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Bifurcation and Total Stability (*).

M. L. BERTOTTI - V. MOAURO (**)

1. Introduction.

In this paper we are concerned with the problem of bifurcation
of invariant sets from an invariant set with respect to a family of
flows. In particular, we will suppose that such flows are defined by a
one-parameter family of ordinary differential equations:

M =i,

where x € R", y € (— , i) c R, f € C[(— g, @) xR, R"], f is locally Lips-
chitzian with respect to «, f(u, 0) = 0. As is well known, bifurcation
phenomenon is often associated with a drastic change of suitable
stability properties. For example, let us suppose that the origin 0
of R" be, with respect to (1), asymptotically stable for y = 0 and
completely unstable (that is asymptotically stable in the past) for
p>0. Then, in a fixed neighborhood of 0, new compact invariant
sets arise for y > 0 and u small enough. These sets are disjoint from
the origin, asymptotically stable and tend to the origin as u tends
to 0. Also these sets can be taken as the largest compact invariant
sets, disjoint from the origin, contained in a fixed neighborhood of
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the origin. The above result is a corollary of a theorem given in [1, 2]
where the general phenomenon of bifurcation of invariant sets from
an invariant set is considered with respect to a one-parameter family
of dynamical systems (not necessarily defined by differential equations).

In the proof of the previous result one uses, among other tools,
Malkin’s Theorem in order to get informations about the flow for
p > 0. Malkin’s Theorem assures us that, if 0 is asymptotically stable
for u = 0, it is also totally stable (that is stable under persistent
perturbations). Therefore, for |u| small enough, the solutions of (1)
which start from points «near » to the origin remain « near» to the
origin. However, total stability does not imply, in general, asymptotic
stability and interesting examples [3, 4] have been given in which
an invariant set (in particular a critical point) is totally stable but
not asymptotically stable. Therefore, it is important to know if bifur-
cation phenomenon still happens when one supposes that the origin
is for y = 0 only totally stable. In Section 2 of this paper we are
able to prove such a result by using a theorem given by P. Seibert
in [6]. This theorem characterizes the total stability of a compact
invariant set with respect to an autonomous system by means of
the existence of a fundamental family of asymptotically stable neigh-
borhoods of the set. However, in our hypotheses, the bifurcating
sets cannot be taken in general as the largest invariant compact sets,
disjoint from the origin, contained in a fized neighborhood of the
origin. In fact, the region of attraction of the neighborhoods of the
origin, which exist because of Seibert’s Theorem, could tend to the
origin as these neighborhoods tend to the origin. This happens in
the example which we consider in Section 2.

In Section 3 Hopf bifurcation in R? is revisited. In [6] the problem
of attractivity of bifurcating orbits was considered and it was proved
that this property does not hold in general when the origin is asymp-
totically stable. Here we can add that, if the origin is stable for
p = 0 without being asymptotically stable, the bifurcating orbits can
never be all attracting. Therefore, if for y = 0 the origin is totally
stable but not asymptotically stable (this is possible only if for 4 = 0
(1) is not analytical), then for every x> 0, u small enough, an in-
variant set exists which is asymptotically stable and which is now
an annulus bounded by closed orbits and tends to the origin as u
tends to 0. Nevertheless, for 4 > 0 and small enough there also exist
bifurcating periodic orbits from the origin which are not attracting
and which could be outside of the above annulus. This also happens
in the example given in Section 2.
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2. Preliminaries and results.
Let us consider system (1) for u = 0:
(2) & = (0, 2) =: fo(x) .

We will denote by C°(z) the class of functions g: (4, ) € R" X R» —
—> g(t, #) € R*» which are continuous and lccally Lipschitzian with
respect to #. Let M c R" be a ccmpact subset and for any 4> 0 let
S(M, 1) be the subset {x e R", o(x, M)< A}, where g is the usual
distance.

