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On a Synonymy Relation
for Extensional 1* Order Theories.

PArt II1
A Necessary and Sufficient Condition for Synonymy.

C. BoNOTTO - A. BRESSAN (*)

10. Intuitive description of the theory J. Semiotics for J (3).

We want to associate theory J based on the language F—see [1],
§ 6—with an interpreted theory 4 in compliance with the following
intuitive requirements, which refer to any model 4 = (2, 4, «) and
any ov-valuation V for 7, and hold for n, 1 =1, 2, ....

(a) The variable x; of I acts, as far as its sense is concerned, as
a proper name, i.e. as primitive constant.

(b) The relator R} and comnectives ~ and D are associated with
three individual constants R, ~ , and 5 of I, that designate (£, V)-
senses of R}, ~, and D respectively—i.e. the senses of R} to > with
respect to & and V.

(*) Indirizzo degli AA.: Seminario Matematico, via Belzoni 7, 35131
Padova.

Lavoro eseguito nell’ambito dell’attivitd dei Gruppi di Ricerca Matema-
tica del C.N.R., negli anni accademici 1979/80 e 1980/81.

() The present paper is the third part of a work whose first and second
part are [1] and [2] respectively. Therefore the numbering of its sections
follows those for [1] and [2].
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(e) The functor f} is associated with the individual constant f:‘ of
T, that denotes the (S, V)-sense of f.

(d) [(e)] A, [V.] s an (n -1)-ary functor of I, and wffs having
the 1¢t [27¢] of the forms

(10.1) n=A,(0) &1, &n) 5 = Valo, &1y -eey &n)

express that v [{] is the (£, V)-sense of the application [value] of the
n-ary attribute R [functor f], of (&, V)-sense o [o], to the terms A, to
A, of the respective (F, V)-senses &, to &,.

(f) " has a predicate ¥~ such that any wff of T, of the form ¥ (£)
expresses that £ is the (£, V)-sense of a wff < of T, and that of is true
in £ at V, ie desy (/) =0.

(9) The variable »; is associated with an operator (Rx;) of F to
be denoted with (&), such that (&;)A denotes the (£, V)-sense of the
wff (#)4 of T

Now in order to define the theory g rigorously, we stipulate, first,
that, as well as .7, it is based on the language F—see [1], §§ 2, 3—,
so that - has the same variables as J .

It is not restrictive to assume J to have only constants ¢;,, R,
or fi with an odd value of ¢; for should this situation not occur,
we can render it holding by performing the replacement ¢ —2¢ —1
(=1, 2,...) of all constants of .. Thus denoting by € (primitive
constants and connectives) the set formed by the constants ¢;, R,
and f? of J and by the connectives ~ and >, we can choose

(i) an injection y of £% into the new individual constants,
ie. ¢, (e=1,2,..), and

(ii) a predicate ¥~ and two (n 4 1)-ary functors 4, and V,
in % outside the counterdomain of y (n =1, 2,...).

We shall denote y(c;) to x(2) by é; to O respectively.

We also stipulate that the constants of 7 are ¥°, 4,, V, (n=
=1, 2,...), the equality sign R}, the y-transformed of the elements
in #€, and a term-term operator gign £ (®).

(2) 9 need not have any inexistent object.
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We now associate every wfe 4 of J with the corresponding wie A
of ° by means of the following recursive rules:

Rule If A is then 4 is

8 Z; OT ¢; &; or ¢; respectively

82 fi( 4y, o.cs An) Valfes 4y, ..., 4,)

83 R¥(4,, ..., 4,) A (R?, 4y, ..., 4,)

845 ~ 4, [4,5 4] Ay(~, 4y) [4y(3, 4y, 45)]
S (w;)4 (Qx;) 4.

Remark that if o is a wff of T, then s is a term of 7.

11. Axioms for 5. Some theorems relating  and 5.

As proper axioms or axiom schemes of g, we take those on iden-
tity—see [4]—, i.e.

