOF. Qp is the completion of Q, with respect to the p-adic
valuation. Since Q is not henselian, while Qp is henselian (with respect
to the p-adic valuation), then Q, is not a purely transcendental exten-
sion of Q. 0

BIBLIOGRAPHY

[1] L. VAN DEN DRIES, Model Theory of Fields, Decidability and Bounds for
Polynomial Ideals, Thesis, University of Utrecht, 1978.

[2] N. GREENLEAF, On Fermat’s equation in C(t), Amer. Math. Monthly, 76
(1969), pp. 808-809.

[3] R. LIOUVILLE, Sur l’impossibilité de la relation algébriqne Xn + Yn + Zn = 0,
C. R. Acad. Sci. Paris, 87 (1879), pp. 1108-1110.



237

[4] M. NATANSON, Catalan’s equation in k(t), Amer. Math. Monthly, 81 (1974),
pp. 371-373.

[5] P. RIBENBOIM, Théorie des Valuation, Presses Université de Montréal, 1964.
[6] P. RIBENBOIM, On the completion of a valuation ring, Math. Annalen, 155

(1964), pp. 392-396.

Manoscritto pervenuto in redazione il 7 ottobre 1982.