2.1 DEFINITION. A compact subset M c R" is said to be totally
stable with respect to (2) if for any &> 0 there exist ¢, = d,(¢) > 0,
. = 0,(¢) > 0 such that for any ?,€ R, for any x,e S(M, ;) and for
any g e C°(x), |g(t, ) — fo(@)| < 8, on RT"XS(M,e), we have =,(t, %,
x,) € S(M, ¢) for any t>1%,, where x,(?, 1, 2,) denotes the solution of
the equation & = ¢(t, ) passing through (¢,, 2,).
In [5] P. Seibert has given the following

2.2 THEOREM [5, Th. A]. A compact subset M c R» is totally
gtable w.r. to (2) if and only if M possesses a fundamental family
of compact neighborhoods which are asymptotically stable w. r. to (2).

2.3 REMARK. As observed in [5], it is easy to show that a cempact
subset M c R” which is asymptotically stable w.r. to (2) possesses a
fundamental family of neighborhoods which are asymptotically stable
w.r. to (2). Therefore, by Th. 2.2, it is totally stable w.r. to (2) and
Malkin’s Theorem is a direct concequence cf Th. 2.2.

Now we will state our main result. We will denote by p.(f, «) the
dynamical system defined by (1). Further y;‘(w) will denote the posi-
tive p,-semitrajectory through « and for a subset A c R* we will set

Vu(4) = U (@)}

x€A

2.4 THEOREM. Let the origin {0} c R" be totally stable with respect
to (2) and completely unstable with respect to (1) for every u € (0, @).
Then there exists u*e (0, i) such that for every u e (0, u*) there ex-
ists a compact subset M;c R" with the following properties:

(@) M, is p, invariant;
() M,N {0} = ¢ and max {|a|: xe M,} >0 as u —0;
(¢) M, is p,asymptotically stable.
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2.5 REMARK. Theorem 2.4 generalizes Th. 1.3 given in [1, Sec. I1I]
when in this theorem one assumes E = R, M, = {0} for every uec
€[0, ) and p, continuous dynamical systems defined by ordinary
autonomous differential equations. The generalization consists in the
assumption that the origin is totally stable w.r. to (2) instead of
agymptotically stable. Our result could be established in the full
setting of [1] but this leads to unnecessary complications in the proof.

PRrROOF OoF THEOREM 2.4. The line of the proof is the same as that
of Th. 1.3 of [1, Sec. ITI]. Therefore, when possible, we will omit
some details which can be found in [1].

By Th. 2.2, there exists a fundamental family of neighborhoods
of {0} which are asymptotically stable with respect to (2). Let 1> 0
and for e£€(0,A] let A, be one of these neighborhoods such that
A.Cc 8(0,¢). Because of asymptotic stability of 4. there exists a
compact neighborhood N, of 4. and a function V,: N.— R, V.e C},
such that V. is positive definite in N, with respect to 4. and

(3) V@) < —e(o(®, Ae)), VzeN,,

where V® is the derivative of V. along the solutions of (2) and
¢: R*— Rtis afunction of class X. Let Le> 0 such that | grad Ve(z)| < L.
for every x € N.. Moreover, A is totally stable with respect to (2),
because of Malkin’s Theorem, and therefore, by Def. 2.1, one can
easily conclude that there exist three functions of class X, say k,, &, ,
such that

(4) Va(8(4e, I (e)) C N, Vu € [0, (e)]
() V5(8(4e, B(e)) € 8(4es u(e) , Ve [0, x(e)]

where #» is such that x(1) < @. Finally, because of the continuity of
f(u, x), there exists another function ¢ of class X such that

(6) ”f(;ur w)_‘ﬂow/‘v)“<c(2h%))y V(ﬂ, x) € [0, p(e)IX N, .