AA1-2 w=u, x=yD (A (x)D A(y)),

the special axioms AA3-6 below on ¥, where %, %,, and %, are
arbitrary wifs of .,

A3 VA, B)] =~V (H),

AL VA, B, B =V (B) >V (B,

A5 YV(Qw) B = (2.,)V(B),

A6  ~ V(1) if v# A for every wff A of T,

the following three axioms, connected with the synonymy conditions
GCq), Cy), and C;) in [1], § 6—see Def. 3.1.

AAT-8  (@)(p=1p)2(Qn)p=(20)p, D,=D, (0<v<w),
A9 (Qu) B = (Qu,)€ if B and € are (x,, x,)-similar wffs of T,
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and the following counterparts of J’s axioms
A10 V() whenever o is an amiom of T .

Since 7 is based on %, its inference rules are MP and Gen. By
AA1-2 theorems (11.1-4) below hold. They are connected with the
synonymy conditions C, to O; in [1], and in them p,q,p’, and ¢’
are arbitrary wifs of 7, f and f' [R and R’'] are arbitrary n-ary functor
[relators] of 4 and 4., 4y, ..., 4., A, are arbitrary terms of J;
n runs over Z1 and A?p, means p;A...APx-

(11.1) b f=fANAM A, = A0 Voulf, 4y, ...y 4,) = V).(f% 4y, .., 4.,
(11.2) e R=RANA"A;, = A5 AR, 4,,...,4,) =
= A, (R, 4;,...,4;),

(11.3) b P =P’ D Ay(~, p) = Ay(~, P),
(11.4) o P =P N =q' 24,5, P, §) = 4:(5, 9", §) -

THEOR. 11.5. If p is a wff of 7 and g4 p, then gz V().

Indeed let %, to #, be a proof of p in 7. We assume
(11.6) 5 V(%)) for j=1,2,...,i—1, where i<n
(which holds vacously for ¢ = 1) as the hypothesis of our (complete)
induction. Then one of alternatives a) to ¢) below holds.

a) B, is an axiom of . Then gz ¥ (&) by Al0.

b) For some r and s smaller than i, B, is #,0%; (MP). Then
by rule ;) in §10 and A4 +—z ¥(B,) = [¥(#,) > ¥ (#.)]. Hence,
by (11.6) and MP 4 ¥ (%.).

¢) For some r <1 and some k, &; is (x,)%,. By (11.6) 5 ¥~ (9?,).
Then, by Gen, g (#,)¥ (#,). Furthermore, by rule s,) in § 10 and A5
g (%)Y (B,) = ¥ (#:). Hence gV (%,).

Then by the principle of complete induction, (11.6) holds for j =n
(and %, = p). q.e.d.



On a synonymy relation etc. - Part III 5

THEOR. 11.6. If a and b are wfes of T and a <X b then gz a = b.

Indeed let #Z be the relation such that aZb iff a and b are wfes
of I and +ga= b. By AA1,2, # is an equivalence relation. Fur-
thermore by A8, theorems (11.1-4), A7, and A9, relation % satisfies
the synonymy conditions C,) to C;) in [1], § 6.

To check the assertion above is obvious, except in connection
with condition Cg). Therefore we now assume that p Zp’' where p
and p’ are wifs of 7. Then 4 p = p’ by the definition of Z. Hence
g4 (#;)p = P’ by Gen. Then by A7 we deduce g (2%,)p= (Qz,)p',
which by rule s, in § 10 is 5 @=2>, where a is (2;)p and b is
(x;)p'. Hence, by the definition of %, (#,)p % (x;)p’. We conclude
that also condition C,) in [1] is satisfied by £, and the italicized as-
sertion above is completely proved.

Since the synonymy relation > is the least equivalence relation
that satisfies conditions C,.;) in [1], =X CZ%. Then our thesis holds.

q.e.d.

