RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

C. BONOTTO

A. Bressan

On a synonymy relation for extensional 1st order theories. Part III. A necessary and sufficient condition for synonymy

Rendiconti del Seminario Matematico della Università di Padova, tome 71 (1984), p. 1-13

http://www.numdam.org/item?id=RSMUP_1984__71__1_0

© Rendiconti del Seminario Matematico della Università di Padova, 1984, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On a Synonymy Relation for Extensional 1st Order Theories.

PART III

A Necessary and Sufficient Condition for Synonymy.

C. Bonotto - A. Bressan (*)

10. Intuitive description of the theory $\dot{\mathscr{T}}$. Semiotics for $\dot{\mathscr{T}}$ (1).

We want to associate theory \mathcal{F} based on the language \mathscr{L} —see [1], § 6—with an interpreted theory \mathcal{F} in compliance with the following intuitive requirements, which refer to any model $\mathscr{I} = (\mathscr{D}, \mathscr{I}, \alpha)$ and any v-valuation V for \mathscr{F} , and hold for n, i = 1, 2, ...

- (a) The variable x_i of \mathcal{T} acts, as far as its sense is concerned, as a proper name, i.e. as primitive constant.
- (b) The relator R_i^n and connectives \sim and \supset are associated with three individual constants \dot{R}_i^n , $\dot{\sim}$, and $\dot{\supset}$ of $\dot{\mathcal{F}}$, that designate (\mathcal{F} , V)-senses of R_i^n , \sim , and \supset respectively—i.e. the senses of R_i^n to \supset with respect to \mathcal{F} and V.
- (*) Indirizzo degli AA.: Seminario Matematico, via Belzoni 7, 35131 Padova.

Lavoro eseguito nell'ambito dell'attività dei Gruppi di Ricerca Matematica del C.N.R., negli anni accademici 1979/80 e 1980/81.

(1) The present paper is the third part of a work whose first and second part are [1] and [2] respectively. Therefore the numbering of its sections follows those for [1] and [2].

- (c) The functor f_i^n is associated with the individual constant \dot{f}_i^n of $\dot{\mathscr{F}}$, that denotes the (\mathscr{F}, V) -sense of f_i^n .
- (d) [(e)] A_n [V_n] is an (n+1)-ary functor of \mathcal{F} , and wffs having the I^{st} [2^{nd}] of the forms

(10.1)
$$\eta = A_n(\rho, \xi_1, ..., \xi_n), \qquad \zeta = V_n(\sigma, \xi_1, ..., \xi_n)$$

express that η [ζ] is the (\mathcal{I}, V) -sense of the application [value] of the n-ary attribute R [functor f], of (\mathcal{I}, V) -sense ϱ [σ], to the terms Δ_1 to Δ_n of the respective (\mathcal{I}, V) -senses ξ_1 to ξ_n .

- (f) \mathcal{F} has a predicate \mathscr{V} such that any wff of \mathcal{F} , of the form $\mathscr{V}(\xi)$ expresses that ξ is the (\mathscr{I}, V) -sense of a wff \mathscr{A} of \mathscr{F} , and that \mathscr{A} is true in \mathscr{I} at V, i.e. $\deg_{\mathscr{I},V}(\mathscr{A}) = 0$.
- (g) The variable x_i is associated with an operator (Ωx_i) of \mathcal{F} to be denoted with (\dot{x}_i) , such that $(\dot{x}_i)\Delta$ denotes the (\mathcal{F}, V) -sense of the wff $(x_i)\Delta$ of \mathcal{F} .

Now in order to define the theory $\dot{\mathcal{F}}$ rigorously, we stipulate, first, that, as well as \mathcal{F} , it is based on the language \mathcal{L} —see [1], §§ 2, 3—, so that $\dot{\mathcal{F}}$ has the same variables as \mathcal{F} .

It is not restrictive to assume $\mathscr T$ to have only constants $c_i,\ R_i^n$, or f_i^n with an odd value of i; for should this situation not occur, we can render it holding by performing the replacement $i \to 2i-1$ (i=1,2,...) of all constants of $\mathscr T$. Thus denoting by $\mathscr {PC}$ (primitive constants and connectives) the set formed by the constants $c_i,\ R_i^n$, and f_i^n of $\mathscr T$ and by the connectives \sim and \supset , we can choose

- (i) an injection χ of \mathscr{PC} into the new individual constants, i.e. c_{2e} (e=1,2,...), and
- (ii) a predicate $\mathscr V$ and two (n+1)-ary functors A_n and V_n in $\mathscr L$ outside the counterdomain of χ (n=1,2,...).

We shall denote $\chi(c_i)$ to $\chi(\supset)$ by \dot{c}_i to $\dot{\supset}$ respectively.

We also stipulate that the constants of $\dot{\mathcal{F}}$ are \mathcal{V} , A_n , V_n (n = 1, 2, ...), the equality sign R_1^2 , the χ -transformed of the elements in \mathcal{PC} , and a term-term operator sign Ω (2).

⁽²⁾ F need not have any inexistent object.