Let us set y(e) = min {x(¢), y(¢)}. x is also a function of class ¥ and
(4), (3) and (6) hold true for u€[0, y(¢)]. Let u*= x(A). For p€

€ (0, u*) let ¢ = y~'(u) and let us consider the set ¥, = y’;(S(A,, h(e))).
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Because A.c S(0, &) and (5), we have F,C S(4e, hy(e)) c (0, hy(e) + )
with ¢ = y~*(u). Then as u — 0 we have max {|z|: # € F,} - 0. Let
F, denote the maximum invariant set contained in F,. F, is a non
empty compaet set and it is easy to show that the region of p,-negative
attraction of the origin, say A, is contained in F, (for details see [1]).
Now we are able to define the family of sets {M,} which satisfy condi-
tions (a), (b), (). Let us set M, = F A, for every ue (0, u*). The
sets M," satisfy conditions (@), (b). To show that they satisfy also (¢)
it is enough to prove that they are p,-uniform attractors. As the
points of A;\{O} are uniformly p -attracted from M,, we have to
prove only that ¥, is a uniform p,-attractor and for that it is enough
that F, is a p,-uniform attractor. Indeed, if for the points of a neigh-
borhood of F, we have J(x)c F,, we have also Ji(z)c F, as F is
the maximum invariant set contained in F,. Let us prove that for
e = yY(u) the points of S(Ae, hi(¢))\Fu. are p,-uniformly attracted
from Fu (by (5) S(4e, lu(e)) is a neighborhood of F.). Fix ze8(4.,
hy(e))\Fu, e = x(u). By (4), pu(t,2) € N, for every t>0. It is easy
to show that there exists 7,> 0 such that pu(r., #) € S(4e, h(e)). In
fact, if for every ¢ >0 o(pu(t, x), Ae) >h(e) we have, by (3), (6), for t>0

Vﬂ”(p”(t, x)) = V‘:’(pﬂ(t, '7")) + grad V,(p,,(t, x)) '[f(.”y Pu(?y m)) -

— patty )] <— e(o(pult, 2), 4,) + L, W o(h(z))

2L, 2
and

0 VS(pM(t, w)) <V (x)— O(h(g))

2

t

which is absurd because V. is positive definite with respect to 4. in
N.. Also, by (7), 7, can be chosen independent of # by taking

T, = max V,(z).

2
- C(h(s)) 2N,

Therefore, ¥, is a uniform attractor and the proof is complete.

2.6 REMARK. In the case n = 2, if one supposes that for every
1€ [0, ) the origin is an isolated equilibrium position of (1), then
one can prove, as in [1], that the sets M," of Th. 2.4 are annuli bounded
by closed orbits of (1) containing the origin in their interior.
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2.7 REMARK. If the origin is asymptotically stable with respeét
to (2) then the sets M,', satisfying (a), (b), (¢) of Th. 2.4 can be taken
as the largest compact invariant sets disjoint from the origin and
contained in a fixed neighborhood of the origin [2]. Such a choice
is no more possible when the origin is only totally stable. In faet,
we can give the following example.

2.8 ExAMPLE. Let us consider the system

T=—y
(8) R
{?]=w+ﬂy—w‘(w,y) Y€

with f(z,y) = (22 + y?)* sin*n/(2* + y*), $>3, for (v,y)+ (0,0) and
f(0,0) = 0. By setting H = % (2% + y?), along the solutions of (8) we
have

(9 H=y [u — (ot e sin? o yz] :

Therefore, for u = 0 (8) has a sequence of closed orbits which are
the circles centered in the origin with radii r,= 14/, n = 1,2, ...,
and the disks ¢, bounded by these circles are asymptotically stable.
Then, by Th. 2.2, the origin of R? is totally stable with respect to (8)
for 4 = 0. On the other hand, for x > 0 and small enough the origin
is completely unstable with respect to (8). Thus, the hypotheses:of
Th. 2.4 are satisfied and for x> 0 and g small enough there exist
compact sets M ," which are invariant, disjoint from the origin, asymp-
totically stable with respect to (8) and max {||(z, y)|: (,y)e M,} -0
as u — 0. However, such sets are not the largest invariant sets con-
tained in a fixed neighborhood of the origin. In fact, for x> 0 we
have that the circles centered in the origin, with radii r satisfying
the equation

(10) no=r2 sinz%,

are closed orbits for system (8). If 7*,’4 is the minimum value of r
satisfying (10) and c; the corresponding closed orbit of (8), by (9)
we have that c, is attracting at least for inside orbits. The other
circles will be alternately repelling and attracting. The largest compact
invariant set disjoint from the origin contained in a fixed neighbor-
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hood of the origin is the annulus bounded by c,'l and by another circle
cZ which could be attracting or repulsing and does not satisfy () in
Th. 2.4. Therefore, the set M, cannot be identified with such largest
invariant set.