THEOR. 11.7. g4 (2,)p = p' D> (Qx,)p= (Qx,;)p" where p' and p" are
(s, @;)-similar.

Proo¥. By the completeness of 7 it is suffices to show that the
wit (@;,)p = p' D (Qx,)p = (2z,)p" is true in every normal model of 7.
Let M be such a model. Note that

(i) vV is an M-valuation,
(ii) desm,y [(w)p=p']1=0,
(iii) p’ and p” are (w;, «;)-similar.

By (ii), A7 yields desy,y ((Q2x;)p = (2x,)p’) = 0 and hence (since M
is normal)

(11.7) desy,y (Qw;)p = desp,y (22,)p" .
By (iii) and A9 we have

(11.8) desy,y (£22,)p'= desp,y (2,)p" .
Hence by (11.7) and (11.8) we deduce

(11.9) desp,y (Q2w,)p = desy,y (2w,)p" ,
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i.e.
(11.10) desy,y [(22,)p = (22;)p"] = 0.

Hence the wif (z,)p = p' > (2x,)p = (2x,)p" is true in M. Since M
is arbitrary, the thesis holds.

12. Statement of a necessary and sufficient condition for symonymy.

DEFINITION 12.1. We say that a and b are J -equivalent, briefly
a &b, if a and b are wfes of T and

(12.1) desp,y & = despp b

for every mormal model M of F and every M-valuation W (3).

The main aim of Part 3 is the following equivalence theorem, in
that it allows the inversion of Theor. 11.6.

THEOR. 12.1. If a and b are wfes of I, a>X b <> a &b.

PROOF OF THE =>-PART. Let a>Xb. Then by Theor. 11.6,
g 0= b.

Since 4 is a theory based on ., by Theor. 3.4 in [1] the wif @ = b
is true in every (normal) model M of g~ and at any M-valuation W.
Then by the definition of normal model, (12.1) holds for arbitrary
such M and W. Then, by Def. 12.1, a & b.

PROOF OF THE <-PART. Let a £b. In order to construct a suit-
able model £ = (D,_¢) of the theory 4 (with a general operator £),
associated to the one F = (D, 4, «) for the theory I (without general
operators) we consider the set B formed by the wfes of 7, the func-
tional and predicative letters of 47, and the connectives ~ and D.

(®) Obviously aéb iff a and b are wies of 7 and desy,p (@ = b) = 0 for
every model M of 7 and every M-valuation W—i.e. iff, for all such M and W,
we have desn,y aE s despy,y b, where Epis the equivalence denoted in M by

the identity sign of .



On a synonymy relation ete. - Part I11 7
Furthermore we set
(12.2) B={d|4eB}, [4] = {di|AeB& A, <A} U {4} (.
Now we specify the domain D of £:
(12.3) D = {[4]|4e B} U {8} (# = the empty set).

Note that D is denumerable (hence infinite). Indeed such is B
(xz;€ B for i =1, 2,...). Furthermore, by Theor. 8.1 in [2] w,-;ﬁ x;
for ¢ j and 4,j=1,2,...; and (12.2), and (12.3) hold.

Let A = A(w,, ..., ®,) be an expression of J in B, whose free
variables, if any, occur among the n (distinct) variables x, to x,;
and let us consider the condition

ConD. 12.1. For some wfes 4, to 4, of 7, A(4,, ..., 4,) too is
a wie of 7 and @, =[4,] (D) (i=1,..., n)—cf. Convention 2.2
in [1].

StEP 1 (¢n the proof of <=). There is a mapping g,.,,,. .. of D*
tnto D for which

(12.4) gA:x,,‘..,mu(¢17 vy D) =
{ [A4,, ..., A)] under Cond. 12.1,

0 otherwise (for @y, ..., P,€D).

