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Right Pure Semisimple l-Hereditary PI-Rings.
DANIEL SIMSON (*) (**)

We recall from [14] that an artinian ring is said to be 1-hereditary
if any local one-sided ideal of R is projective (l for local ideals). A
ring .R is right pure semisimple if every right R-module is a direct
sum of finitely generated modules (see [24, 25, 28]). We say that a
ring R is a PI-ring if .R satisfies a polynomial identity. It is well-
known that an artinian ring is a PI-ring if and only if the endo-
morphism ring of any simple R-module is finite dimensional over its
its center.

There is an open problem if any right pure semisimple ring is of
finite representation type (see [27, 28]). In [28] the problem was
solved for a class of hereditary rings including hereditary PI-rings.

In the present paper we give a positive solution of the problem
for 1-hereditary PI-rings. In particular we show that the Bautista’s
diagrammatic characterization of 1-hereditary artin algebras of finite
representation type [3, 4] remains also true for 1-hereditary PI-rings.
A complete list of indecomposable modules is given for any non-
homogeneous 1-hereditary PI-ring of finite representation type.

We recall from [5, 7] that a module ~11 is said to be 1-hereditary
if all local submodules of lVl are projective. It is easy to see that if .R

is an 1-hereditary right QF-2 artinian ring then an R-module M is
1-hereditary if and only if soc ( lyl ) is projective.

We recall that an artinian ring .R is said to be a right QF-2 ring
if every indecomposable projective right ideal in 1~ has a simple socle.

(*) The author was partially supported by Consiglio Nazionale delle

Ricerche, Comitato Nazionale per le Scienze Matematiche.
(**) Indirizzo dell’A.: Institute of Mathematics, Nicholas Copernicus

University ul. Chopina 12/18, 87-100 Torun, Poland.
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The main tool we use in the study of right pure semisimple 1-he,-
reditary PI-rings are special Schurian vector space categories K,
and the functor

defined in [31] where RK is an 1-hereditary right QF-2 semiperfect
ring associated to K, and I her (RK) is the category of finitely gener-
ated right RK-modules (see § 1). The general idea of the proof i-s

similar to that one in [20] and is the following. For any right pure
semisimple 1-hereditary PI-ring 1~ we construct two 1-hereditary PI-
rings R’ and R" such that

1 ) .R’ is a proper factor ring of R;

2) .R" is a right artinian ring of the form RK where K,
is a special Schurian vector space category associated to .R;

3) ~ mod (R) = # mod (1~’) + # t her (R") where # $ denotes the
number of pairwise nonisomorphic indecomposable objects in ~5.

Since by an inductive assumption we can suppose that mod (.R’ )
is finite then the problem is reduced to the question 
is finite. Fortunately there is only few types of 1-hereditary right
QF-2 artinian PI-rings which appear as the rings I~" above and for
any such a ring we are able to determine its indecomposable 1-he-
reditary modules. We do it again by applying to R" the above reduc-
tion method and by using some of the results of Dlab and Ringel [8, 9].

The paper essentially depends on the results of Bautista [3, 4 ],
Bautista and Martinez [5], Dlab and Ringel [8, 9], Dowbor and Sim-
son [10], Loupias [15, 16] and of the author [24, 25, 28].

The results were announced in [30] and a part of them was pre-
sented during the Trento Meeting on Abelian Groups and Modules
Theory in May 1980.

Throughout this paper R denotes an indecomposable basic 1-he-
reditary artinian ring of the triangular matrix form
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where FI, ..., F. are division rings, iM; are Fi-Fj-bimodules finite

dimensional over Fit and over Fj, and the multiplication in 1~ is given
by Fi-Fj-bimodule maps

with the property that = 0 if and only if either a = 0 or
b = 0. We know from [14, Lemma 1 ] that every 1-hereditary basic
artinian ring R has such a triangular matrix form.

We associate with R a valued poset (In, d) where In = {l, ni,
i  j =&#x3E; and d = (dij) is a matrix with

We will write

if i  j and there is no k in 18 such that i  k  ~ ; if dii = d~i = 1
we write simply i ~ j. The valued poset (18, d) is said to be homo-

geneous if 0 implies dii = 1.
It is easy to see that an indecomposable 1-hereditary artinian

ring R is a right QF-2 ring if and only if the valued poset (Ill, d)
has a unique maximal element m and dim = 1 for every j.

Throughout this paper E(X) denotes the injective envelope of
the module X and P(X) denotes the projective cover of X. We denote
by mod (R) the category of finitely generated right R-modules and
by l her (R) the category of finitely generated 1-hereditary right
R-modules. The reader is referred to [5, 7] for basic properties of
1-hereditary modules.

1. Preliminaries.

We recall from [31 ] that an additive category K together with an
additive faithful functor

where F is a division ring, is denoted by Ky and it is called special
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Schurian vector space category if K is a Krull-Schmidt category, K has
only a finite number of pairwise nonisomorphic indecomposable objects
and as well as End (X) is a division ring for any inde-
composable object X in K.

We recall from [20, 21] that the subspace category 9.1(KF) of K, is
defined as follows. The objects of 9.1(KF) are triples ( U, X, p) where U
is a finite dimensional vector space over X is an object in K and
99: is an F-linear map. The map from ( U, X, p) into ( U’,
X’, 991) in ’l1(KF) is a pair (u, h) where u E ]EfoMF ( U, U’) and h : X - .X’
is a map in K such that lhlgg = ggfu. It is clear that ’LL(KF) is an
additive Krull-Schmidt category.

