# RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

## PAULO RIBENBOIM

# Remarks on existentially closed fields and diophantine equations

Rendiconti del Seminario Matematico della Università di Padova, tome 71 (1984), p. 229-237

<a href="http://www.numdam.org/item?id=RSMUP">http://www.numdam.org/item?id=RSMUP</a> 1984 71 229 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1984, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

# NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

# Remarks on Existentially Closed Fields and Diophantine Equations.

PAULO RIBENBOIM (\*)

### Introduction.

We begin with a simple proposition: an infinite field is always existentially closed in any purely transcendental extension. This leads to the consideration of solutions of diophantine equations in fields K(t). In this respect, we extend a result of Natanson about Catalan's equation, to a much wider class of diophantine equations.

In the last section, we show that a field K, with a non-henselian valuation and algebraically closed residue field  $\overline{K}$  cannot be existentially closed in any henselian valued field extension K. This leads to the conclusion that (whatever be  $\overline{K}$ ), K/K is not a purely transcendental extension. As corollaries, we obtain anew: K((X)) is not a purely transcendental extension of K(X) and the p-adic field  $Q_p$  is not a purely transcendental extension of Q.

1. Let S be a commutative ring with identity, let R be a subring of S. We say (see [1]) that R is existentially closed in S when every system of polynomial equations and inequations

$$egin{align} f_1(X_1,\,...,\,X_n) &= 0\,,...,\,f_k(X_1,\,...,\,X_n) = 0\,, \ &g_1(X_1,\,...,\,X_n) 
eq 0\,,...,\,g_1(X_1,\,...,\,X_n) 
eq 0 \ & ext{(where } n\geqslant 1,\,\,f_i,\,g_i\in R[X_1,\,...,\,X_n]. \end{aligned}$$

which has a solution in  $S^n$  has also a solution in  $R^n$ .

(\*) Indirizzo dell'A.: Queen's University, Kingston, Ontario, Canada.

It is immediate that is  $R \subset S \subset T$  are rings and subrings, if R is existentially closed in S and S is existentially closed in T, then R is existentially closed in T.

It is also easy to see ([1]): Let S be an integral domain, let R be a subring of S, let K be the field of quotients of R and L the field of quotients of S. If R is existentially closed in S then K is existentially closed in L.

The following proposition is practically trivial:

PROPOSITION 1. If K is an infinite field then K is existentially closed in every purely transcendental extension of K.

PROOF. By transfinite induction and transitivity of the property of being existentially closed, it suffices to show that K is existentially closed in the purely transcendental extension K(t). By the above remark, it suffices to show that K is existentially closed in K[t].

Let  $n \ge 1$ ,  $f_1, \ldots, f_k, g_1, \ldots, g_i \in K[X_1, \ldots, X_n]$ , and assume that there exist  $u_1(t), \ldots, u_n(t) \in K[t]$  such that

$$P_i(t) = f_i(u_1(t), ..., u_n(t)) = 0$$
  $(i = 1, ..., k)$ 

and

$$Q_j(t) = g_j(u_1(t), ..., u_n(t)) \neq 0$$
  $(j = 1, ..., l)$ .

Since K is infinite, there exists an element  $a \in K$  such that  $Q_j(a) \neq 0$  (for j = 1, ..., l). Moreover, since  $P_i(t) = 0$  then  $P_i(a) = 0$  (for i = 1, ..., k). Thus,  $(u_1(a), ..., u_n(a)) \in K^n$  is a solution of the given system of equations and inequations, proving that K is existentially closed in K[t].  $\square$ 

We deduce:

COROLLARY 1. Let K be any infinite field. If  $f(X_1, ..., X_n) \in K[X_1, ..., X_n]$  has a non-trivial solution  $(u_1, ..., u_n)$  (with each  $u_i \neq 0$ ) in a purely transcendental extension of K, then it has already a non-trivial solution in K.