To prove Step 1 it suffices to consider the case when Cond. 12.1
holds; (in the remaining case the proof is trivial). Therefore we
assume that for ¢ =1 to n, @, = [4,] = [4;] with 4, and A; wfes
of I ; hence A, =< A,. Hence, by Theor. 6.1 in [1], A(4y, ..., 4,) X
= A4}, ..., A)), which by (12.2) yields our thesis.

StEP 2. There is an interpretation &* = #(&) of g that, under the
definition

(12.5) Wix,) = [«.] (t=1,2,..)
(%) The simplification of (12.2), into [4] = {4,|4, € B and 4, <X 4} would

imply [~] = [c] = 6, since the synonymy relation is defined between wfes
of , and ~, > are not wfes of J.
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of the v-valuation W, for 7, fulfils the (interpretation) conditions (i)
to (ig) below for all D,, ..., D, € D, for every element A of B that has
at most x; as a free variable, and for every v-valuation W.

(i) & =F() = [e].

(i2) [(5)] An(Doy vey D) [Via( Do, ..., Pa)] is [A], in case for some
elements A, to A, of B, ®;=[4;] (1=0,...,n) and Ay(4,, ..., A,)
18 a wff [term] A of T respectively; it is O otherwise.

(1a) 2*(g4,2) s [(@)A] if 4 is a wff of T; it is O otherwise.

(i) 7*={EeD| for some wff 4 of T desy p(4) =0 and
[ = 8.

(ig) =* = the identity relation in D.

To prove Step 2 it is suffices to show that conditions (i,) to (i,)
are good definitions of functions. To reach this aim in connection
with (i,) [(i;)] we assume that (i) 4,, 4, ..., 4., 4, are elements of B,
(ii) Ao(dyy ...y A,) and Ay(43, ..., A)) are two wifs [terms], say 4
and A’ respectively, and (iii) [4,] = [4]] (4= 0,...,n). Then by
(12.2), 4, A4; (i =0, ..., n), so that by Theor. 6.1 in[1] 4 4".
Then [4] = [4'] by (12.2),.

Thus our goal is reached in the first case considered in (i,) [(i5)]-
In the remaining case this thesis is trivial.

To prove the acceptability of definition in (i,) we assume that
4, = ZI\1(4’71')9 Ay, = Ay(x;) and

(12'6) gAI;m = gA.:x;’ hence gA,;m([wr]) = gA,;x;( [wT])
r=1,2,..).

Then, by (12.4) [4,(2,)] = [A:(,)] and hence, by (12.2),, Ay(w,) <
=< A,(=,) (r=1,2,..). By condition C) in [1], this yields

12.7) (@) dy(@) X (@) Ao(w,) (r=1,2,..).

. Now let x, fail to oceur in Zil(x,-)/\ﬁz(wj). Then, for s =1, 2,
A(x,) [A.(®;)] and A,(x,) are (x;, @,)-similar [(@;, @;)-similar], so that



On a synonymy relation ete. - Part I1I 9
by condition C,) in [1],
(@) Ay(@:) X (@) Ay(02) and () As(@;) = (w2) As(@n) -
These results and (12.7) for r = h yield

() Ay (@) X () Ao(;) - q.e.d.

13. Completion of the proof of Theor. 12.1. A consequence of it.

STEP 3. Assume that (i) A = A(xy, ..., x,) is a wfe of T whose free
variables, if any, are some among , to x,, (ii) 4, to A, are terms of T
and (iii) W is a v-valuation for -, for which

(13.1) W(z,) = [4.] (s=1,..,n).

(Note that A* = des g (4) is independent of a such a choice of w).
Then

(13.2) 4% = [4(4,, ..., 4,)] -

For the proof we use induction on the length I of 4. For I =1,
A is ¢, or x;, so that by (i,) in §12, or (13.1), 4* = [e,] or 4* =
= W(w;) = [4,] respectively. Hence (13.2) holds for I = 1.

As inductive hypothesis, assume that (13.2) holds for I < v; fur-
thermore let 1 be ». Only Cases 1 to 5 below can hold.