We now associate every wfe Δ of \mathcal{F} with the *corresponding* wfe Δ of \mathcal{F} by means of the following recursive rules:

Rule	If ⊿ is	then <i>d</i> is
81	x_i or c_i	$\dot{x_i}$ or $\dot{c_i}$ respectively
s_2	$f_i^n(\Delta_1,, \Delta_n)$	$V_n(\dot{f}_i^n, \Delta_1, \ldots, \Delta_n)$
s_3	$R_i^n(\Delta_1,, \Delta_n)$	$A_n(\dot{R}_i^n, \dot{\Delta}_1,, \dot{\Delta}_n)$
84-5	$\sim \Delta_1 \ [\Delta_1 \supset \Delta_2]$	$A_1(\sim, A_1) \ [A_2(\circlearrowleft, A_1, A_2)]$
86	$(x_i) arDelta$	$(\Omega x_i)\dot{\Delta}.$

Remark that if \mathscr{A} is a wff of \mathscr{F} , then $\dot{\mathscr{A}}$ is a term of $\dot{\mathscr{F}}$.

11. Axioms for $\dot{\mathcal{F}}$. Some theorems relating \mathcal{F} and $\dot{\mathcal{F}}$.

As proper axioms or axiom schemes of $\dot{\mathcal{F}}$, we take those on identity—see [4]—, i.e.

AA1-2
$$x = x$$
, $x = y \supset (\mathscr{A}(x) \supset \mathscr{A}(y))$,

the special axioms AA3-6 below on \mathscr{V} , where \mathscr{B} , \mathscr{B}_1 , and \mathscr{B}_2 are arbitrary wffs of \mathscr{F} ,

$$\mathbf{A}3 \qquad \mathscr{V}[A_1(\mathbf{\dot{\sim}},\mathbf{\dot{\mathscr{B}}})] \equiv \mathbf{\sim} \mathscr{V}(\mathbf{\dot{\mathscr{B}}}),$$

$$\mathbf{A4} \qquad \mathscr{V}[A_2(\dot{\supset},\dot{\mathscr{B}}_1,\dot{\mathscr{B}}_2)] \equiv \mathscr{V}(\dot{\mathscr{B}}_1) \supset \mathscr{V}(\dot{\mathscr{B}}_2),$$

A5
$$\mathscr{V}[(\Omega x_i)\dot{\mathscr{B}}] \equiv (x_i)\mathscr{V}(\dot{\mathscr{B}}),$$

A6
$$\sim \mathscr{V}(\tau)$$
 if $\tau \neq \Delta$ for every wff Δ of \mathscr{F} ,

the following three axioms, connected with the synonymy conditions C_6 , C_1 , and C_7 in [1], § 6—see Def. 3.1.

$$\mathbf{AA7-8} \qquad (x_i)(\dot{p} = \dot{p}') \supset (\Omega x_i) \, \dot{p} = (\Omega x_i) \, \dot{p}', \qquad \dot{D}'_{\nu} = \dot{D}''_{\nu} \, (0 < \nu < \omega) \,,$$

A9
$$(\Omega x_i)\dot{\mathscr{B}} = (\Omega x_i)\dot{\mathscr{C}}$$
 if \mathscr{B} and \mathscr{C} are (x_i, x_j) -similar wifts of \mathscr{F} ,

and the following counterparts of \mathcal{F} 's axioms

A10 $\mathscr{V}(\dot{\mathscr{A}})$ whenever \mathscr{A} is an axiom of \mathscr{T} .

Since $\dot{\mathcal{T}}$ is based on \mathscr{L} , its inference rules are MP and Gen. By AA1-2 theorems (11.1-4) below hold. They are connected with the synonymy conditions C_2 to C_5 in [1], and in them p, q, p', and q' are arbitrary wffs of \mathscr{T} , f and f' [R and R'] are arbitrary n-ary functor [relators] of \mathscr{T} and $\Delta_1, \Delta'_1, \ldots, \Delta_n, \Delta'_n$ are arbitrary terms of \mathscr{T} ; n runs over Z^+ and $\Lambda_1^n p_i$ means $p_1 \wedge \ldots \wedge p_n$.

$$(11.1) \qquad \vdash_{\vec{\mathcal{F}}} \dot{f} = \dot{f}' \wedge \Lambda_i^n \Delta_i = \Delta_i' \supset V_n(\dot{f}, \Delta_1, \dots, \Delta_n) = V_n(\dot{f}', \Delta_1', \dots, \Delta_n'),$$

$$(11.2) \qquad \vdash_{\vec{\mathcal{F}}} \dot{R} = \dot{R}' \wedge \Lambda_i^n \dot{\Delta}_i = \dot{\Delta}_i' \supset A_n(\dot{R}, \dot{\Delta}_1, ..., \dot{\Delta}_n) = \\ = A_n(\dot{R}', \dot{\Delta}_1', ..., \dot{\Delta}_n'),$$

$$(11.3) \qquad \vdash_{\vec{\mathcal{F}}} \dot{p} = \dot{p}' \supset A_1(\dot{\sim}, \dot{p}) = A_1(\dot{\sim}, \dot{p}') ,$$

(11.4)
$$\vdash_{\vec{\mathcal{F}}} \dot{p} = \dot{p}' \wedge \dot{q} = \dot{q}' \supset A_2(\dot{\supset}, \, \dot{p}, \, \dot{q}) = A_2(\dot{\supset}, \, \dot{p}', \, \dot{q}') \; .$$

THEOR. 11.5. If p is a wff of \mathcal{F} and $\vdash_{\mathcal{F}} p$, then $\vdash_{\hat{\mathcal{F}}} \mathscr{V}(\dot{p})$.

