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Nonautonomous Functional Equations
and Nonlinear Evolution Operators.

ROSANNA VILLELLA-BRESSAN - GLENN F. WEBB (*) (**)

RIASSUNTO - Lo studio dell’equazione funzionale nonlineare nonautonoma
x(t) = F(t, xt), xt = q;, dove xt 6 la  storia di al tempo t e il data
iniziale 99 appartiene a L1(- r, 0; X), X spazio di Banach, viene ricon-
dotto a quello di un’equazione di evoluzione nello spazio dei dati iniziali.
Se ne deducono risultati sulla regolarita e il comportamento asintotico
delle soluzioni.

1. Introduction.

In this paper our purpose is to associate a nonlinear evolution
operator with the nonlinear nonautonomous functional equation

The notation in (1.1) is as follows: x : (s - r, T ] --~ Y, where

and Y is a Banach space, s ~ 0, F: [0, Y, where
X = .L1(- r, 0 ; Y), and xt E X is defined by Xt(O) = x(t + 0) for a.e.
0 E (- r, 0). The general formulation in problem (1.1) allows applica-
tions to many classes of functional equations and in particular to
Volterra integral equations of non-convolution type.

(*) Visiting Professor del C.N.R. alla Scuola Normale Superiore di Pisa.
(**) Indirizzo degli AA.: R. Villella-Bressan: Istituto di Analisi e Mec-

canica - Via Belzoni, 7 - Padova; G. F. Webb: Mathematics Department
Vanderbilt University Nashville, Tennessee 37235 - U.S.A.
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It is possible to solve equation (1.1) by direct methods using clas-
sical iterative techniques. In the approach we take here, however,
we will view the solutions of (1.1) as an evolution operator in the
Banach space ~. We are able, therefore, to incorporate the theory
of f unctional equations into the framework of the general theory of
abstract differential equations in Banach spaces. There are a number
of recent studies devoted to the connection of functional and func-
tional differential equations to abstract differential equations in Ba-
nach spaces.

The correspondence between nonlinear autonomous functional equa-
tions and nonlinear strongly continuous semigroups was first treated
in [10]. The correspondence between nonautonomous functional dif-
ferential equations and nonlinear evolution operators was first treated
in [2]. The connection between nonlinear autonomous functional equa-
tions and nonlinear strongly continuous semigroups was studied in [3],
[8] and [9].

The results presented here, as far as the authors know, are the
first to develop the connection between nonlinear nonautonomous
functional equations and nonlinear evolution operators in Banach

spaces.
The abstract differential equation associated with (1.1) is

The notation of (1.2) is as follows: 1ft: [8, T] -+ X and for each
t E [0, T], A(t): X - X is defined by

is absolutely continuous in

We denote by 11 and 11.111 1 the norm in Y and X respectively
and suppose the following hypotheses on F:

(1.4) There is a bounded function h: [0, T] ~ R such that for all
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There exist a continuous function

There exist constants cl , c, such that for all

In our development we will first prove that under the hypothesis
(1.4) the operator A(t) defined in (1.3) is densely defined in X and
A(t) -f- h(t)I is m-accretive in X. This proof will follow directly from
the results in [9].

Our next step will be to prove that under the additional hypothesis
(1.5) the family of operators (A(t), t E [0, T]} generates a nonlinear
evolution operator in X in the following sense

exists and the convergence is uniform in s and t;

moreover the evolution operator U(t, 8) has the following properties

For all q E X, U(t, is continuous on the triangle
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The existence of the evolution operator U(t, s), 0 c s c t c T, will

follow from general results in the theory of nonlinear evolution opera-
tors due to M. Crandall and A. Pazy. In order to apply the Crandall-
Pazy results it is natural to choose the space X = .L1 (- r, 0 ; Y),
rather then other function spaces for the setting of the problem. We
will discuss in detail this point in Section 5.

Once the evolution operator is defined, the next goal is to asso-
ciate it with the solutions of (1.1). To accomplish this we will prove
that the evolution operator has the following property:

The property (1.12) is the so called «translation property » of the
evolution operator. This property has been studied for various gen-
erators defined by the first derivative operator with accompanying
boundary conditions by H. Flaschka and M. Leitmann [6] and A.
Plant [7]. The proof we give here for the translation property in
our problem will make use of some basic results in probability theory.

In the last step of our development we will define x : (s - r, T] - Y
by the formula

and, using the translation property we will prove that x(t) is the

unique solution of (1.1). From the properties of the evolution opera-
tors we can then deduce asymptotic results for the solutions.