PROOF. Let  $g(X_1, ..., X_n) = X_1 X_2, ..., X_n$ . We need only to apply the proposition to the system

$$\begin{cases} f(X_1, ..., X_n) = 0, \\ g(X_1, ..., X_n) \neq 0. \end{cases}$$

For example, we may take  $f(X, Y, Z) = X^n + Y^n - Z^n$ . Noting that this polynomial is homogeneous, we deduce that if Fermat's equation with the exponent n has only the trivial solution in  $\mathbb{Z}$ , then it has only the trivial solution in any purely transcendental extension of  $\mathbb{Q}$ .

2. In this respect, much more is known concerning Fermat's equation.

In 1879, Liouville ([3]) proved that if  $K = \mathbb{C}$  (the field of complex numbers), if  $\mathbb{C}(t)|\mathbb{C}$  is a purely transcendental extension, if n > 2 and if f(t), g(t),  $h(t) \in \mathbb{C}[t]$  satisfy  $f(t)^n + g(t)^n = h(t)^n$  and gcd(f(t), g(t), h(t)) = 1 then f(t), g(t),  $h(t) \in \mathbb{C}$ .

This result was generalized by Greenleaf [2], who showed that it holds when K is any field whose characteristic does not divide the exponent n of Fermat's equation.

Concerning Catalan's equation, Natanson proved in [4] the following result:

PROPOSITION 2. Let m, n be integers greater than 2 and not divisible by the characteristic of the field K. If f,  $g \in K(t)$  (purely transcendental extension of K) and  $f^m - g^n = 1$  then f,  $g \in K$ .

We use the very same method to extend Natanson's result to a wider class of equations.

Proposition 3. Let m, n be integers greater than 2 and n not divisible by the characteristic of the field K. Let  $P(X) \in K[X]$  have degree m and distinct roots. If f,  $g \in K(t)$  (purely transcendental extension of K) and  $g^n = P(f)$  then f,  $g \in K$ .

PROOF. We may assume without loss of generality that K is algebraically closed. Indeed, assuming the proposition true for such fields, if  $\overline{K}$  is the algebraic closure of K, then  $f,g\in\overline{K}\cap K(t)=K$ .

If  $f \in K$  then  $g^n = c \in K$ ; since K is algebraically closed, there exists  $d \in K$  such that  $c = d^n$ , hence  $g \in K$ , because K contains the *n*-th roots of 1. Similarly, if  $g = c \in K$  and  $Q(X) = P(X) - c^n$  then f is a root of Q(X); since K is algebraically closed then  $f \in K$ .

Let

$$P(X) = a_0 \dot{X}^m + a_1 X^{m-1} + \ldots + a_m = a_0 \prod_{i=1}^m (X - r_i) ,$$

where  $a_i, r_i \in K$  (i = 1, ..., m), all the  $r_i$  are distinct and  $a_0 \in K$ ,  $a_0 \neq 0$ .

Let  $f = f_1/f_0$ ,  $g = g_1/g_0$  with  $f_0, f_1, g_0, g_1 \in K[t]$  and

$$gcd(f_0, f_1) = 1$$
,  $gcd(g_0, g_1) = 1$ .

Then

$$g_1^m f_0^m = (a_0 f_1^m + a_1 f_1^{m-1} f_0 + \ldots + a_{m-1} f_1 f_0^{m-1} + a_m f_0^m) g_0^n.$$

From  $gcd(f_0, a_0 f_1^m + a_1 f_1^{m-1} f_0 + ... + a_m f_0^m) = 1$  it follows that

$$g_0^n = h f_0^m$$
, with  $h \in K[t]$ .

From  $gcd(g_0, g_1) = 1$  it follows that

$$a_0 f_1^m + a_1 f_1^{m-1} f_0 + \dots + a_m f_0^m = h' g_1^n$$
, with  $h' \in K[t]$ .

Hence hh'=1, in particular  $h, h' \in K$ .