Indeed let \mathscr{B}_1 to \mathscr{B}_n be a proof of p in \mathscr{F} . We assume

(11.6)
$$\vdash_{\vec{\mathcal{J}}} \mathcal{V}(\dot{\mathcal{B}}_i)$$
 for $j = 1, 2, ..., i-1$, where $i \leq n$

(which holds vacously for i = 1) as the hypothesis of our (complete) induction. Then one of alternatives a) to c) below holds.

- a) \mathcal{B}_i is an axiom of \mathcal{F} . Then $\vdash_{\hat{\mathcal{F}}} \mathcal{V}(\hat{\mathcal{B}}_i)$ by A10.
- b) For some r and s smaller than i, \mathscr{B}_s is $\mathscr{B}_r \supset \mathscr{B}_i$ (MP). Then by rule s_5 in § 10 and A4 $\vdash_{\vec{\mathcal{F}}} \mathscr{V}(\dot{\mathscr{B}}_s) \equiv [\mathscr{V}(\dot{\mathscr{B}}_r) \supset \mathscr{V}(\dot{\mathscr{B}}_i)]$. Hence, by (11.6) and $MP \vdash_{\vec{\mathcal{F}}} \mathscr{V}(\dot{\mathscr{B}}_i)$.
- c) For some r < i and some k, \mathcal{B}_i is $(x_k)\mathcal{B}_r$. By (11.6) $\vdash_{\dot{\mathcal{T}}} \mathcal{V}(\dot{\mathcal{B}}_r)$. Then, by Gen, $\vdash_{\dot{\mathcal{T}}} (x_k)\mathcal{V}(\dot{\mathcal{B}}_r)$. Furthermore, by rule s_{ϵ}) in § 10 and A5 $\vdash_{\dot{\mathcal{T}}} (x_k)\mathcal{V}(\dot{\mathcal{B}}_r) \equiv \mathcal{V}(\dot{\mathcal{B}}_i)$. Hence $\vdash_{\dot{\mathcal{T}}} \mathcal{V}(\dot{\mathcal{B}}_i)$.

Then by the principle of complete induction, (11.6) holds for j = n (and $\mathscr{B}_n = p$).

THEOR. 11.6. If a and b are wfes of \mathcal{F} and $a \succeq b$ then $\vdash_{\dot{\mathcal{T}}} \dot{a} = \dot{b}$.

Indeed let \mathscr{R} be the relation such that $a\mathscr{R}b$ iff a and b are wfes of \mathscr{T} and $\vdash_{\mathscr{T}} \dot{a} = \dot{b}$. By AA1, 2, \mathscr{R} is an equivalence relation. Furthermore by A8, theorems (11.1-4), A7, and A9, relation \mathscr{R} satisfies the synonymy conditions C_1 to C_2 in [1], § 6.

To check the assertion above is obvious, except in connection with condition C_6). Therefore we now assume that $p \mathcal{R} p'$ where p and p' are wffs of \mathcal{F} . Then $\vdash_{\vec{\mathcal{F}}} \dot{p} = \dot{p}'$ by the definition of \mathcal{R} . Hence $\vdash_{\vec{\mathcal{F}}} (x_i)\dot{p} = \dot{p}'$ by Gen. Then by A7 we deduce $\vdash_{\vec{\mathcal{F}}} (\Omega x_i)\dot{p} = (\Omega x_i)\dot{p}'$, which by rule s_6 in § 10 is $\vdash_{\vec{\mathcal{F}}} \dot{a} = \dot{b}$, where a is $(x_i)p$ and b is $(x_i)p'$. Hence, by the definition of \mathcal{R} , $(x_i)p\mathcal{R}(x_i)p'$. We conclude that also condition C_7) in [1] is satisfied by \mathcal{R} , and the italicized assertion above is completely proved.

Since the synonymy relation \simeq is the least equivalence relation that satisfies conditions C_{1-7} in [1], $\simeq \mathscr{R}$. Then our thesis holds. q.e.d.

THEOR. 11.7. $\vdash_{\dot{\mathcal{F}}}(x_i)\dot{p}=\dot{p}'\supset(\Omega x_i)\dot{p}=(\Omega x_j)\dot{p}''$ where p' and p'' are $(x_i,\ x_j)$ -similar.

PROOF. By the completeness of $\vec{\mathcal{F}}$ it is suffices to show that the wff $(x_i)\dot{p} = \dot{p}' \supset (\Omega x_i)\dot{p} = (\Omega x_i)\dot{p}''$ is true in every normal model of $\vec{\mathcal{F}}$. Let M be such a model. Note that

- (i) V is an M-valuation,
- (ii) $des_{M,V}[(x_i)\dot{p} = \dot{p}'] = 0$,
- (iii) p' and p'' are (x_i, x_j) -similar.