3. Hopf bifurcation.

In this section we suppose in (1) n = 2, that is f: (—g, &) X R — R?,
and fe C2 Further, we will denote by o(u)+if(u) the eigenvalues of
D,f(u, 0) and we suppose that

(11) a(0) =0, o(0)>0, Pp0)>0.

Also, we will denote by V: (y,c¢)e (— u*, u*) x[0, ¢*) - V(u, ¢) €R,
u*> 0, ¢*> 0, the displacement function as defined in [6]. The non
trivial closed orbits of (1) correspond to the non-null solutions of
the equation V(u,c) = 0. Hopf’s theorem assures that there exists a
continuous function ux: [0, ¢) — (—, i), €€ (0, c¥), fie (0, u*), u(0) = 0,
such that for u e (— g, i) the orbit of (1) passing through the point
(¢, 0) e R? ¢ (0,¢), is closed if and only if g = u(c). As in [6] we
will call the function u(¢) the bifurcation function and the closed
orbits of (1) corresponding to the values of ¢ for which u = u(c) the
bifurcating orbits from the origin.

In [6] the problem of attractivity of the bifurcating orbits has
been considered and it has been shown (in contradiction to Th. 3B.4
of [7]) that the asymptotic stability of the origin with respect to (2)
is not sufficient for such attractivity (see Remark 4.5 in [6]). Here
we can prove the following theorems.

3.1 THEOREM. Let the origin 0 € R? be stable but not asymp-
totically stable w.r. to (2). Then there exists a sequence {y,},y of
closed orbits of (2) around the origin such that max {||z: z € y.} -0
a8 n —oo.

Proor. Suppose that 0 is not p,-asymptotically stable. As 0 is
Po-stable, there exists a fundamental family of compact p,-positively
invariant neighborhoods of the origin. Let W.c §(0, ¢), e > 0, one of
such neighborhoods. For x €W, we have A (z)c W,. Further, as 0
is not p,-asymptotically stable, there exists T € W, such that 0 ¢ A1 (Z).
Because of (11) 0 is an isolated equilibrium position of (2) and we
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can suppose that in §(0, ¢) there are no other equilibria. Therefore,
by Bendixon’s theorem, A*(Z) is a closed orbit of (2) around the origin.

3.2 THEOREM. Let 0 € R? be totally stable but not asymptotically
stable with respect to (2). Then, there exists j € (0, fi) such that for
u € (0, ) there are bifurcating orbits which are not attracting.

Proor. The hypotheses of Th. 2.4 are satisfied and, by Remark 2.6,
the sets M, are annuli bounded by closed orbits of (1) containing
the origin in their interior. As max {|#|: x€ M,} tends to 0 as u
tends to 0, the orbits which bound M ,', are, for u small enough,
bifurcating orbits. Therefore, the bifurcation function u(c) has to
assume positive values for certain values of ¢ arbitrarily small. Let
é€(0,8) be such that u() = 0. Such é exists because of Th. 3.1.
Let us set £ = max {u(c): c€[0,é]}. We have >0 and for every
u € (0, i) there exist at least two bifurcating orbits which cannot be
all attracting.

3.3 REMARK. In Example 2.8 the bifurcation function is the fune-
tion u(e) = ¢**sinx/c? and in a fixed neighborhood of the origin we
have for y > 0 and small enough at least two bifurcating orbits which
are not all attracting.

3.4 REMARK. Under the hypotheses of Th. 3.1 one could study
the bifurcation problem of closed orbits from any of the closed orbits
of the family {y,},.y. For that, the results given in [8, 9] can be
used. In example 2.8, the hypotheses of Th. 71 in [8] are satisfied
and from any of the closed orbits which exist for 4 = 0 two closed
orbits bifurcate for u > 0, whereas for u << 0 there are not closed
bifurcating orbits.
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