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Straightening of a Noncylindrical Region
and Evolution Equations (*).

ANTONIO BOVE (**) (***) - BRUNO FRANCHI (***)
ENRICO OBRECHT (***)

SUNTO - In questo lavoro viene presentato un metodo geometrico per trattare
equazioni d’evoluzione in una regione non cilindrica che consiste nell’uso
di un opportuno diffeomorfismo che trasforma la regione non cilindrica
in una regione cilindrica.

1. - Introduction.

In this paper, we shall exhibit a geometrical method of attacking
evolution equations in a noncylindrical region, which consists in the
use of a suitable time-preserving diffeomorphism mapping the non-
cylindrical domain into a cylindrical one.

We note that one can find in the literature very few results of
some generality on existence and regularity of solutions of parabolic
or hyperbolic mixed problems in non-cylindrical domains (a remarkable
exception is the big paper by Solonnikov [10], where parabolic systems
in spaces of Holder continuous functions are considered).
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Matematica « S. Pincherle », Università di Bologna, Piazza di Porta S. Do-
nato 5, 40127 Bologna, Italy; E. OBRECHT : Istituto di Matematica Applicata,
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Our device allows to bypass the remarkable technical difhculties
arising in the study of such problems.

In Section 2 we shall construct the diffeomorphism (having the
same regularity as the lateral boundary ~), supposing that 27 is no-
where tangent to the hyperplanes t = constant. In Section 3 we give
some applications to various mixed boundary value problems for para-
bolic and hyperbolic equations (obviously, no effort of being exhaustive
has been made). In view of the properties of our transformation, we
are able to extend to the non-cylindrical case the classical results in
the cylindrical domains. To avoid a cumbersome list of formal theorems
which would have considerably lengthened the paper, we have preferred
a more informal style, which however clearly points out the relevant
aspects of our method. ,

2. - The straightening diffeomorphism.

Let T be a fixed positive real number and let E’ be a bounded, con-
nected and relatively open set in [0, Put

Xt the boundary of Et relative to ~(t, y) ; y 

In the sequel, we shall always suppose that:

I ) ~ is an n-manifold of class ( 1~ ~ 2 ) with boundary

II) .~ is locally on one side of ~;

III) The tangent space to E is never t = 0.

We note that 27 is the boundary of .E’ relative to [0, T] xRn.
Whenever there is no way to misunderstanding, we shall identify

2 and ~t with their projections onto .R~.
Let us now state our main result.
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THEOREM. Let hypotheses I_), II), III) be satisfied. Then there exists
ac C~k~ diffeomorphism r f rom E on.to [0, T] X Eo , such that:

Here and in what follows, by a C~k~ function defined in the closure
of an open set, we mean a function having uniformly continuous partial
derivatives up to the k-th order in the interior of the domain. Further-

more, a C~k&#x3E; diffeomorphism will be a homeomorphism which is a C~k~
function together with its inverse.

PROOF. Let 0 C to C T ; then by hypotheses I ), II ),
III), there exist a neighbourhood of (to, xo) in E and a C~k~ dif-
feomorphism 99(t.,,,.): such that

Slightly modifying the preceding formulas, we can handle the cases
to = 0 and = T, too.

Let ~~’1, ..., be a finite subcovering of (to, xo) and

y1, ... , ym be the corresponding diffeomorphisms. Let us define the

following vector fields:

where gg,. is the pull-back of It turns out that Xj is a vector
field tangent to 27 in t7~ furthermore, by (2.b), the t-component
of Xj always equals 1.

Let = 1, ... , m} be a C°° partition of unity subordinated to
the = 1, ... , m~ ; we agree to think of each as con-

tinned by zero to all of E. Put and
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It turns out that:

(a) X is a vector field tangent to I on 2~;

(b) the t-component of .X always equals 1.

Hence the integral curves of .X can be parametrized by time and
are defined on all of [0, T]. 

_

Now, through every point in E there is a unique integral curve of
X, so we can define a bijection e from R onto [0, in the fol-

lowing way:

where (s, (t, x)) - (s --~- t, (t, r))) is the flow of X. From a geo-
metrical point of view, the function e maps the point _(t, x) into the
point (t, y), where (0, y) is the point on the bottom of E lying on the
integral curve of X issued from ( t, x) .

Property i) required by our diffeomorphism follows by (a),
while ii) follows by the very definition of X. As ~-1 ( t, y ) = (t, r~ (t, ( o, y ))~, I
by the regularity theorem of the flow, it follows that e is a C(k-1) dif-
feomorphism. Furthermore, aelat and ôe-1/ôt are functions.

If k = oo the theorem is proved; otherwise we must modify the
diffeomorphism in order to get a more regular one.

Roughly speaking, this will be accomplished first by showing that
the set of diffeomorphisms is an open subset of the set of all 
functions having the same structure as e, and then by showing that
e is a limit point of C~k~ functions.