By (ii), A7 yields $\deg_{M,V}((\Omega x_i)\dot{p}=(\Omega x_i)\dot{p}')=0$ and hence (since M is normal)

(11.7)
$$\operatorname{des}_{\boldsymbol{M},\boldsymbol{V}}(\Omega x_i)\dot{p} = \operatorname{des}_{\boldsymbol{M},\boldsymbol{V}}(\Omega x_i)\dot{p}'.$$

By (iii) and A9 we have

(11.8)
$$\operatorname{des}_{\boldsymbol{M},V}(\Omega x_i)\dot{\boldsymbol{p}}' = \operatorname{des}_{\boldsymbol{M},V}(\Omega x_i)\dot{\boldsymbol{p}}''.$$

Hence by (11.7) and (11.8) we deduce

(11.9)
$$\operatorname{des}_{\boldsymbol{M},\boldsymbol{V}}(\Omega x_{i})\dot{\boldsymbol{p}} = \operatorname{des}_{\boldsymbol{M},\boldsymbol{V}}(\Omega x_{i})\dot{\boldsymbol{p}}^{\prime\prime},$$

i.e.

(11.10)
$$\operatorname{des}_{\boldsymbol{M},\boldsymbol{V}}[(\Omega x_i)\dot{\boldsymbol{p}} = (\Omega x_j)\dot{\boldsymbol{p}}''] = 0.$$

Hence the wff $(x_i)\dot{p} = \dot{p}' \supset (\Omega x_i)\dot{p} = (\Omega x_i)\dot{p}''$ is true in M. Since M is arbitrary, the thesis holds.

12. Statement of a necessary and sufficient condition for synonymy.

DEFINITION 12.1. We say that a and b are \mathcal{F} -equivalent, briefly a \mathcal{E} b, if a and b are wfes of \mathcal{F} and

for every normal model M of F and every M-valuation W (3).

The main aim of Part 3 is the following equivalence theorem, in that it allows the inversion of Theor. 11.6.

THEOR. 12.1. If a and b are wfes of \mathcal{F} , $a \succeq b \Leftrightarrow a \mathscr{E} b$.

PROOF OF THE \Rightarrow -PART. Let $a \simeq b$. Then by Theor. 11.6,

$$\vdash_{\mathscr{F}}\dot{a}=\dot{b}$$
 .

Since \mathcal{J} is a theory based on \mathcal{L} , by Theor. 3.4 in [1] the wff $\dot{a} = \dot{b}$ is true in every (normal) model M of $\dot{\mathcal{J}}$ and at any M-valuation W. Then by the definition of normal model, (12.1) holds for arbitrary such M and W. Then, by Def. 12.1, $a \mathcal{E} b$.

PROOF OF THE \Leftarrow -PART. Let $\alpha \mathscr{E}b$. In order to construct a suitable model $\mathscr{J} = (\mathbf{D}, \mathscr{J})$ of the theory $\dot{\mathscr{T}}$ (with a general operator Ω), associated to the one $\mathscr{J} = (\mathbf{D}, \mathscr{J}, \alpha)$ for the theory \mathscr{T} (without general operators) we consider the set B formed by the wfes of \mathscr{T} , the functional and predicative letters of \mathscr{T} , and the connectives \sim and \supset .

(3) Obviously $a\mathscr{E}b$ iff a and b are wfes of \mathscr{F} and $\operatorname{des}_{M,W}(\dot{a}=\dot{b})=0$ for every model M of \mathscr{F} and every M-valuation W—i.e. iff, for all such M and W, we have $\operatorname{des}_{M,W} aE_M \operatorname{des}_{M,W} b$, where E_M is the equivalence denoted in M by the identity sign of $\mathring{\mathscr{F}}$.

Furthermore we set

$$(12.2) \qquad \dot{B} = \{\dot{\Delta} | \Delta \in B\} , \quad [\![\Delta]\!] = \{\dot{\Delta}_1 | \Delta_1 \in B \& \Delta_1 \succeq \Delta\} \cup \{\dot{\Delta}\} \ (4) .$$

Now we specify the domain D of J:

(12.3)
$$\mathbf{D} = \{ \llbracket \Delta \rrbracket | \Delta \in B \} \cup \{\emptyset\} \qquad (\emptyset = \text{the empty set}) .$$

Note that **D** is denumerable (hence infinite). Indeed such is B ($x_i \in B$ for i = 1, 2, ...). Furthermore, by Theor. 8.1 in [2] $x_i \not \prec x_j$ for $i \neq j$ and i, j = 1, 2, ...; and $(12.2)_2$ and (12.3) hold.

Let $\Delta = \hat{\Delta}(x_1, ..., x_n)$ be an expression of \mathcal{F} in B, whose free variables, if any, occur among the n (distinct) variables x_1 to x_n ; and let us consider the condition

COND. 12.1. For some wfes Δ_1 to Δ_n of \mathcal{F} , $\widehat{\Delta}(\Delta_1, ..., \Delta_n)$ too is a wfe of \mathcal{F} and $\Phi_i = [\Delta_i]$ $(\in \mathbf{D})$ (i = 1, ..., n)—cf. Convention 2.2 in [1].

STEP 1 (in the proof of \Leftarrow). There is a mapping $g_{A;x_1,...,x_n}$ of \mathbf{D}^n into \mathbf{D} for which

$$\begin{aligned} (12.4) \qquad & g_{\varDelta;x_1,...,x_n}(\boldsymbol{\varPhi}_1,\,...,\,\boldsymbol{\varPhi}_n) = \\ & = \left\{ \begin{aligned} & \left[\widehat{\varDelta}(\varDelta_1,\,...,\,\varDelta_n)\right] & \textit{under Cond. } 12.1 \;, \\ & \textit{0} & \textit{otherwise (for } \boldsymbol{\varPhi}_1,\,...,\,\boldsymbol{\varPhi}_n \in \mathbf{D}) \;. \end{aligned} \right. \end{aligned}$$

To prove Step 1 it suffices to consider the case when Cond. 12.1 holds; (in the remaining case the proof is trivial). Therefore we assume that for i=1 to n, $\Phi_i = [\Delta_i] = [\Delta_i']$ with Δ_i and Δ_i' wfes of \mathcal{F} ; hence $\Delta_i \simeq \Delta_i'$. Hence, by Theor. 6.1 in [1], $\widehat{\Delta}(\Delta_1, ..., \Delta_n) \simeq \widehat{\Delta}(\Delta_1', ..., \Delta_n')$, which by (12.2) yields our thesis.