2. The nonlinear evolution operator.

We assume henceforth that F : [0, .~’] X X --~ Y satisfies (1.4), (1.5), 7
(1.6) and for each t E [0, T], A(t) is defined as in (1.3). The proof of
the following proposition is given in [9] (Theorem 1 and Proposi-
tion 1 ) :
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PROPOSITION 2.1 . For each t E [0, T], A(t) + h(t)I is m-accretive in X

(that is, for 0  A  1 /h(t) the mapping I + AA(t) is one-to-one, has

range all of X, and satisfies II(I + AA(t))y - (I +
- Ah(t)) 11p - yII, . for all y, 11’ E Furthermore, for each t E [0, T],

is dense in X .

The proof of the following proposition requires an application of a.

theorem of M. Crandall and A. Pazy [1 ].

PROPOSITION 2.2. T he family of nonlinear operators ~A(t) : 
generates a nonlinear evolution operator U(t, s), 0  T as in (1.7)-
(1.11).

PROOF. By virtue of Proposition 2.1 above and Theorem 2.1 and
Corollary 2.1 in [1] it suffices to show that

(2.1) for all A positive and sufficiently small, .

for (p e X, where b : [o, 1] - X is continuous

and .M~ : [0,00) H [0, oo) is increasing.

In [9] it is shown that for 0  A 

Therefore, for (1.4) and (1.5) imply that
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If I

From (1.6) and (2.2) we obtain that for A positive and sufficiently
[0, T],

so that

‘Thus, for A positive and sufficiently small,

The inequality (2.1) then follows from these estimates.

3. The translation property.

In order to prove (1.12) we first prove three lemmas.
LEMMA 3.1. ~~e~0~~=i~...,~~=(-~#or almost everywhere 0 E (- r, 0 ), 1
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PROOF. The proof is b5T induction. From (2.2) we obtain

Assume that f or 1  m  n,

Then from (2.2) and (3.2) we obtain
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Now (3.1) follows immediately from (3.3) with m = n -1.

PROOF. If u : [0, oo) - Y is bounded and continuous, then the
Poisson probability distribution satisfies

(see [5], pag. 220).
If we define
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then (3.5) holds also for this function u (which has a single jump
discontinuity), as may be seen from the proof in [5]. Then (3.4) fol-
lows immediately from (3.5) by 01(t - s).

LEMMA 3.3. Let 99: [- r, 0] - Y such that 99 is continuous, let

0 c s  t, and l et 0 E (- r, 0) such that t + o ~ s. Then,

PROOF. If u: [0, oo) - Y is bounded and continuous, then the

gamma probability distribution satisfies

(see [5], p. 220). If we define

then (3.7) holds also for this function u (which has a single jump
discontinuity), as may be seen from the proof in [5]. Then, (3.6)
follows immediately from (3.7) with or = t - s.

PROPOSITION 3.1. and then (1.12) holds.

PROOF. Let such that cp is continuous, let 0 ~ s C t, let

0 E (- r, 0) such that t + 8 ~ s, and let In = (t - for n = 1, 2, ....
To prove (1.12) for this it suffices by Lemmas 3.1, 3.2, and 3.3 to
prove that
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Let E &#x3E; 0 . By the uniform convergence of (1.7), there exists ~
such that , if p ~ m and then

Thus, if n &#x3E; m, then

Next, we claim that there exists m1 &#x3E; m such that if n &#x3E; mi , then

To establish (3.11) set x = - - s) and observe that ti,

Now (3.11) follows from (3.12), since and n9z/
/exp [n]n ! ~ by Stirling’s formula.

Now use (3.10) and (3.11 ) to show (3.8), and hence, that (1.12)
holds in the case that q is continuous. If 99 c- X and T is not con-
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tinuous, let be a sequence of continuous functions in X such
that in X. Then, by (1.11)

It now follows that (1.12) holds for arbitrary 92 E X.

4. The functional equation.

Let g~ E .X, s E [o, T). By Proposition 3.1 there exists for each
t &#x3E; s, a representative O(t,8)fP of the equivalence class of 
in X such that is continuous for 0 E ] - (t - s), 0].

Define a function x : (s - r, T] - Y by
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PROPOSITION 4.1. e e [0, T),

PROOF. (4.2) follows immediately from (1.4), (1.5), (1.9), and
(1.12), since for t&#x3E;s, x(t) _ ~(t, = F(t, U(t, 8)99). (4.3) follows
immediately from (1.12 ), since for 6 E (s - t, 0) we have

and for almost everywhere 0 E (- r, s - t ) we have

PROPOSITION 4.2. Let q E X, s E [0, T). There exists at most one

function v : [s, T ] -~ X such that

PROOF. Suppose that v, and V2 satisfy (4.4). Then, for 

Then = v2(t) for all t ~ s by Gronwall’s Lemma.
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PROPOSITION 4.3. Let 99 E X, s E [0, T). Let x : (s - r, T] be defined
as in (4.1). Then,

Further, x is the unique function satisfying (4.5) except possibly for a
set of measure zero in (s - r, s).