Throughout we suppose that KF is a special Schurian vector space
category, we fix a complete set X1, ... , .X n of pairwise nonisomorphic
indecomposable objects in K and we put

For any + 1 we consider FcFrbimodules defined by formula

Since dim 1 and Fit are division rings for all i then 0

implies iNi = 0. Therefore without loss of generality we can suppose
that whenever 0.

In [31] we have associated to the triangular matrix ring

where the multiplication is given by Fi-Fk-bilinear maps
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defined by the formula

We denote by (resp. by l hero (RK)) the full subcategory
of %L(K,) (resp. of I her (RK)) consisting of objects having no direct
summands of the form (I’, 0, 0 ) (resp. no simple projective summands).
We have the following result proved in [31].

THEOREM 1.1. Let I~F be a special Schurian vector space category
such that the ring RK is artinian. T hen RK is an l-hereditary QF-2
ring and there exists a f ull and dense additive functor

with the following properties :

(a) If A is an indecomposable object in then O(A) = 0 if
and only i f A has one of the f ollowing forms (1~, 0, 0 ), X i = xi,
id), i = 1, ... , n.

(b) If A and B are objects in having no summands of the
f orm (F, 0, 0), 1, 1 ..., Xn then every isomorphism f rom 0 (A) into 0 (B)
has the form 0(h) where h: A -~ B is an isomorphism.

Theorem 1.1 will be used in the next Section.

2. Indecomposable modules over l-hereditary artinian PI-rings.

Throughout this section .R will denote a basic l-hereditary artinian
PI-ring of the triangular matrix form as in the introduction. We
keep the terminology and notation in the introduction and Section 1.

A module X over .R will be identified with a system (Xi, 
where X is a vector space over Fi and jTi: ... , n,
are Fj-linear maps satisfying the usual commutativity and asso-

ciativity conditions (see [26, Sec. 3]). If no confusion will arrises we

will write simply (Xi) instead of (Xi, 
For every j we consider the simple R-module FJ = (X i) with



146

and It is clear that 1"1,...,1""+1 is a com-
plete list of simple R-modules.

A full additive subcategory A of mod (.~) is said to be co f inite
if all but a finite number of indecomposable objects in mod (R)
belong to A. We denote the number of isomorphisms classes
of indecomposable objects in A.

Finally, we recall that an additive functor is a representation equiv-
alence if it is full, dense and reflects isomorphisms.

Throughout this section R(K) denotes the ring RK associated to
the vector space category KF. 

°

The aim of this section is to prove Theorem 2.5. Before we for-
mulate it we prove some preliminary results.

The following simple lemma will be frequently used in this paper.

LEMMA 2.1. Let R be an 1-hereditary right QF-2 artinian ring and
let m be the anique maximal element in the valued poset (18, d).

(i) If (In, d) has a unique minimal element a such that =

- dma = 1 and R = then R’ = End (P’ ) is an 1-hereditary
right QF-2 artinian her (R) = 1 + # I her (R’).

(ii) Suppose that (IR, d) has an element m’ such that there is an
arrow m’ ~ m in (IR, d) and all s in IR, y s ~ m. Let =

= Then R" = End (P") is an 1-hereditary right QF-2 artinian
,ring her (R) = 1-+- # t her (R’),,

PROOF. (i) If X = (Xi) is an indecomposable module in l her (1~)
with then there is an epimorphism X - Fa- Hence X = 
because the module P(9a) is projective-injective. Consequently (i)
follows.

(ii) Consider the functor defined by
(Xi, (Yiy with Yi= Xi for I  m’ and ¥m=
= Xm, = id. It is easy to see that every indecomposable module
in l her (R) except the simple projective module belongs to the
image of T and the proof is complete.

Following Ringel [22] we define vector space categories arrising
from simple injective and simple projective modules. Let .1~ be an

1-hereditary artinian ring and (In, d) the valued poset of .R. Given a

minimal point a in In (corresponding to the simple injective module
1"a) we take the projective cover P(9a) and consider a decomposition
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Then Ma is an F-Ra-bimodule and there is a ring isomorphism

Since .R is 1-hereditary the Ra-module llla is 1-hereditary and we have
two vector space categories

which are the images of the categories mod (Ro) and I her (Ra) under
the functor HomRa (Ma, -) (see [22, p. 200]). Let us denote by mod (R)a
the full subcategory of mod (R) consisting of modules having no sum-
mands isomorphic to We have the following useful result.

PROPOSITION 2.2. If the vector space category KaF is special Schurian
and R(Ka) is the 1-hereditary right QF-2 artinian ring associated to Ka then

(i) There exists a f utt additive f unctor H : mod (R) --~ l her (R(Kd) )
which establishes a representation equivalence between a subcategory of
mod (1~) and a cofinite subcategory of l her (R(Ka)).