Step 2. There is an interpretation $\xi^* = \mathcal{J}(\xi)$ of $\dot{\mathcal{F}}$ that, under the definition

(12.5)
$$W_1(x_i) = [x_i]$$
 $(i = 1, 2, ...)$

(4) The simplification of $(12.2)_2$ into $[\Delta] = \{\Delta_1 | \Delta_1 \in B \text{ and } \Delta_1 \simeq \Delta\}$ would imply $[\sim] = [c] = \emptyset$, since the synonymy relation is defined between wfes of \mathcal{F} , and \sim , \supset are not wfes of \mathcal{F} .

of the v-valuation W_1 for \mathcal{F} , fulfils the (interpretation) conditions (i₁) to (i₆) below for all $\Phi_0, ..., \Phi_n \in \mathbb{D}$, for every element Δ of B that has at most x_i as a free variable, and for every v-valuation W.

$$(i_1) \ \dot{c}_i^* = \mathcal{J}(\dot{c}_i) = [c_i].$$

- (i₂) [(i₃)] $A_n^*(\Phi_0, ..., \Phi_n)$ [$V_n^*(\Phi_0, ..., \Phi_n)$] is [Δ], in case for some elements Δ_0 to Δ_n of B, $\Phi_i = [\Delta_i]$ (i = 0, ..., n) and $\Delta_0(\Delta_1, ..., \Delta_n)$ is a wff [term] Δ of \mathcal{F} respectively; it is \emptyset otherwise.
 - (i₄) $\Omega^*(g_{\Delta;x_i})$ is $[(x_i)\Delta]$ if Δ is a wff of \mathcal{F} ; it is \emptyset otherwise.
 - (i₅) $\mathscr{V}^* = \{ \xi \in \mathbf{D} | \text{ for some wff } \Delta \text{ of } \mathscr{F} \operatorname{des}_{\mathscr{I},W}(\Delta) = 0 \text{ and } [\Delta] = \xi \}.$
 - $(i_6) = * = the identity relation in D.$

To prove Step 2 it is suffices to show that conditions (i_2) to (i_4) are good definitions of functions. To reach this aim in connection with (i_2) $[(i_3)]$ we assume that (i) Δ_0 , Δ'_0 , ..., Δ_n , Δ'_n are elements of B, (ii) $\Delta_0(\Delta_1, ..., \Delta_n)$ and $\Delta'_0(\Delta'_1, ..., \Delta'_n)$ are two wffs [terms], say Δ and Δ' respectively, and (iii) $[\Delta_i] = [\Delta'_i]$ (i = 0, ..., n). Then by $(12.2)_2$ $\Delta_i \simeq \Delta'_i$ (i = 0, ..., n), so that by Theor. 6.1 in [1] $\Delta \simeq \Delta'$. Then $[\Delta] = [\Delta']$ by $(12.2)_2$.

Thus our goal is reached in the first case considered in (i_2) [(i_3)]. In the remaining case this thesis is trivial.

To prove the acceptability of definition in (i_4) we assume that $\Delta_1 = \hat{\Delta}_1(x_i), \ \Delta_2 = \hat{\Delta}_2(x_i)$ and

(12.6)
$$g_{A_1; x_t} = g_{A_1; x_f}, \quad \text{hence } g_{A_1; x_t}(\llbracket x_r \rrbracket) = g_{A_1; x_f}(\llbracket x_r \rrbracket)$$
 $(r = 1, 2, ...).$

Then, by (12.4) $[\hat{\mathcal{\Delta}}_1(x_r)] = [\hat{\mathcal{\Delta}}_2(x_r)]$ and hence, by (12.2)₂, $\hat{\mathcal{\Delta}}_1(x_r) \simeq \hat{\mathcal{\Delta}}_2(x_r)$ (r = 1, 2, ...). By condition C_6 in [1], this yields

$$(12.7) (x_r)\hat{\mathcal{A}}_1(x_r) \simeq (x_r)\hat{\mathcal{A}}_2(x_r) (r=1, 2, ...).$$

Now let x_h fail to occur in $\hat{\Delta}_1(x_i) \wedge \hat{\Delta}_2(x_i)$. Then, for s = 1, 2, $\hat{\Delta}_s(x_i)$ $[\hat{\Delta}_s(x_i)]$ and $\hat{\Delta}_s(x_h)$ are (x_i, x_h) -similar $[(x_i, x_h)$ -similar], so that

by condition C_7) in [1],

$$(x_i) \Delta_1(x_i) \simeq (x_h) \Delta_1(x_h)$$
 and $(x_i) \Delta_2(x_i) \simeq (x_h) \Delta_2(x_h)$.