Case 1 [2]. A is @[Ai(@1y e, @), ooy Ay, .v,y 2,)] Where @ is
R [fr]. Then, for ¥ = 4,, [P = V,], 4 is

Y, ﬁl(wl, vy @)y eeny A2y, ey @0)']
by 8;) [8,)] in § 10, and A* igs
PHG*, Ay(@1y eoey B)E, ooy Ay, oony T2)*]
By the inductive hypothesis—see (13.2)—,

A(@y, ooy wa)* = [A,(44, ..., 4,)] (s

I

1,..,m).
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Then by condition (i,) [(i;)] in §12,
A% = [@[A1(Ary oevy An)y evey Ay ooy AD)]] -

Thus (13.2) holds in this case.

Case 3 [4]: A is ~Ay(@y, ..., @) [Au(@1y ...y €) D Ag(@y, ..., 2,)].
Then (13.2) follows as a particular case of Case 1 in that ~ and 5
are regarded ags predicates of J .

Case 5. A i8 (Yo) A (Yo, ---» Yn) Where y, t0 ¥, are n + 1 variables.
We set

Ay =p A1(Yo) =p A (Yo, D1, ..., 44)

(13.3) A =p(Yo)r, Wi= ([?]) i

where A4, is any term of . By the inductive hypothesis

des g, (A(Yos -, ¥a)) = [ (4o, ..., 44)]

hence—see (13.1) and (13.3),—

(13‘4) ‘pd(v.,...,v..)';v.,;l,W([Ao]) - ['M(Aw ceey An)] .
By (12.4)
(13-5) gd,:v.([dt)]) = [MI(AO)] = [M(Ao’ eeey An)] .

Since 4, is an arbitrary term of 7, by (13.4) and (13.5) the restric-
tion of the functions @guy,.. v.ives, w a0d gy ., to D—@ coincide.
Furthermore, at ® both of them take the value §. Hence they coin-
cide in D, so that—see (i,)—

des g5 [(290)(H Yoy s Ya))] = L*@Quivir...,vu) var £,%) =
= Q*(gﬂl;vo) = [(yo) ﬂ(?/oy Al’ vy An)] = [ﬁ(Aly [XXP) An)] .

Thus (13.2) holds in this case; and Step 3 is proved.
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StEP 4. des 4 (4) = [4] if Wi(x) =[2] (i=1,2,..). This is
a simple corollary of Step 3.

One easily verifies that £ = (D, #) is a model for 7.

Now, in order to complete the proof of the <«-part of Theor. 12.1
we assume a &b, 50 that (12.1) holds for every normal model M of -
and every M-valuation.

Hence, for M equal to the above normal model £ of 4 and for
W = W,—see Step 4—, a* = b*. Furthermore, by Step 4, (13.2)
holds for A=a and for A4 =b: @* = [a] and b* = [b]. Hence
[¢] = [b] which by (12.2), yield a =<b.

Thus the above completion has been performed, and also Theor.
12.1 is now completely proved. q.e.d.

Equality (12.1) is true in every normal model M of 4 only if it
is 8o every model M’ (because M’ can be contracted in an equivalent
normal model); and by the completeness theoremr for F—see [1],
Theor. 3.4—this occurs iff 5 @ = b. Therefore Theor. 12.1 yields
the following

THEOR. 13.1. If a and b are wfes of T, then
a) a>Xb<>t—5a=>( and

f) a<Xb<> —ga=>b

14 Proof of the assertion ~p X~~~ p made in [2], § 8.

‘We now prove assertion (8.2); which, together with (8.2),—see [2]—
shows that the rather simple condition asserted by Theor. 8.1 in [2] to
be sufficient for mon-synonymy, is not necessary for this.