I f I~~ is special Schurian then

PROOF. It is easy to see that mod (R) (resp. I her (.R) ) is equivalent
to the category of triples X, t) where X is a finitely generated
right Ra-module (resp. 1-hereditary .Ra-module) and t : is

an Ra-homomorphism (resp. such that the map t’ : Hom,,.(,Ma, X) }
adjoint to t is injective). Let H be the composed functor

where H’ is given by (Vp, X , t ) 1-+ X ) , t’ ) . It follows
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from [22, § 2.5, Lemma 2] and from the properties of the functor 4h
that .H has the required properties. Futhermore, if s is the number
of all indecomposable modules X such that X) ~ 0 then
obviously # mod (Ra) = s + # Ka. Hence the equality (ii) is a con-

sequence of Theorem 1.1 and [22, § 2.5, Lemma 2]. The second

equality follows in a similar way.
Now we assume that c is a maximal point in (IR, d). Then the

simple module Fe is projective and we have a right module decomposi-
tion .R = Fe 0 P". Hence there is a ring isomorphism

where cR = End (P" ), HomR (Fc, P" ) and F = F,. We define a
vector space category

as the image of mod (cR) under the 

PROPOSITION 2.3. If L.’ is special Schurian then

(i) There exists a full additive functor H: mod (R) - 1 her 
which establishes a representation equivalence between an additive sub-
category of mod (R) and a cofinite additive subcategory of l her (R(LC)).

(ii) # mod (R) _ ~ mod (~R) -E- ~ Z her (R(LC)).
PROOF. It is clear that mod (.R) is equivalent to the category of

triples (X, where X is in mod (cR) and t : VF is a
linear map. Since the category is equivalent to the category
of triples (X, YF, t) where t : V, is a linear map and 
= X then there is a full and dense additive functor H’ : mod (I~) -

such that the composition of .H’ and the functor 0152: 9Y(L’ ) -
-+ 1 her (R(LC)) has the properties required for H. The equality (ii)
can be proved similarly as (ii) in Proposition 2.2 (see [31; 1.5]).

In our discussion of pure semisimple rings we will need the fol-
lowing result.

PROPOSITION 2.4. Suppose R and S are right artinian rings, ~3 is a
full additive subcategory of mod (R) and let T: 93 - mod (S) be an
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additive functor which is full and reflects isomorphisms. If Im T is
cofinite in mod (S) and the ring R is right pure semisimple then S is
right pur.e semisimple too.

PROOF. Let X1 ~ X2 ~- ... -~ Xn f-~ Xn+1--~ ... be a sequence of
nonzero monomorphisms between indecomposable modules Xj in

mod ( S ) . We shall show that there is an integer m such that f j is an
isomorphism for j &#x3E; m. This is obviously the case whenever there
are infinitely many indices j such that X ~ does not belong to Im T.
Then we can suppose that X j belongs to Im T for all j. By our
assumption there is a sequence in mod (R)

where Yj is indecomposable, = Xj and = f ~ for all j.
Since R is right pure semisimple then by [29, Theorem 1.3] and [25,
Theorem 6.3] there is an integer m such that gj are isomorphisms
for j &#x3E; m. Hence our claim follows and by [29, Theorem 1.3] S is

right pure semisimple as we required.
Following [15] we call a surjective map f : (In, d) - (IR" d’) of

valued posets a contraction if is connected an homogeneous for
all j in I R, .

Now we are able to prove the main result of this section.

THEOREM 2.5. Let .R be a basic l-hereditary artinian PI-ring and
suppose that the valued poset (IR, d) is connected. Then the following
statements are equivalent :

(1 ) R is of finite representation type.

(2 ) R is right pure semisimple.

(3) Neither (IR, d) nor its dual has no contractions an d no f uZl
subposets of one of the following f orms :
a) the extended Dynkin diagrams [9];
b) the minimal wild valued graphs :
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c) the orvoial Loupias’ homogeneous posets [15, 16]:

d) the critical Bautista’s valued posets [4] :

with dae = 1.

(4) The valued poset (It, d) or its dual is of one of the f orms :

a) the Dynkin diagrams [9 ] ;

b) the Loupias’ homogeneous posets of finite representation
type [16]; 

.

c) the Bautista’s valued posets of finite representation type [4] :
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where o o means either o - o or o ~-- o.
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REMARK .1. Let us recall that Bautista [3, 4] has proved the
equivalence of the statements (1), (3) and (4) under the assumption
that R is a finite dimensional 1-hereditary algebra over a field. He
succesfuly applies the almost split sequences. We can not follow the
Bautista’s proof in our more general situation because usually we
have no almost split sequences. We will apply Propositions 2.2

and 2.3.
The proof of the implication (4) --¿.(1) will be divided into several

lemmas. We start with the following useful remark.

REMARK 2. If .F and G are division rings, and is an F-G-
bimodule such that dimF M = 1, then for any nonzero element m in M
there are a ring isomorphism s : G - F defined by mx = s(x) m and
an .F’-G-bimodule If, in addition, dim 1

then s is an isomorphism [3, 4].

LEMMA 2.6. Let R be an 1-hereditary artinian PI-ring. If (IR, d)
is of one of the forrns n Cn, 2 G2, 4F4 then # mod (R) is equal n2 + I n(n +
+ 1) -]- 1, 12 and 45, respectively. jJIoreover, if X = (Xi) is an inde-
composable non projective-injective module then Xe = 0 provided that e
is either a maximal or a minimal element in IR. 