These results and (12.7) for r = h yield

$$(x_i) \Delta_1(x_i) \simeq (x_i) \Delta_2(x_i)$$
. q.e.d.

13. Completion of the proof of Theor. 12.1. A consequence of it.

STEP 3. Assume that (i) $\Delta = \hat{\Delta}(x_1, ..., x_n)$ is a wfe of \mathcal{F} whose free variables, if any, are some among x_1 to x_n , (ii) Δ_1 to Δ_n are terms of \mathcal{F} and (iii) W is a v-valuation for $\dot{\mathcal{F}}$, for which

(13.1)
$$W(x_s) = [\Delta_s] \quad (s = 1, ..., n).$$

(Note that $\dot{A}^* = \operatorname{des}_{\mathscr{J},W}(\dot{A})$ is independent of a such a choice of W). Then

$$(13.2) \qquad \qquad \underline{A}^* = [\underline{A}(\underline{A}_1, ..., \underline{A}_n)].$$

For the proof we use induction on the length l of Δ . For l=1, Δ is c_i or x_i , so that by (i₁) in § 12, or (13.1), $\Delta^* = [c_i]$ or $\Delta^* = W(x_i) = [\Delta_i]$ respectively. Hence (13.2) holds for l=1.

As inductive hypothesis, assume that (13.2) holds for $l < \nu$; furthermore let l be ν . Only Cases 1 to 5 below can hold.

Case 1 [2]. Δ is $\varphi[\hat{\Delta}_1(x_1,...,x_n),...,\hat{\Delta}_m(x_1,...,x_n)]$ where φ is $R_i^m[f_i^m]$. Then, for $\Psi = A_m[\Psi = V_m]$, Δ is

$$\Psi[\dot{\varphi}, \hat{\Delta}_1(x_1, \ldots, x_n); \ldots, \hat{\Delta}_m(x_1, \ldots, x_n)]$$

by s_3 [s_2)] in § 10, and Δ * is

$$\Psi^*[\dot{\varphi}^*, \hat{\Delta}_1(x_1, ..., x_n)^{**}, ..., \hat{\Delta}_m(x_1, ..., x_n)^{**}]$$
.

By the inductive hypothesis—see (13.2)—,

$$\hat{\mathcal{\Delta}}_s(x_1,\ldots,x_n)^{\bullet *} = [\hat{\mathcal{\Delta}}_s(\mathcal{\Delta}_1,\ldots,\mathcal{\Delta}_n)] \qquad (s=1,\ldots,m).$$

Then by condition (i_2) $[(i_3)]$ in § 12,

$$\vec{\Delta}^* = \llbracket \varphi[\hat{\Delta}_1(\Delta_1, \ldots, \Delta_n), \ldots, \hat{\Delta}_m(\Delta_1, \ldots, \Delta_n)] \rrbracket.$$

Thus (13.2) holds in this case.

Case 3 [4]: Δ is $\sim \hat{\Delta}_1(x_1, ..., x_n)$ [$\hat{\Delta}_1(x_1, ..., x_n) \supset \hat{\Delta}_2(x_1, ..., x_n)$]. Then (13.2) follows as a particular case of Case 1 in that \sim and \supset are regarded as predicates of \mathcal{F} .

Case 5. Δ is $(y_0) \mathcal{A}(y_0, ..., y_n)$ where y_0 to y_n are n+1 variables. We set

(13.3)
$$\begin{cases} \mathscr{A}_1 \equiv_{\scriptscriptstyle D} \mathscr{A}_1(y_0) \equiv_{\scriptscriptstyle D} \mathscr{A}(y_0, \Delta_1, ..., \Delta_n), \\ \mathscr{A}' \equiv_{\scriptscriptstyle D} (y_0) \mathscr{A}_1, \qquad W_1 = \begin{pmatrix} y_0 \\ \llbracket A_0 \rrbracket \end{pmatrix} W, \end{cases}$$

where Δ_0 is any term of \mathcal{F} . By the inductive hypothesis

$$\operatorname{des}_{\mathbf{J},W_1}\big(\mathscr{A}(y_0,\ldots,y_n)^{\boldsymbol{\cdot}}\big) = \big[\![\mathscr{A}(\varDelta_0,\ldots,\varDelta_n)]\!]$$

hence—see (13.1) and $(13.3)_4$ —

(13.4)
$$\varphi_{\mathscr{A}(y_0,...,y_n)^*;y_0;\mathscr{J},\mathscr{W}}(\llbracket \varDelta_0 \rrbracket) = \llbracket \mathscr{A}(\varDelta_0,...,\varDelta_n) \rrbracket.$$
By (12.4)

$$(13.5) g_{\mathscr{A}_1; y_0}([\Delta_0]) = [\mathscr{A}_1(\Delta_0)] = [\mathscr{A}(\Delta_0, \ldots, \Delta_n)].$$

Since Δ_0 is an arbitrary term of \mathscr{T} , by (13.4) and (13.5) the restriction of the functions $\varphi_{\mathscr{A}(v_0,\ldots,v_n)^*;v_0;\mathscr{F},W}$ and $g_{\mathscr{A}_1;v_0}$ to $\mathbf{D}-\emptyset$ coincide. Furthermore, at \emptyset both of them take the value \emptyset . Hence they coincide in \mathbf{D} , so that—see (i₄)—

$$egin{aligned} \operatorname{des}_{\mathscr{I},W}ig[(arOmega_{0})ig(\mathscr{A}(y_{0},...,y_{n})ig)^{ar{\cdot}}ig] &= \Omega^{f *}(arphi_{\mathscr{A}(y_{0},...,y_{n}\dot{\cdot});\,y_{0};\,\mathscr{I},\,W}) = \ &= \Omega^{f *}(g_{\mathscr{A}_{1};\,y_{0}}) = ig[(y_{0})\,\mathscr{A}(y_{0},\,arDelta_{1},\,...,\,arDelta_{n})ig] = ig[\hat{arOmega}(arOmega_{1},\,...,\,arDelta_{n})ig]. \end{aligned}$$

Thus (13.2) holds in this case; and Step 3 is proved.