Let  $d \in K$  be such that  $d^n = h'$ . Then

$$(dg_1)^n = a_0 \prod_{i=1}^m (f_1 - r_i f_0).$$

Since the roots  $r_i$  are all distinct then the polynomials  $f_1-r_if_0$  are pairwise relatively prime, hence each is a *n*-th power:

$$f_1 - r_i f_0 = h_i^n \ (i = 1, ..., m), \quad \text{with } h_i \in K[t].$$

Since m > 3 the elements  $f_1 - r_1 f_0$ ,  $f_1 - r_2 f_0$ ,  $f_1 - r_2 f_0$ , which are in the K-subspace of K[t] generated by  $f_0$ ,  $f_1$ , must be linearly dependent. So there exist  $b_i \in K$  (i = 1, 2, 3) not all equal to 0, such that

$$\sum_{i=1}^{3} b_i(f_1 - r_i f_0) = 0.$$

Actually  $b_1, b_2, b_3$  are all not zero, since  $gcd(f_0, f_1) = 1$ . Let  $c_i \in K$  be such that  $c_i^n = b_i$  (i = 1, 2, 3). Then

$$(c_1h_1)^n + (c_2h_2)^n + (c^rh^r)^n = 0$$
.

By Greenleaf's result on Fermat's equation, quoted above,

$$h_1, h_2, h_3 \in K$$
, that is  $f_1 - r_i f_0 \in K$   $(i = 1, 2, 3)$ .

This implies that  $(r_1-r_2)f_0 \in K$  hence  $f_0, f_1 \in K$  and this is against the hypothesis.  $\square$ 

It is quite easy to provide many applications of the above proposition.

If  $P(X) = X^m - 1$  and m is not divisible by the characteristic of K, we have Natanson's result.

If  $P(X) = 1 - X^n$  we have Greenleaf's result.

If  $P(X) = 1 + X + X^2 + ... + X^{m-1} + X^m$  and n, m + 1 are not divisible by the characteristic of K, we may apply the proposition. Etc. ....

3. In this section, we shall indicate some results about valued fields; the valuations are not required to be of height 1.

Proposition 4. Let (K, v) be a valued field which is not henselian, having algebraically closed residue field. If  $(\tilde{K}, \tilde{v})$  is a henselian valued field, extension of (K, v), then K is not existentially closed in  $\tilde{K}$ .

PROOF. Let  $A_v$  denote the valuation ring of v, let  $\overline{K}$  be the residue field of (K, v). For each polynomial  $f \in A_v[X]$  let  $\overline{f}$  denote its canonical image in  $\overline{K}[X]$ .

Since (K, v) is not henselian, there exist monic polynomials  $f, g, h \in A_v[X]$  such that  $\bar{f} = \bar{g}\bar{h}$ ,  $gcd(\bar{g}, \bar{h}) = 1$ ,  $\deg(g) > 0$ ,  $\deg(h) > 0$ , and such that there does not exist polynomials  $g', h' \in A_v[X]$  such that  $f = g'h', \ \bar{g}' = \bar{g}, \ \bar{h}' = \bar{h}, \ \deg(g') = \deg(g)$ . We choose f of minimal degree with the above property.

We show that f has no roots in K. Indeed, if  $b \in K$  and f(b) = 0 then b is integral over  $A_v$ , hence  $b \in A_v$ . So  $f = (X - b)^r f_1$ , with  $r > 1_t$   $f_1 \in K[X]$  and  $f_1(b) \neq 0$ ; in particular,  $f_1$  is monic. Let  $v^*$  be the natural extension of v to K(X), defined by

$$v^*(a_0 X^{\scriptscriptstyle m} + a_1 X^{\scriptscriptstyle m-1} + \ldots + a_{\scriptscriptstyle m}) = \min_{0 \leqslant i \leqslant m} \left\{ v(a_i) \right\}.$$

Then  $v^*(f) = 0$ ,  $v^*(X - b) = 0$  so  $v^*(f_1) = 0$ , thus  $f_1 \in A_v[X]$ . We have

therefore  $\bar{g}\bar{h}=\bar{f}=(X-\bar{b})^r\bar{f}_1$  and, say,  $\bar{h}(\bar{b})=0$ , hence  $\bar{g}(\bar{b})\neq 0$ . So  $\bar{h}=(X-\bar{b})^r\bar{k}$  where  $k\in A_v[X]$  is a monic polynomial. Therefore  $\bar{f}_1=\bar{g}\bar{k}$ , with  $\gcd(\bar{g},\bar{k})=1$ .