_

PROOF. Suppose (I,, d) has the form ~C~. It follows from Re-
mark 2 that without loss of generality we can suppose that .R has
the form

where G c .I’ are division rings such that dimG F = dim Fa = 2. We
prove the lemma by applying Proposition 2.3 to R and c = n + 1.
First we note that (IR, d) is the poset nCn with the natural linear
ordering. The ring R is obtained from I~ by omitting the last column,
whereas NC is the last column of R without the lower term F. The

indecomposable objects in the vector space category L§ are deter-
mined by indecomposable. R-modules X for which X@ N£# 0 or
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equivalently 0 ~ (X ~x N~,)* = Hom, (X 0 N~, P) = Horn cR(X, (NC)*).
It is clear that the R-module (Nc)* is isomorphic to the unique inde-
composable projective-injective module P, which is represented by the
upper row in R. Since cR is hereditary then X 0 N~ ~ 0 if and only
if X is one of the indecomposable projectives (NF)* = PI, P2, ..., Pn
in mod (~.R) which correspond to the rows of cR. It follows that

and = 2, ... , n. Now it is easy to
see that the vector space category L§ is special Schurian and the
ring associated to L§ is isomorphic to R.

We know from [10] that # mod (~.R) = n2. By Lemma 2.1

where 1~’ is obtained from by omitting the upper row. From the

definition of 1-hereditary modules follows that the category l her (R’)
is equivalent to the category of (G)-spaces in the sense of Dlab
and Ringel [8] and therefore [8, Proposition 2.5] yields # I her (R’) _
- 2 n(~2 -~- 1). Then by Proposition 2.3 we have # mod (R) = n2 +
+ -1 n(n -]- 1) + 1, as required.

In order to prove the second part of the lemma we note that

by [10] there are n2 of those indecomposable ..R-modules X = (Xi) for
which X~ = 0 and n 2 of those for which 0. Since we have

calculated twice the modules X with Xl = 0 = then together
with the unique indecomposable projective-injective module (F,F, ... ,
... , F) we have a list of 2n2- 2 n(n -1 ) -}-1 = ~ mod (.R) indecomposable
R-modules. Hence the lemma follows in the case In the remain-

ing cases the proof is similar and we leave it to the reader (use [8,
Propositions 3.1 and 4.2]).

We note that the second part of the lemma together with [10]
gives a complete classification of indecomposable R-modules.

LEMMA 2 .7..Let G c F be division rings such that dima F = dim FG = 2
and let
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(1) R, T, T’7 E and E’ are 1-hereditary right QF-2 artinian 
and 

’

(3) Any indecomposable R-module with X2* Oy
0 and .X5 ~ 0 is of one of the following torms :
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where {1, f} is a f ixed basis o f ~ as well as o f Fa over G, p denote the
natural projections and 

Moreover End (D1 ) ~ G and End (

(4) Every indecomposable module"

PROOF. The proof of the statement (1) is obvious.

(2) First we will apply Proposition 2.2 to the ring .R and a = 2.
Note that the ring R2 is hereditary, y the valued graph of .R2 is

3 - 4 T 5 and it follows from [8, Proposition 2.5] that the inde-
composable R2-modules form a diagram

Since M2 = ( 0 .F’ F ) then the vector space category KF has 3 inde-
composable objects corresponding to the R2-modules M2, (0 .F’ F) and
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(FFF). It follows that is special Schurian,

and the valued poset of R(1I~2) has the form
= 1. By Lemma 2.1 and [8, Proposition 2.5] # I her (R(jil2)) =
= 1 + 1 + 3 = 5. Then Proposition 2.2 yields # l her (R) = 6 + 5 -
-1 = 10, as we required.

Now we note that the category K§ has 5 indecomposable objects
corresponding to the modules M2, (G 1~’ .F’), (F F F) , (0 G 0 ) and
(G G 0). It is easy to check that K’ p is special Schurian, R(K2) has
the form

and its valued poset has the form

with d46 = = 1 and d25 = d52 = 2. By Proposition 2.2 # mod (R) _
- 9 + # I her (1~’ ) . Since we know from Lemma 2.1 that # l her (1~’ ) =
- ~ l her (.E) it remains to prove that this number equals 14. To

prove it we consider the hereditary ring
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The valued graph of S is 2 --* 5 # 4 - 3. Now we will apply Proposi-
tion 2.2 to l~ = S and a = 2. Note that S2 = 1~2, 7 M2 = (0 0 .F’) and
hence the category Kg has 6 indecomposable objects corresponding to
the modules of the form (.. ~ F) in the diagram (~). It follows that

is special Schurian, the ring R(K2) has the form

and the valued poset of S’ is of the form

with and d25 == dS2 - 2. Since
Lemma 2.1 yields # l her (S’) = 1 -E- # Z her (E) then by Proposition 2.2
and [8, Proposition 3.1] we have 20 = # 1 her (S) = 6 + # I her (E) as
we required. Consequently, # mod (R) = 23 her (E) = 14.

