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On the Properties of Oscillation
and Almost Periodicity of Certain Convolutions.

PAOLO CODECÀ

Introduction.

In a paper of 1936 (cfr. [7], p. 266) Hardy and Littlewood consider
the problem of the asymptotic behaviour of the functions P(x) _

and To be precise, they

are interested in proving that P(x) and are not bounded: what

they really prove (cfr. [7], p. 266) is something more, i.e.

In 1949 T. M. Flett (cfr. [6]) obtained the following estimates for the
functions P(x) and Q(z).

Recently H. Delange (cfr. [4], p. 52) in a paper of 1980 proved that

(*) Indirizzo dell’A.: PAOLO CoDECA: Istituto Matematico dell’Università,
via Machiavelli 35, 44100 Ferrara, Italia.
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and, by means of a result of Saffari and Vaughan (cfr. [10)), y

Convolutions of the type ] where f (x) is a periodic

function, arise naturally in some problems of number theory.
Besides the two examples P(x) and Q(x) let’s consider the following:

and consider the function

It is easy to see (cfr. [11], p. 100) that

Now let q(n) be the Euler’s function: remembering that 99(n)/n =
we have immediately

In both cases the remainder terms are expressed by convolutions of
the type considered. The best known estimates of the remainder terms
in (0.7) and (0.8) were obtained by Walfisz (cfr. [11] p. 88 and p. 115)
using Vinogradov’s method: precisely they are

The asymptotic mean square behaviour of the error terms in (0.7)
and (0.8) has also been studied: precisely, setting = (R2/6)x -
-! 19x + To(x) Walfisz proved that (cfr. [12])
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and successively improved (0.11) by showing that (cfr. [13])

Chowla, ’following Walfisz’s method, obtained the following result
~cf r. [2 ~~ 

.

As for the function H(x), Pillai and Chowla (cfr. [9J) also proved that

and Erd6s and Shapiro (cfr. [5], p. 382) showed that

disproving Sylvester’s conjecture, i.e. H(n) &#x3E; 0 for every 
The aim of the present paper is to obtain, under suitable assump-

tions, two kinds of results concerning convolutions of the type
where f (x) is periodic, and precisely:

a) To prove the existence of the mean value of such convolutions
on every arithmetic progression, and to find and explicit formula for
this mean value. This will afford us to prove easily properties of un-
boundedness and of oscillation for the functions considered (see Corol-
lary 1). We will also find, among other things, the result (0.16) of
Erd6s and Shapiro.

b) To prove that the convolutions considered are always B2
almost periodic functions.
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We remember that a function is B~ almost periodic if it satisfies
the following pair of conditions:

a) f (x) has a Fourier-Bohr series

~8) Parseval identity holds, y i.e.

Precisely we obtain the following results:

THEOREM 1. Let be a periodic function with period 1, of
1

bounded variation on [o,1] and such = 0. Let 
be a sequence of real numbers such that 0

: then the mean value of g(x) on every
nx

arithmetic progression exists and we have (1)

with k* = kl(a, k), where as usual (a, k) is the greatest common divisor
of a and b.

From theorem 1 we obtain easily the following

COROLLARY 1. Put

(1) The convergence of the series in formula (1) follows from Koksma

inequality (4.2) and from the estimate (4.5).
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then we have that To(x), H(x), Q(x), are not bounded neither from
above nor from below.

THEOREM 2. Put J where the sequence

and the function satisfy the conditions of theorem 1.
Then g(x) is a B2 almost periodic function.

Although it is possible that the convolutions 

considered in the theorems 1 and 2 are unbounded (see corol-
lary 1), we note that they are always absolutely bounded on the mean,

2

i.e. 0(z). This follows immediately from theorem 2 and
1

Schwarz inequality.
We begin by proving some lemmata.

LEMMA 1. Let i where f (x) is a periodic func-

tion of period 1, of bounded variation on [o,1] and such that
1

If y(x) is a monotonically increasing function such that

PROOF. The proof is based on Euler’s summation formula. Let F(t)
be a function of bounded variation on the interval [n, n + 1]: inte-
grating by parts we have
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-From (1.2) obviously follows

Summing over n we obtain from (1.3)

If f (x) is a function which satisfies the conditions of lemma 1 put
F(t) = where x is fixed. From (1.4) with m = [y(x)] + 1
.and N = [x] we have

Consider now the term is not difficult to see that

In fact, if y(x) - to C tl ~ ... is a partition of the interval

x] we have .

from (1.7) follows (1.6).
As for the first term on the right of equality (1.5), with the sub-
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stitution xjt = u we obtain

where the last equality is easily justified if we observe that

From (1.5), (1.6) and (1.8) follows (1.1).