We have  $\deg \bar k>0$ . Indeed if  $\deg \bar k=0$  then k=1 so

$$f = (X - b)^r f_1$$
, with  $(X - \overline{b})^r = \overline{h}$ ,  $\overline{f}_1 = \overline{g}$ ,

which is against the hypothesis. By the minimality of f, there exist polynomials  $g'_1$ ,  $k'_1 \in A_v[X]$ , such that

$$f_1 = g_1' \, k_1'$$
 ,  $ar{g}_1' = ar{g}$  ,  $ar{k}_1' = ar{k}$  ,  $\deg \left(g_1'\right) = \deg \left(g\right)$  .

It follows that  $f = g_1(X - b)^r k_1'$  with  $g_1'$ ,

$$(X-b)^r k_1' \in A_r[X]$$
,  $\bar{g}_1' = \bar{g}$ ,  $(X-\bar{b})^r \bar{k}_1' = \bar{h}$ ,  $\deg(g_1') = \deg(g)$ ,

which is a contradiction. So f has no roots in K.

On the other hand, the residue field  $\overline{K}$  contains  $\overline{K}$ , which is algebraically closed. Since  $\overline{f}$  has a root in  $\overline{K} \subseteq \overline{K}$  and  $(\overline{K}, \overline{v})$  is henselian, then f has a root in  $\overline{K}$ .

This shows that K is not existentially closed in K.

Proposition 5. Let (K, v) be a valued field which is not henselian. If  $(\tilde{K}, \tilde{v})$  is a henselian valued field, extension of (K, v), then  $\tilde{K}|K$  is not a purely transcendental extension.

PROOF. We assume first that the residue field  $\overline{K}$  is algebraically closed. By Proposition 4, K is not existentially closed in K. Since K is not finite (otherwise v is trivial and (K, v) would be henselian), by Proposition 1,  $K \mid K$  is not a purely transcendental extension.

Now we assume that  $\overline{K}$  is not algebraically closed. Let  $\overline{K}^a$  denote the algebraic closure of  $\overline{K}$ . We claim:

- (\*) There exists an algebraic extension L|K such that:
  - 1) v has a unique extension w to L,
  - 2)  $\bar{L} = \bar{K}^a$ .

Assuming (\*), we continue the proof. If  $\tilde{K}|K$  is a purely transcendental extension, then  $\tilde{K}L|L$  is purely transcendental and  $\tilde{K}L|\tilde{K}$ 

is algebraic. Let  $\tilde{w}$  be the unique extension of  $\tilde{v}$  to  $\tilde{K}L$ , so  $(\tilde{K}L, \tilde{w})$  is again a henselian valued field. Moreover, the restriction of  $\tilde{w}$  to L must be equal to w, which is the only extension of v to L.



Now we observe that (L, w) is not henselian. Indeed, since (K, v) is not henselian, there exist at least two distinct extensions  $v_1^*, v_2^*$  of v to the algebraic closure  $K^a$  of K; we may assume  $K^a \supseteq L$ . Since the restrictions of  $v_1^*, v_2^*$  must be equal to w then (L, w) is not henselian.

Since  $\overline{L}$  is algebraically closed, by Proposition 4 L is not existentially closed in  $\widetilde{K}L$ , hence by Proposition 1  $\widetilde{K}L/L$  is not purely transcendental, which is a contradiction.

It remains to establish the claim (\*), which is in fact well-known. We include the proof for completeness.