In order to prove (2) for T we will apply Proposition 2.2 to

.R = T and a == 1. The valued poset of the ring T, has the form

2 -+ 3 -+ 4 ~ 5 and (0 0 ~’ .F’ ) . By [8, Proposition 2.5] those
indecomposable modules X in I her ( T1) for which HomTl (MI, X) # 0
f orm the following diagram
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It follows that the vector space category k§ is special Schurian,
R(fK’) - ~S’ and the valued poset of R(Kl) has the form (**). Then
by Lemma 2.1, Proposition 2.2 and [8, Proposition 2.5] we get

Now we will prove (2) for the ring T’ by applying Proposition 2.2

to R = T’ and a = 1. Since T~= JS and then by the

statement (3) proved below the indecomposable modules X in I her (.R)
for which Homn ( ~a, ~ ) ~ 0 form a chain Ma --~ It fol-

lows that the vector space category i~ is special Schurian and the
ring (see Lemma 2.1) is isomorphic to the ring R(K2) below
the diagram ( ~ ) . Hence # l her (R(KI)") = 6 and by Prosposition 2.2
we have ~her(~)==10+62013l==15.

Finally we prove (2) for the ring E’ by applying Proposition 2.2
to R = E’ and a = 1. First we note that Ei is obtained from E by
omitting the upper row and E’-modules are those E-modules .X for

which X1= 0. Since . I then by (3) and (4) proved

below the indecomposable modules X in I her (Ei) for which

Hom X) ~ 0 form the following diagram

It follows that K~ is special Schurian and the ring satisfies the

conditions in Lemma 2.1 (ii) with S’. Consequently, by Lem-
ma 2.1 and Proposition 2.2 we get

and the statement (2) is proved.

be an indecomposable R-module. It
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follows from [8, Proposition 2.5] that there are exactly 9 indecom-
posable modules X for which X2 = 0. They are presented in the di-

agram (*). Since the modules

are indecomposable and # mod (I~) = 23

then (3) follows.

(4) We know from (3) that there are exactly 10 indecomposable
modules X in t her (E) for which ~2 = 0. Since the modules present-
ed in (4) are indecomposable then (4) follows and the proof of the
lemma is complete.

LEMMA 2.8. Let R be an 1-hereditary artinian PI-ring. If the valued
^

poset of R has the form Cs C then # mod (.R) = 35.

PROOF. By Remark 2 we can suppose that there is a pair of divi-
sion rings G c .F’ such that 

-1’ 4 - G, 21.~-4 - pFF GGG · It is

clear that (in the notation of Proposition 2.2) Ri is the ring .R in Lem-

ma 2.7 and ~ .1’

First we note that the Rl-module is the unique indecom-

posable noninjective epimorphic image of M1. Thus, if ~Y is inde-

composable then Hom~ 0 if and only if either X is injec-

tive or X contains ~ ~ ~ and by Lemma 2.7 (3) all such modules Xform a diagram ,I’ ~ 
~ ( )

It follows that the vector space category K§ is special Schurian, the
valued poset of R(Kl) has the form
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with dac = = 1 and if we apply Lemma 2.1 (ii) to R(Ki) twice we
get the ring R in Lemma 1.7. Hence # l her (R(K’)) = 12 and the
required equality follows from Proposition 2.2 and Lemma 2.7.

LEMMA 2.9. Let R be an 1-hereditary artinian PI-ring. If the valued
poset of R has the form

then # mod (R) = 49. I f (Xi) is acn indecomposable R-module then either
X2 = 0 or X5 = 0, or else of one of the forms: (F F F F F F),
(F F F F F 0 ) , (0 F F F F F), (0 F F F F 0 ) .

PROOF. By Remark 2 we can suppose that there is a pair of
division rings G c F such that dimGF = dim FG = 2, h’4 = G

The ring S = I~1 is 1-hereditary and its valued poset is of the form

and (F F F F F). We will prove that # mod (S) = 32 by apply-
ing Proposition 2.2 to I~ = S and a = 2. The ring ~3 is hereditary, y
its valued graph has the form 3 --~ 4 ~1-’~ a --~ 6 and ~2 = (F F F F) =
- Hence the vector space category K~ is special Schurian
and has 4 indecomposable objects corresponding to the indecomposable
injective S2-modules. Then the valued poset of the ring R(K2 ) has
the form

and by Lemma 2.1 and [8, Proposition 2.5] # I her (R(K2)) = 8. Then
Proposition 2.2 and [10, Theorem 1.1] yield # mod (8) = 32, as we

claimed.
Since the following S-modules are indecomposable
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and # mod (S2) = 24 then any indecomposable S-module X for which
X2* 0 is of the form Wi, i  8. Since dim Homs (FM~, W;)F= 1 for

all j and Homs ( M1, .X ) ~ 0 if and only if 0, then K~ is special
Schurian and has 8 indecomposable objects corresponding to the
modules W^j, j  8. It is easy to check that

- -

Then, applying Lemma 2.1 (ii) and Lemma 2.7, we have

Now, it follows from Proposition 2.2 that # mod (E) = 32 + 17 = 49.
In order to prove the second part of the lemma one can apply

the same type of arguments as in the final part of the proof of Lem-
ma 2.6.