STEP 4. des $f_{i,W_1}(\Delta) = [\Delta]$ if $W_1(x_i) = [x_i]$ (i = 1, 2, ...). This is a simple corollary of Step 3.

One easily verifies that $\mathcal{J} = (\mathbf{D}, \mathcal{J})$ is a model for $\dot{\mathcal{J}}$.

Now, in order to complete the proof of the \Leftarrow -part of Theor. 12.1 we assume a & b, so that (12.1) holds for every normal model M of $\mathring{\mathcal{F}}$ and every M-valuation.

Hence, for M equal to the above normal model \mathcal{J} of $\dot{\mathcal{J}}$ and for $W=W_1$ —see Step 4—, $\dot{a}^*=\dot{b}^*$. Furthermore, by Step 4, (13.2) holds for $\Delta=a$ and for $\Delta=b$: $\dot{a}^*=[a]$ and $\dot{b}^*=[b]$. Hence [a]=[b] which by $(12.2)_2$ yield $a \approx b$.

Thus the above completion has been performed, and also Theor. 12.1 is now completely proved. q.e.d.

Equality (12.1) is true in every normal model M of $\mathring{\mathcal{F}}$ only if it is so every model M' (because M' can be contracted in an equivalent normal model); and by the completeness theorem for $\mathring{\mathcal{F}}$ —see [1], Theor. 3.4—this occurs iff $\vdash_{\mathring{\mathcal{F}}} \dot{a} = \dot{b}$. Therefore Theor. 12.1 yields the following

THEOR. 13.1. If a and b are wfes of \mathcal{F} , then

$$\alpha$$
) $a \succeq b \Leftrightarrow \vdash \dot{a} = \dot{b}$ (5) and

$$\beta$$
) $a \succeq b \Leftrightarrow \vdash_{\vec{\mathcal{F}}} \dot{a} = \dot{b}$.

We now prove assertion $(8.2)_3$ which, together with $(8.2)_2$ —see [2]—shows that the rather simple condition asserted by Theor. 8.1 in [2] to be sufficient for non-synonymy, is not necessary for this.

We set $\mathscr{D}_1 = \mathbf{N}$ and consider a sequence $\{\mathscr{J}_{\beta}\}_{0<\beta<\omega}$ of functions that are defined (only) on the constants of $\dot{\mathscr{T}}_{\beta}$ —see (ii) in [1], § 6—, have counterdomains in \mathscr{D}_1 , and satisfy conditions i_1) to i_{16}) below. By these, if $0 < \beta < \gamma < \omega$ and a is a wfe of $\dot{\mathscr{T}}_{\beta}$ (so that des $\mathscr{J}_{\beta,V}(a)$ is meaningful for every mapping V of $\dot{\mathscr{T}}$'s variables into \mathbf{N}), then des $\mathscr{J}_{\alpha,V}(a) = \deg \mathscr{J}_{\alpha,V}(a)$, where $\mathscr{J}_{\varrho} = (\mathscr{D}_1,\mathscr{J}_{\varrho})$ ($0 < \varrho < \omega$). Therefore in conditions i_1) to i_{16}) \mathscr{J} is written instead of \mathscr{J}_{β} . Furthermore it is

^{(5) «} $\Vdash_{\mathscr{F}} p$ » means $\operatorname{des}_{M',W'} p = 0$ at every model M' of \mathscr{F} and every M'-valuation W'.

assumed that $\xi^* = \mathcal{J}(\xi)$, that p_i is the *i*-th prime number, and that m_i to m_r run over N while β , n, m, r, and i run over N — $\{0\}$.