Consider the family of all algebraic extensions L of K (contained in a given algebraic closure  $K^a$ ), such that

- 1) v has a unique extension w to L,
- 2)  $\bar{L} \subseteq \bar{K}^a$ .

It is immediate that this family has a maximal element, which we still denote by L. We show that  $\overline{L} = \overline{K}^a$ .

If there exists  $\gamma \in \overline{K}^a$ ,  $\gamma \notin \overline{L}$ , let  $f \in A_w[X]$  be a monic polynomial such that  $\overline{f} \in \overline{L}[X]$  is the minimal polynomial of  $\gamma$  over  $\overline{L}$ ; let  $n = \deg(\overline{f}) > 1$ . Therefore f is irreducible in  $A_w[X]$ , and since  $A_w$  is a Bézout domain, f is also irreducible in L[X].

Let  $c \in L^a$  (algebraic closure of L) be a root of f, let L' = L(c) and let w' be any extension of w to L'. Then  $w'(c) \ge 0$ , because  $f \in A_w[X]$  and f is monic. Thus the residue field  $\overline{L}'$  contains  $\overline{L}(\overline{c})$ . From  $\overline{f}(\overline{c}) = 0$ ,

it follows that  $[\bar{L}(\bar{c}):\bar{L}] = n$  so  $[\bar{L}':\bar{L}] > n$ . This implies that  $\bar{L}' = \bar{L}(\bar{c})$  and w' is the only extension of w to L'.

From the decomposition of f into linear factors (in its splitting field L''),  $f = \prod_{i=1}^n (X - c_i)$  if w'' is a valuation of L'' extending v, then each  $c_i \in A_{w'}$ . Hence  $\bar{f} = \prod_{i=1}^n (X - \bar{c}_i)$ , so  $\bar{c}_1, \ldots, \bar{c}_n$  are all the roots of  $\bar{f}$ , hence there exists i such that  $\bar{c}_i = \gamma$ . The above consideration (with  $c = c_i$ ) shows that  $\bar{L}' = \bar{L}(\gamma) \subseteq \bar{K}^a$ , against the maximality of L. This concludes the proof.  $\square$ 

As corollaries, we have the following results already established in [6]:

COROLLARY 1. If K is any field, then K((X)) is not a purely transcendental extension of K(X).

PROOF. The field K(X) is not henselian with respect to the X-adic valuation. On the other hand, K((X)) is the completion of K(X), relative to the X-adic valuation. So it is a henselian field, with respect to the natural extension of the X-adic valuation. By the proposition, K((X)) is not a purely transcendental extension of K(X).

COROLLARY 2. If p is any prime number, the field  $Q_p$  of p-adic numbers is not a purely transcendental extension of Q.

PROOF.  $Q_p$  is the completion of  $Q_p$ , with respect to the p-adic valuation. Since Q is not henselian, while  $Q_p$  is henselian (with respect to the p-adic valuation), then  $Q_p$  is not a purely transcendental extension of Q.

### BIBLIOGRAPHY

- [1] L. VAN DEN DRIES, Model Theory of Fields, Decidability and Bounds for Polynomial Ideals, Thesis, University of Utrecht, 1978.
- [2] N. GREENLEAF, On Fermat's equation in C(t), Amer. Math. Monthly, 76 (1969), pp. 808-809.
- [3] R. LIOUVILLE, Sur l'impossibilité de la relation algébrique  $X^n + Y^n + Z^n = 0$ , C. R. Acad. Sci. Paris, **87** (1879), pp. 1108-1110.

- [4] M. NATANSON, Catalan's equation in K(t), Amer. Math. Monthly, 81 (1974), pp. 371-373.
- [5] P. RIBENBOIM, Théorie des Valuation, Presses Université de Montréal, 1964.
- [6] P. RIBENBOIM, On the completion of a valuation ring, Math. Annalen, 155 (1964), pp. 392-396.

Manoscritto pervenuto in redazione il 7 ottobre 1982.