PROOF. (4.5) follows directly from (1.12), (4.1), and (4.3). Define

v : [s, T ] ~ Y by v ( t ) = x t . Then, v satisfies (4.4), and so the unique-
ness assertion follows from Proposition 4.2.

5. Z 1 is the natural space for the problem. Flow-invariant sets.

In order to satisfy the hypotheses of the theorem of Crandall-
Pazy the family of operators A(t) must satisfy condition (2.1). This

condition implies that the sets 

are independent of t (see [1] and [4]~. And, in fact in [9] it is proved
that

In [3] and [8] the autonomous version of (1.1) was studied in the
space C(- r, 0 ; Y) as the nonlinear semigroup generated by the operator

It was pointed out that
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(where ~~~ ’ ~~) is the sup norm in C(- r, 0 ; Y)), can be characterized as

It follows that it is not possible to use the Crandall-Pazy theorem
to study the nonautonomous equation (1.1) as an evolution equation
in C’(- r, 0 ; Y). In fact, this equation would be

where

and from (5.2) we have that

q is Lipschitz continuous and

Thus, the sets vary with t.

An analogous remark can be made about Z~ spaces with p &#x3E; 1.

Suppose that Y is a Hilbert space and associate with (1.1) the
family of operators in Lp(- r, 0 ; Y ) , p &#x3E; 1,

is absolutly continuous on

As 0 ; Y) is reflexive, D_4,.(t),, coincides with DAp(t), and so,
again, A~(t) cannot satisfy condition (2.1).

Hence L1 seems the natural space for studying the nonautonomous
equation (1.1) as an evolution operator.

The set D1= is fiow-invariant, that is U(t, Dl, for all
as is proved in [1]. From Proposition 4.1 it follows that

also the set

99 is piecewise continuous}
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is fl.ow-invariant. Hence the restriction of the family U(t,8) to Di
and to E are evolution operators in the sense that they satisfy condi-
tions (1.8)-(1.11). However Dl and E are not closed subsets of LI.

From Proposition 4.1 it follows also that if the initial data q in
(1.1) is continuous and satisfies y(0) = F(s, 99), then the solution is

continuous. More precisely, let DB(t) be the closure of DB(t) in C(- r,
0 ; Y), that is,

then

in fact, 99 E DB(8) implies that U(t, E C(- r, 0 ; Y) for all t ~ s and

U(t, F(U(t, hence U(t, s)q E 

6. Asymptotic results.

Let L§ denote the space of functions E L1 (- r, 0 ; Y) endowed

with the norm 11 Suppose r  + oo, so that

the norms 11 ~ ~~ 1,~, a c- R, are equivalent. Let h = sup h(t) . Using results
in [9] it is easy to prove that 

PROPOSITION 6.1. Suppose that h.rexp [-1 ] and set w _ ( 1 +
-~-- log h ~ r)/r Then U(t, s) is an evolution operator

PROOF. In [9] it is proved that A(t) -f- wI is m-accretive in LQ.
As the norms .L~ are equivalent, from (2.1) we have also

where Ma is monotone increasing; hence A(t) generates an evolution
operator, Ua(t, s), of type o) in L’; and we have Ua(t, s) = U(t, s).

It follows that if x(t) and y(t) are the solutions of (1.1) with initial
data y and V respectively, we have
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where exp [- ral} and M = If hr  exp [-1], so-
lutions are asymptotically exponentially stable.

7. An example.

We now apply the results we have developed to the integral
equation

where f : [0, T] - Y, K : Y, and q e X. We place
the following hypotheses on f and .g :

(7.2) f is continuous on [0, T].

(7.3) There exists a continuous function [0, T ] --~ Y such that

(7.4) There exists a constant L1 such that for all t E [0, T ], 1:2E
E [- r, T], x E Y, m, x) - x) ~~ c 

(7.5) There exists a bounded function hl: [0, T] - R such that for

(7.6) There exists a constant C1, such that for all t E [0, E [- r,

We verify that F satisfies (1.4), (1.5) and (1.6).
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By (7.5) we have for all t E [o, T], E X,

so that (1.4) holds. By (7.3) and (7.4) we have that for all [0, T],
99 c- X,

so that (1.5) holds. By (7.6) we have that for ~[0, T], 

so that (1.6) holds.
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