LEMMA 2.10. Let be an I-hereditary artinian PI-
ring such that the valued poset of .Rnm has the form

and suppose .F’ j = F for i =,4 1, G c F. T hen

(ii) Every indecomposable .’

is of one of the f orms : H = = (F ... FGO ... 0 ), 7
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PROOF. In view of Remark 2 we can suppose that iM; = F for
all i and j . We prove the lemma by induction on n. The case n = -1
follows from [10]. Suppose n &#x3E; 0 and apply Proposition 2.2 to R =
= Rnm and a = - n. Note that Ra = and Ma = By the
inductive assumption the indecomposable Ra-modules Y for which
Horn (Ma, Y) # 0 form a chain

It is obvious that End(H"-’)!2t&#x26; End(Q"-’) for all i, i and End(H) I"J
- G. Now it is easy to check that the vector space category K~ is
special Schurian and the valued poset of the ring R(Ka) has the form

with dno = don = 1. Thus, by Lemma 2.1, # l her = m + 2n + 2
and the equality (i) is a consequence of Proposition 2.2 and the induc-
tive assumption. Since (ii) is an immediate consequence of (i) and
the inductive assumption the proof of the lemma is complete.

LEMMA 2.11. Let R be an 1-hereditary artinian PI-ring. Then

(i) If the valued poset of R has the f orm "BB’ then

If X is an indecomposable R-module nonisomorphic to then
-either 0 or Xm = 0.

(ii) If the valued poset of R has the f orm then R is of
finite representation type.

If X is an indecomposable .R-modute then either X_n-1= 0 or X. = 0, 7
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or else X has the f orm

PROOF. (i) In view of Remark 2 we can suppose that .F’; _ F for
and We will prove (i)

by applying Proposition 2.2 to the ring .R and a = m -~- s + 1. The

valued poset of the ring .Ra has the form

decomposable Ra-module.
First we will prove that

For this purpose we construct a sequence B1, ... , B~ of 1-hereditary
artinian PI-rings and a partial Coxeter functors

in the sense of [2, § 4] (see also [28]) such that the following condi-
tions are satisfied:

(a) # mod (Ra) _ ~ mod (B1) = ... = # mod (Bt) ;
( b ) the valued poset of the ring Bt is obtained from the one

of R. by inverting the arrows between points m, m -~- 1, ... , m -~- s ;
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(c) if X’ denotes the image of X in mod (Bt) under the composi-
tion of partial Coxeter functors then X; = Xi for j = - n, ... , m.

The partial Coxeter functors we are looking for can be defined as
functors 13-;;, 13: [28, § 1] where k is either a sink or a source in the

graph m -~- s - ... - k - ... - 1 (contained in a corresponding
poset with respect to an appropriate orientation. Then (c)
immediately follows from the definition of the functors Si and 
whereas follows from the properties ci - C+ and c~ - ci in [28,
§ 1]. Now, the required equality follows from (a) and Lemma 2.10.

Suppose that X is not isomorphic to Ma and there is a nonzero

map f : Ma - X . Since Ma = then Im f contains an epimorphic
image of llla/I’m = E(I’m_1) O It is easy to see that inde-

composable epimorphic images of the module are of the forms

whereas the indecomposable epimorphic images of are the

following

The modules L; are injective + 2.
Now suppose Ln+2C X. Then, by (c), L:+2c X’ and in view of

Lemma 2.10 either X’ = Q9 for some j or .X’ _ .Hn+2 . Hence, apply-
ing again (c), we conclude that either X = En+, or is of one of the forms

It follows that indecomposable Ra-modules X for which Horn (Ma,
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~ ) ~ 0 form the following diagram

Note that End (L) ~ G and End (Li) ~ End End (Tk) ~ .F for
all i, j, 1~. Now it is easy to check that the vector space category K)
is special Schurian and the valued poset of j8~ = R(Ka) has the form

with 1. We know from Lemma 2.1 that # l her (Ra) =
= 1 + # 1 her (8) were 8 = P.1 and the valued poset of S is obtained
from the above one by omitting the point a". Since by (c) and Lem-
ma 2.10 for every j = 1, ... , n + 1 there are exactly s -f - 1 of inde-
composable modules X in l her (8) for which 0 and F,
then

where B is a hereditary artinian PI-ring and the valued graph 
has the form

Applying Proposition 2.2 we can easily prove by induction on s"
(s + 1 )(m +- n - 1 ) + § (s + 1 ) (s + 6). This can be

also establish either by the method used in [8, 9 2] or by the inspec-
tion of the positive roots of the Dynkin diagram Sm+8+1. Consequently,.
we have

and the required equality in (i) follows from Proposition 2.2.
In order to prove the second part of (i) we note that by Lemma 2.10

there are exactly (m + 8)2 + (n + 1 ) (m + n + s -E- 2) of those inde-
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composable R-modules X for which 0 and exactly ( m -1 ) 2 -~-
+ (n + s -f- 2)(n + m + s -~- 4) of those for which 0. Since we
have calculated twice (m -1 ) ~ -~- (n + 1) (M + n + 1) + 1) mod-
ules then the number of modules X for which either Xm+8+1 = 0 or
Xm = 0 is as required.

(ii) Suppose the ordering of points m -~- 1, ..., m -f- s in the

poset (In, d) is the following m-~-~-~...-~~-)-2-~m-)-l. The

general case can be reduced to this particular one by applying the
partial Coxeter functors arguments used in the proof of part (i).
Furthermore, in view of Remark 2 we can suppose that = F for

~1, FI = G c .F’ and for I # - (n + 1).
We will apply Proposition 2.2 to the ring R and a = - ( n + 1).