We set 2, = N and consider a sequence { #g},.5., of functions
that are defined (only) on the constants of 7 ,—see (ii) in [1], § 6—,
have counterdomains in 2,, and satisfy conditions i,) to i) below.
By these, if 0<f <y <w and a is a wfe of 7 (so that desg, y (a)
is meaningful for every mapping V of s variables into N), then
des gy (a) = des 4y (@), where f,= (2, 7,) (0 < o < w). Therefore
in conditions i,) to i) # is written instead of #;. Furthermore it is

(®) ¢4 p» means desy gy p = 0 at every model M’ of 7 and every
M’ -valuation W',
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assumed that &* = _¢(§), that p, is the ¢-th prime number, and that
m, to m, run over N while f, n, m, r, and ¢ run over N — {0}.

iy) ¢ = 3% if ¢, is a primitive constant of 7.

i,) ¢} = BB if ¢, is the constant of 7 defined by its f-th defini-

tion 9, i.e. ¢;€ 85, and ¢, ¢ 85 for y <p.

fp.g) ¥ = 2.7, 3 =207,

ig) [ig)] B = 207 [f* = 2n.3¢] if R} [f?] is a primitive pre-

dicative [functional] constant of 7.

i) [ig] Bp* =2°-118 [fi* = 2"-50] if R} [f7] is in Sy, and is

1y)
ilo)
i11)

ia)

iz5)

1y,)
iz5)

i1g)

not in Sy, for y < p—ef. i,).

VA2 -, my, ...y M) = 27-35B™ L 7.

VER 5P, My, ..y my) = 27-BP T L p™e
AN 2T Mgy ey my) = 27T 11™ L P,

A5(2"-11%, my, ..., m,) = des 4, Dy where V(x,) = m, for 1<
<i<n.

des g,y Dy where V(x;) = m,
\ (¢=1,...,r) provided n,=2m-58-7T™..,
A3 (2273, my my) = ... piry for some m, B, r and m, to m,;

22.73.117-13"% otherwise ;
=* i3 the identity on N.
(Qw,)*(p) = k, where k is a function of ¢ (independent of 7).

¥* is any subset 9, of 2,.

Note that 22-7% is =*, because = is the primitive predicative
-constant R}. For the interpretation £ = (£, 2,) of 5 we have the

following

THEOR. 14.1. If a X b, then desg,y & = des,,yb for every §-valua-

dion V.

Indeed let T' be the equivalence relation among wifs of 7, for
which 4, T 4, iff, for all f-valuation V, desy,, 4, = desy,, 4,. Then
T fulfils the conditions C,) to C,) in <, written in [1] and used there
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to define <. Hence, for the minimality property of <, we have
=X CT, and hence also the thesis. q.e.d.

COROLLARY 14.2. ~p K ~~~p, for every wif p of 7.

Indeed assume ~ p =X~~~ p, as an hypothesis for reduction ad
absurdum. Then by Theor. 14.1, we have that

des}’,VA1(’<’7 p) = des},VAl ('{'7 Al("" Al("": p)))
hence, by i;) and i), for n =dess , p we arrive at the absurd result.

2-7-11n =27 (1127 @) | q.e.d

REFERENCES

[1] C. BoNoTTO - A. BRESSAN, On a synonymy relation for extensional 15t order
theories, Part I: A notion of synonymy, Rend. Sem. Mat. Univ. Padova,
69 (1982), pp. 63-76.

[2] C. BoxoTTO - A. BRESSAN, On a synonymy relation for extensional 1st order
theories, Part I1: A sufficient criterion for nmon-synonymy. Applications,
Rend. Sem. Mat. Univ. Padova, 70 (1983), pp. 13-19.

[3] A. BRESSAN, On general operators binding variables in an ewlensional first
order theory, Atti Istituto Veneto di Scienze Lettere ed Arti. Tomo
CXL (1982), pp. 115-130.

[4] E. MENDELSON, Introduction to mathematical logic, Van Nostrand - Rein-
hold Co., New York, 1964.

Manoscritto pervenuto in redazione il 4 novembre 1981.