- i_1) $\dot{c}_i^* = 3^i$ if c_i is a primitive constant of \mathcal{F} .
- $\dot{c}_{i}^{*}=5^{\beta} \ ext{if} \ c_{i} \ ext{is the constant of} \ \mathscr{T} \ ext{defined by its} \ eta\text{-th definition} \ \mathscr{D}_{eta}, \ ext{i.e.} \ c_{i} \in S_{\mathscr{F}_{eta}} \ ext{and} \ c_{i} \notin S_{\mathscr{F}_{\gamma}} \ ext{for} \ \gamma < eta.$
- i_{3-4}) $\overset{*}{\sim}$ * = 2·7, $\overset{.}{\circ}$ * = 2·7².
- i₅) [i₆)] $\dot{R}_i^{n*} = 2^n \cdot 7^{i+2}$ [$\dot{f}_i^{n*} = 2^n \cdot 3^i$] if R_i^n [f_i^n] is a primitive predicative [functional] constant of \mathcal{F} .
- i₇) [i₈)] $\dot{R}_i^{n*} = 2^n \cdot 11^{\beta}$ [$\dot{f}_i^{n*} = 2^n \cdot 5^{\beta}$] if R_i^n [f_i^n] is in $S_{\mathcal{F}_{\beta}}$ and is not in $S_{\mathcal{F}_{\gamma}}$ for $\gamma < \beta$ —cf. i₂).
- i_9) $V_n^*(2^n \cdot 3^i, m_1, ..., m_n) = 2^n \cdot 3^i \cdot 5^{m_1} ... p_{n+2}^{m_n}$.
- i_{10}) $V_n^*(2^n \cdot 5^{\beta}, m_1, ..., m_n) = 2^n \cdot 5^{\beta} \cdot 7^{m_1} ... p_{n+3}^{m_n}$
- $A_n^*(2^n \cdot 7^i, m_1, ..., m_n) = 2^n \cdot 7^i \cdot 11^{m_1} ... p_{n+4}^{m_n}$
- $egin{aligned} \mathrm{i}_{12}) & A_n^*(2^n\cdot 11^i,\, m_1,\, \ldots,\, m_n) = \mathrm{des}_{\mathscr{J},V} \ D_{eta}'' \ \mathrm{where} \ V(x_i) = m_i \ \mathrm{for} \ 1 \leqslant & i \leqslant n. \end{aligned}$
- \mathbf{i}_{13}) $A_2^*(2^2 \cdot 7^3, n, n_0) = \left\{ egin{align*} \deg_{\mathcal{F}, \mathcal{V}} D_{eta}'' & ext{where } \mathcal{V}(x_i) = m_i \\ (i = 1, \ldots, r) & ext{provided } n_0 = 2^m \cdot 5^{eta} \cdot 7^{m_1} \ldots \\ \ldots p_{r+3}^{m_r} & ext{for some } m, eta, r & ext{and } m_1 & ext{to } m_r; \\ 2^2 \cdot 7^3 \cdot 11^n \cdot 13^{n_0} & ext{otherwise}; \end{array} \right.$
- i_{14}) =* is the identity on N.
- i_{15}) $(\Omega x_i)^*(\varphi) = k_{\varphi}$ where k is a function of φ (independent of i).
- i_{16}) \mathscr{V}^* is any subset \mathscr{D}_0 of \mathscr{D}_1 .

Note that $2^2 \cdot 7^3$ is $\stackrel{\cdot}{=}^*$, because = is the primitive predicative constant R_1^2 . For the interpretation $\mathscr{J} = (\mathscr{J}, \mathscr{D}_1)$ of $\mathring{\mathscr{F}}$ we have the following

THEOR. 14.1. If $a \succeq b$, then $\operatorname{des}_{\mathbf{f}, \mathbf{V}} \dot{a} = \operatorname{des}_{\mathbf{f}, \mathbf{V}} \dot{b}$ for every \mathbf{f} -valuation \mathbf{V} .

Indeed let T be the equivalence relation among wffs of \mathscr{T} , for which $\Delta_1 T \Delta_2$ iff, for all \mathscr{J} -valuation V, $\operatorname{des}_{\mathscr{J},V} \dot{\Delta}_1 = \operatorname{des}_{\mathscr{J},V} \dot{\Delta}_2$. Then T fulfils the conditions C_1 to C_7 in \succeq , written in [1] and used there

to define \asymp . Hence, for the minimality property of \asymp , we have $\asymp \subseteq T$, and hence also the thesis. q.e.d.

COROLLARY 14.2. $\sim p \not \simeq \sim \sim p$, for every wff p of \mathscr{F} .

Indeed assume $\sim p \simeq \sim \sim p$, as an hypothesis for reduction ad absurdum. Then by Theor. 14.1, we have that

$$\operatorname{des}_{\boldsymbol{J},\boldsymbol{V}}A_1(\boldsymbol{\dot{\sim}},\dot{p}) = \operatorname{des}_{\boldsymbol{J},\boldsymbol{V}}A_1\big(\boldsymbol{\dot{\sim}},A_1(\boldsymbol{\dot{\sim}},A_1(\boldsymbol{\dot{\sim}},\dot{p}))\big)$$

hence, by i_3) and i_{11}), for $n = \text{des}_{f,V} \dot{p}$ we arrive at the absurd result.

$$2 \cdot 7 \cdot 11^n = 2 \cdot 7 \cdot (11^{2 \cdot 7 \cdot (11^{2 \cdot 7 \cdot 11^n})})$$
. q.e.d

REFERENCES

- [1] C. BONOTTO A. BRESSAN, On a synonymy relation for extensional 1st order theories, Part I: A notion of synonymy, Rend. Sem. Mat. Univ. Padova, 69 (1982), pp. 63-76.
- [2] C. BONOTTO A. BRESSAN, On a synonymy relation for extensional 1st order theories, Part II: A sufficient criterion for non-synonymy. Applications, Rend. Sem. Mat. Univ. Padova, 70 (1983), pp. 13-19.
- [3] A. Bressan, On general operators binding variables in an extensional first order theory, Atti Istituto Veneto di Scienze Lettere ed Arti. Tomo CXL (1982), pp. 115-130.
- [4] E. MENDELSON, Introduction to mathematical logic, Van Nostrand Reinhold Co., New York, 1964.

Manoscritto pervenuto in redazione il 4 novembre 1981.