_ - -,

The valued poset of R has the form (*) and

Using the same type of arguments as in the proof of the state-
ment (i) we show that the indecomposable Ra-modules X for which
Hom (May X ) ~ 0 form a diagram

where

It is easy to check that the vector space category K~ is special Schurian
and the valued poset of R(Ka) has the form

with I. Now, applying Lemma 2.1y Proposition 2.2
and the arguments used in the final part of the proof of (i) we get
the first part of (ii). The proof of the second statement in (ii) is similar
to that in (i) and we leave it to the reader. This completes the proof.
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LEMMA 2.12. If .R is an 1-hereditary artinian PI-ring and (I,, d)
has the form aBF4 then # mod (R) = 41 and every indecomposable .R-

module X for which Xo~ 0 and ~3~ 0 is of one of the f orms :

PROOF. Without loss of generality we can suppose F,, = F1=
= FF2 = F, F3 = F4 = G c F and dimG F = dim .FG = 2. We will ap-
ply Proposition 2.2 to R and a = 0. Then the ring Ra is hereditary, y
its valued graph has the form 1 - 2 (2,1) - 3 - 4 and Ma == (F F F F).
We know from [10] that # mod (.R) = 24 and the indecomposable
R-modules correspond to the positive roots of the Dynkin diagram F4.
It follows from the properties of the partial Coxeter functors [28]
that the indecomposable R-modules form the following diagram

where arrows mean the existence of irreducible maps [22]. Then the
category K~ has exactly 5 indecomposable objects determined by the
Ra-modules in the right side of the diagram. Hence we easily conclude
that K~. is special Schurian, the valued poset of the ring R(Ka) has
the form

and we have # l her (R(K~) ) = 2 + # 1 her ( T’ ) = 17 according to Lem-
mas 2.1 and 2.7. Then the required equality follows from Proposi-
tion 2.2. The proof of the second statement is left to the reader.
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LEMMA 2.13. I f .R is an 1-hereditary artinian PI-ring and (Ill, d)
has the f orm then # mod (R) = 54 and every indecomposable R-
module X for which 0 and Xc:f: 0 is of one of the f orms :

PROOF. We suppose that (IR, d) has the form

The general case can be reduced to this particular one by applying
the partial Coxeter functors arguments we use in the proof of Lem-
ma 2.11. By Remark 2 we can suppose 
= F3= F.. In the notation of Proposition 2.2 the ring .Ro is he-

reditary, y the valued graph of Ro has the form 1-~22013~3~-4 and
Mo = (0 F F F). The indecomposable Ro-modules form the following
diagram
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It follows that the vector space category K§ has exactly 7 indecom-
posable objects which are determined by the indecomposable Ro-mod-
ules in the right side of the diagram. It is easy to see that K§ is special
Schurian and the ring (R(Ko)")" (in the notation of Lemma 2.1 (ii))
is isomorphic to the ring .E’ in the Lemma 2.7. It follows from Lem-
mas 2.1 and 2.7 that # l her (R(K0)) = 2 + # I her (E’ ) = 30. Then
the required equality follows from Proposition 2.2. The proof of the
remaining statement is left to the reader.

LEMMA 2.14. I f .R is an 1-hereditary artinian PI-ring and (IR, d)
has the form 3 B C4 then # mod (R) = 41 and every indecomposable R-

which 0 and 0 is of one of the f orms :

PROOF. Without loss of generality we can suppose that .F’1= F, =
= F, F2 = F3== F4== G c .F’ and dimG F = dim Fa = 2. We apply Pro-
position 2.2 to R and a = 1. The ring is hereditary, y its valued

graph has the form 2 - 3 - 4 © 5 and Ma = (F F F F). It follows
from [10, 28] that the indecomposable .Ra-modules form the following
diagram

Hence the category K~ has exactly 5 indecomposable objects deter-
mined by the modules followed the module (FFFF) in the diagram.
Then it is easy to check that the category K~ is special Schurian and
the ring R(Ka)" (in the notation of Lemma 2.1 (ii)) is isomorphic to
the ring T in Lemma 2.7. = 25 and in view
of Proposition 2.2 the required equality follows. The proof of rema-
ining part of the lemma is left to the reader.
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PROOF OF THEOREM 2.5. (4) -~ (1) If the valued poset (IR, d) or
its opposite is of one of the forms a) or b) then 1~ is of finite represen-
tation type according to [10, 16]. If (IR, d) or its opposite is of one
of the forms c) then .R is also of finite representation type because
Remark 2 and the partial Coxeter functors arguments allow us to
reduce to Lemmas 2.6-2.14.

The implication (1) -~ (2) follows from [24, Theorem 3.1]. Since

(3) -~ (4) is proved in [4] it remains to prove (2) --~ (3). We will do it
by showing that any 1-hereditary artinian PI -ring such that either
(IR, d) or its opposite is of one of the forms R1- R9 is not right pure
semisimple. We recall from [28] that this is also the case if (IR, d)
is of the form a ) or b ) in (3).

First we note that without loss of generality we can restrict our
considerations to a fixed orientation of nondirected edges in each of
the valued posets R1- R9 . This is an easy consequence of the partial
Coxeter functors arguments in the proof of Lemma 2.11 and Proposi-
tion 2.4.