Let us now proceed more formally; put, if 

equipped with the norm

LEMMA 1. The set of dilleomorphisms is an open subset of ~l .

PROOF. Let us first note that the set of diffeomorphisms in 01
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may be described as the set 1JIz of functions f in Øz, such that:

a) f is bijective;

fl) f -1 is continuous;

Let f E Wi be fixed and let c &#x3E; 0, suitable. If il

it is obvious that g satisfies y).
Let us now show that, if E is sufficiently small, then g is injective.

Indeed, suppose the contrary; then there exist a sequence (gn)nEN in
and two sequences (bn)neN in E, such that

gn(an) = g.(b.), an=F bn. By the compactness of E, we may suppose
an --~ a, bn ~ b and, since f is injective, it turns out that a = b. Suppose
a E E; the case a e Z can be handled analogously by local charts. Put
hn = (dgn(a))-logn-I; since dhn(a) = 0, if n is large enough we have

which is impossible.
Let us now show that g is surjective, too. By the definition of

Wi we have only to show that the spatial component x(t, ~ ) of g(t,.)
is onto Eo, [0_, T]. As and E is connected, then [0, T] x Eo
is connected; so Eo is connected, too. Hence, 2~ is connected. Since

z(t; )(Et) ç Eo, by y), X(t, .) is a submersion, hence an open map
(see, e.g., [9], 3.1.8). So, z(t; )(Et) is an open and compact subset of
Eo, thus coinciding with it, by connectedness.

Finally, P) follows by the compactness of E.
To complete the proof of the Theorem, we have only to establish

the possibility of approximating, in the topology, the diffeomor-
phism e, constructed at the beginning of the proof, by functions in Ok-
To this end, we need the following local approximation result.

LEMMA 2. Let X be anyone of the following sets: i) .Rn+1; ii) R X RI;
iii) Let U, V be open subsets of X and let

be such that:

a) uniformly continuous in int (U) if I + ~a ( c k, c k -1;
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b) in the cases ii), iii), lp(t,.) maps the hyperplane xn = 0 into
.itself.

Then, if U’ c U’ c U, for every 8 &#x3E; 0, there exists 99. E Rn),
4njoying property b), such that, if

This Lemma is proved by a machinery analogous to the one in [3],
Chapter 2, Lemma 3.1, but regularizing only with respect the space
variables.

The proof of the claimed approximation result can now be accom-
plished by arguments analogous to those in [3], Theorem 2.6, applying
Lemma 2.

:3. - Applications.

3.1. Since the diffeomorphism exhibited in the preceding section is
time-preserving, parabolic systems of every type are transformed in
systems of the same type in a cylindrical region; furthermore, the
transformed boundary operators satisfy the complementary condition
if this was satisfied by the original boundary operators. The com-

patibility conditions (cc) for the data need a more careful treatment.
Indeed, in a noncylindrical region, these conditions must be given via
-tim’3 preserving local charts; since cc are invariant under a time pre-
serving diffeomorphism in if they are satisfied in an
,atlas, they are satisfied in any other one, too. An analogous argument
shows that compatible original data are mapped into compatible ones
by the diffeomorphism built in Section 2.

Obviously, Sobolev, Besov and Holder spaces of parabolic type do
not change. So, existence, uniqueness and regularity results for para-
bolic problems in noncylindrical regions satisfying hypotheses I), II),
III) can be obtained directly by the corresponding cylindrical results.
In particular, for Petrovskii parabolic systems, Solonnikov’s results
([10], Theorem 5.4, [6] Theorems 10.1 and 10.4) hold true even in non-
cylindrical regions. Analogously, Grisvard’s results for parabolic equa-
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tions of higher order in t ([2], Theorem 8.9) can be extended to the
noncylindrical situation.

This approach may be also useful in several situations in nonlinear
problems.

3.2. Quite analogously, strict hyperbolicity of systems and equations
is preserved by the diffeomorphism r, built in Section 2. Hence, we
shall be able ro consider mixed boundary value problems for these
operators if ~ satisfies the further hypothesis

is never characteristic for the operator.
This hypothesis is clearly invariant under our diffeomorphism.

Furthermore, boundary conditions satisfying the uniform Lopatinskii
conditions go over to boundary conditions with the same property.
As far as compatible data are concerned, we may repeat what has
been said in the preceding subsection .

So existence, uniqueness and regularity results for hyperbolic prob-
lems in noncylindrical regions may be obtained from the analogous
ones in cylindrical regions (see e.g., [5], [8], [4], [1] Chapter VII, § 7,
[7] Chapter V).

Added in proo f . Some recent results by T. Miyakawa and Y. Teramoto
~ [ 11 ], [12]) show that our technique can be used also for Navier-Stokes equa-
tions with moving boundary.
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