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Some Special Properties
of Solutions to Obstacle Problems.

CARLA MADERNA - SANDRO SALSA (*)

SUNTO - Si considera il classico problema dell’ostacolo e si provano alcune

proprieth speciali della soluzione. In particolare si dh una maggiorazione
ottimale della misura dell’insieme di coincidenza.

1. In this note we shall establish some special properties of solu-
tions to the classical obstacle problem. Let G be a bounded domain
in .Rm, such that on aG and K = 
in 6~} (the inequalities are to be intended in the sense of H1, see [4]).
Consider the following variational inequality:

If and

for every ~ E Rm and for a.e. x E G ,

then it is well known, [4], that (1.1) has a unique solution 

(*) Indirizzo degli AA.: Dipartimento di Matematica « F. Enriques » - Via
Saldini 50 - 20133 Milano.

Lavoro eseguito nell’ambito del G.N.A.F.A.
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Incidentally, notice that if aii = au (i, j = 1, 2, ... , m), u minimizes
in .I~ the functional

We shall denote by I = I(u) the coincidence set, i.e. I - 

u(x) = The regularity of the solution, the topology of I and
the regularity of the boundary 37 have been extensively studied by
various authors (see, for a bibliography, [4], [1]).

Our aim, in this note, is to give some information on I from a
different point of view, by using a symmetrization technique. As a

typical result, for instance, we prove a sharp estimate for the measure
of the coincidence set involving only the measure of G and the data g
and 1p (see section 2).

Other information about various characteristic parameter involved
in the obstacle problem are given in section 3.

2. In this section we need some assumptions on the coefficients
aij , on g and the obstacle y, for 31 to be a regular hypersurface and
for u to be in r1 C2(GBI). For instance (see the quoted papers
in the introduction) we may suppose

The last assumption on V is actually a normalization condition;
we could work equally well assuming 1p  0 on aG.

Set now

and for

(1) If E is a measurable subset of l~m we write for the Lebesgue meas-
ure of E.
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Here C.. + ~n/2 ) ) and f * is the decreasing rearrange-
ment of f _ , in the sense of Hardy and Littlewood, that is

The following theorem establishes an optimal estimate for the

measure of the coincidence set of the solution to ( 1.1 ) .

THEOREM l . Assume that ( 2 .1 ) and the ellipticity condition ( 1.2 ) hold.

Then either = 0 or where A is the (unique) solution of
the equation (/)(Â) = 1.

Moreover A is the measure of the coinciden.ce set of the solution to
the following obstacle problem:

where ’ otherwise.

Here G* is the ball centered at the origin s2cch that ( _ IGI.
PROOF. Let « be the solution to {1.1 ) and suppose ~ 0. The

function w = 1 - u + 1p satisfies the following set of conditions :

Furthermore

where v = (v1, v2 , ..., vm) is the normal to aI.

Setting ~~ E G: w(x) &#x3E; t), we have, for a.e. t, 0  t  1,
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where H.-, denotes the (m - 1)-dimensional measure. We have used
Green’s formula and the conditions (2.~a), (2.6), observing that Dw/IDwl I
is the inner unit normal to BEt.

The ellipticity condition (1.2) and a well known theorem of Hardy-
Littlewood [3], give now, for a.e. t, 0  t  1,

where is the distribution function of w, that is p(t) == IEtl.
Acting as in [5], we get for a.e. t, 0  t  1,

Letting t - 1, we obtain

taking (2.5b) into account.
Observe now that ~(~,), defined by (2.3), is a strictly decreasing

function of A (by (2.7)) = 0, therefore there
exists a unique ll such that Ø(A) = 1.

Clearly (2.7) gives ~(11.) ~ ~( ~I ~), from which the first part of the
thesis. The final assertion of the theorem follows observing that the
solution of (2.4) is given by the following function:

where I* is the ball centered at the origin with = A.

REMARK. Note that (2.7) could be used to give sufficient condi-
tions in order to have = 0. For instance, we quote the following
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one, which follows easily using Holder inequality:

The information contained in theorem 1 can be restated in a par-

ticularly meaningful way in a special case. More precisely:

COROLLARY. Let y be a fixed negative constant and consider the
following of obstacle 

zuhere :

G is a bounded domain with fixed measure,

is a second order linear elliptic operator with

coefficients and lower ellipticity constant equal to 1.

Then the measure of the coincidence set of the solution to ( 2 .8 ) is
maximum when ~ _ - d and G is a ball.

In this case note that the equation = 1 writes

3. In this section we prove some relations among various charac-
teristic parameter appearing in the obstacle problem.

For the sake of simplicity we take g = 0.

THEOREM 2 . Consider the variational inequality ( 1.1 ) with g = 0 and
E 1-(G) r1 HI(G) and, in the sense of HI,
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Then

where M denotes the upper ellipticity constant.

PROOF. Clearly we take tl otherwise there is nothing to
prove.

Let a be the Lipschitz continuous function defined by

Set v(x) = u(x) + where u is the solution of (1.1). By
Corollary A.5, pag. 54 of [4], v belongs to the convex set g. Insert-

ing v in ( 1.1 ) we get

On the other hand, if p(t) denotes the distribution function of u,
we have

Here we have used the ellipticity condition, Schwartz inequality
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and the total variation formula of Fleming-Rishel [2]; &#x3E; r) de-
notes the perimeter in the sense of De Giorgi of the set u(x) &#x3E; r~.

The isoperimetric inequality gives now

The last inequality follows from

which holds for every h in 
From (3.2), (3.3), (3.4) and noticing that we get (3.1).

Other information can be obtained integrating the conormal de-
rivative of the solution on the boundary of the level set 
u(x) &#x3E; tj for t sufficiently small. More precisely we have (we restrict
ourselves to m &#x3E; 2 for brevity):

THEOREM 3. Consider the variational ineq2cality (1.1 ) with g = 0.
Suppose (1.2), (2.1) hold and max x E G) &#x3E; 0. Then

Moreover equality holds in (3.5) if and only is radial, G is a
ball centered at the origin and t _ - L1.

PROOF. If 0  t  to, since D1p = Du on aI, Green’s formula in
the set {x E G : u ( x ) &#x3E; t ~ r’1 gives

where
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As in the proof of theorem 1, we get, for the distribution func-
tion lz(t) of u the following inequality:

for almost every t, 0  t  to.
(3.5) follows letting t go to to and observing that ~u ( to ) ~ ~ I ( .

REMARK. Suppose .E’ is a compact subset of G with smooth

boundary and consider the capacitary potential u of E with respect
to G ; in other words u is the solution of the variational inequality

for any in ~}.
The £-capacity of E with respect to G is defined by

The level sets method of theorem 3 gives in this case the well
known result:

with equality if and only and E, G are concentric balls.

A slight modification in the proof of theorem 3 and Lemma 4.2
of [2 ] page 117 give:

COROLLARY..Let the assumptions in theorem 3 be satisfied. If more-
over G is convex then:
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