Now suppose that d) is of one of the forms R1- R7. Then

there exists a source a in IR such that the ring Ra is hereditary of
finite representation type and the valued graph of .RQ is homogeneous
(we use the notation of Proposition 2.2). It follows that the vector

space category K§ is special Schurian and the valued poset of the
ring R(Ka) is homogeneous. Hence the category I her (R(Ka)) is equi-
valent to the category of representations of the poset II(K-) in the
sense of Nazarova and Rojter [19] (see [5]). Since .R is of infinite rep-
resentation type [16], then by Proposition 2.2 the category I her (R(Ka) )
is of infinite representation type and therefore the poset IR(K4) is of
infinite type. Then, in view of [12, 19] (see also [7]), by applying the
Nazarova-Rojter differentiation procedure to the poset in a

finite number of steps we get a poset of weight &#x3E; 4. This means that
there exists a full additive subcategory A of t her (R(Kk)) and a rep-
resentation equivalence A - I her (S) were 8 is a hereditary ring of

the type . Since l her (S) is obviously cofinite in mod ( ~S )

and by [28] S is not right pure semisimple then we conclude from
Propositions 2.2 and 2.4 that R is not right pure semisimple, as

required.
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Next suppose (IR, d) has the form

In the notation of Proposition 2.2 the ring is hereditary, the valued
graph of .Ra has the form o - o - o ~ o and Me = (0 0 F ~’). We
note that there are nonzero maps from Ma into the Ra-modules U =

= (0 W = ( G G 14’ ) , whereas there is no nonzero map bet-
ween U and W. Hence the full subcategory of flL(K)) consisting of
objects (X, V, t) where is of the form is cofinite in
mod ( S ), where S a hereditary artinian PI-ring with the valued graph

C1 2) (2 1) S .(1,2) 0 -+ o. We know from [28, Corollary 3.4] and [10] that S is
not right pure semisimple. Then Propositions 2.2 and 2.4 imply that .R
is not right pure semisimple.

Finally, we suppose that (IR, d) is of one of the forms

Then . and taking for TJ and W the

R,,,-modules I and Rb-modules respec-

tively we are in the same position as above. Hence we conclude
that .R is not right pure semisimple. The proof of the theorem is

complete.

REMARK 3. The Lemmas 2.6-2.14 give an explicit description of
indecomposable modules over non-homogeneous 1-hereditary artinian
PI-rings of finite representation type. In particular it is easy to see
that for every such a module X = (Xi) the dimension of the Fi-space
.X ~ is at most 6 for all i. Moreover X is uniquely determined by its
composition factors.
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REMARK 4. The functor 0 in Section 1 gives a simple method
for reconstructing indecomposable R-modules from indecomposable
modules in l her (R(Ka)). In order to describe it suppose that (in
the notation of Proposition 2.2) the category K’ is special Schurian
and we know the indecomposable Ra-modules as well as the indecom-
posable modules in l her (R(Ka)). This was the case in all situations
we consider in Lemmas 2.6-2.14.

Let us identify the .R-modules and triples ( V’F, Y, t) where Y is
-an Ra-module and t : Vp - Horn (FMa, Y) is an F-linear map.

If ~1, ..., Yn are all indecomposable Ra-modules such that
Horn Y) ~ 0 we denote by %i the full subcategory of mod (.R )
consisting of modules having no direct summands of the forms

(F, 0, 0 ), (F, Yj, t) where t is an isomorphism, (0, where Y is

indecomposable different from Y1, ... , Yn. Then the functor 0 in-
~duces a full additive functor

having the following properties:

(i) ø reflects isomorphisms.

(ii) Every indecomposable module in l her (R(Ka)) except the
unique simple projective one is of the form where Y is indecom-

posable.

(iii) If (Vp, Y, t) is an indecomposable module in 9K~

then

where gi is the Fa-subspace of defined in the proof of [31, Theo-
rem 1.5]. Furthermore, if the modules Y1, ... , Yn and are

uniquely determined by their composition factors then also Y, t)
is uniquely determined by its composition factors.

The property (iii) gives a method for constructing the indecom-
posable modules in from their images under the functor ~.

In a subsequent paper (joint with B. Klemp) we will give a di-
.agrammatic characterization of 1-hereditary right QF-2 artinian PI-
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rings R for which the category I her (R) is of finite representation
type. We do it by applying the upper and lower differentiations in
the sense of [7] and few simple reduction lemmas like the Lemma 2.1.
The list of critical valued posets for this class coincides with that
one for the finite type structures of division rings [8].
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Note Added in Proof.

The main theorem of this paper can be extended to a class of triangular
matrix rings .R of the form written in the introduction with division PI-rings

... , and such that the bilinear maps c,;: o are non-

zero provided and are nonzero. To any such a ring R the valued
poset (I,, d) is associated and Theorem 2.5 is extended in a natural way.
This is given in the author’s notes On methods for the computation of indecom-
posable modules over artinian rings, published in Proo. Conf. Ring Theory
and Algebraic Geometry, Chiba (Japan), 1982, pp. 143-170. A characteriza-
tion of 1-hereditary right QF-2 artinian PI-rings .R with 1-her (I~) of finite

type we have mentioned at the end of the paper is given by B. KLEMP and
the author in the paper A diagrammatic characterization of schurian vector
space PI-categories of finite type which iv-ill appear in Bull. Acad. Polon. Sci,
in 1984.