LEMMA 2. Let us set where f (x) satisfies

the assumptions of lemma 1 and suppose that
with a &#x3E; 1: if we have ’

PROOF. Put

Let us consider the sum ~’2(x) : setting we have
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But

As for and cr~ (~) we have

The result follows from (2.2), (2.3), (2.4), (2.5) and (2.6).

LEMMA 3. Put as usual where the se-

quence and the function I(x) satisfy the assumption of

theorem 1. If 1  a we have

where

PROOF. Write

and apply lemma 1 to gl(x) with y(x) = x 19-tt’ x, and lemma 2 to g2(x).
Let us recall the definition of discrepancy (2).

(2) If A is a set with a finite number of elements, we write # .~. to mean
the number of elements of A .
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Let points of the unit interval [o, 1 ) : we define
discrepancy DN of the N points considered, the number

where ~N’([0, === # {Xl’ ~2 , ... , n [0, a).
In the proof of theorem 1 we will use the following well known result

(cfr. [8], p. 143).
Koksma inequality. Let f(x) be a function of bounded variation

defined on [0,1): if Xl,X2,...,XN are points in [o, 1) with

discrepancy DN we have

We can now prove theorem 1.

PROOF OF THEOREM 1. Let a ~ 1 and b ~ 0 be integers and set

and consider the sum

vvhere m is a fixed number large enough and u-1 denotes the inverse
functions of zc. If we remember that f(x) is a periodic function with
period 1 from where k* = follows obviously

Moreover, if A indicates a complete system of residues to modulus k*
we have
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so that we can evidently write for N1  N2

Consider now the points it is easy,
to see that

where Dk* denotes the discrepancy of these points.
Remembering Koksma inequality (4.2), from (4.5) follows

From (4.3) and (4.4) we then obtain

If we observe that (4.6) implies the convergence of the series on the
right of (4.7), in order to obtain theorem 1 it is enough to take the limit
in (4.7) for N - + oo, and remember (3.1) of lemma 3.

We can now prove easily corollary 1.

EXAMPLE 1. Let us prove that

A simple calculation gives

where, as usual,
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If we remember that

from formula (1) of theorem 1 and from (5.1) we get

From (5.2) follows immediately

and this concludes the proof.

EXAMPLE 2. Let us now prove that

If we remember that ] I (prime number theorem) it is
easy to see that 

we now observe that the conditions i) and ii) of theorem 1 are evidently
satisfied with _ (prime number theorem with an estimate
of the remainder), so that from formula (1) of theorem 1 and from (5.1)
follows immediately
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Let c be a fixed positive integer and set b = a - c: we have from (6.1)

Choose now a = n ! : it is easy to see that

As for ~S2 , observing that f ( k ) = k ) is multiplicative, we have

so that

From (6.2) follows

If we remember that H(x) is not bounded (cfr. [91), and that the choice
of c is arbitrary, from (6.4) follows that we must necessarily have

This is result (0.16) of Erd6s and Shapiro (cfr. [5]).

EXAMPLE 3. Let us show that
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If as usual, k* = kl(a, k) we have

From theorem 1 and (7.1) follows

Now choose a = 4b and let’s suppose that + p - 1(4), where p
denotes a prime divisor. In this case we have

and this implies that Q(x) is not bounded above, since
p= =

If we choose a = 4c and b = 3c with c such that pie =&#x3E;p ~1(4)
we obviously obtain that Q(x) is not bounded below. This concludes
the proof of corollary 1.

We will now prove theorem 2. This theorem will follow rapidly
from analogous results obtained by the author in a preceding paper
(cfr. [3] theorems 2 and 3).

First of all let’s determine the Fourier-Bohr series of our convolu-
tions. In what follows will always denote the mean asymptotic
value of f (x), i.e.

We first observe that theorem 2 of [3] can be written as follows:

LEMMA 4. Let f(x) be a periodic function of period 1, of bounded

variation on [0, 1) and such that let also f (x) ~
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00

"-I ! A(n) exp be the Fourier series of f (x). Let (a(n))neN be
n= - 00

a sequence of real numbers such that

then we have

0 if A is irrational (3)

If, in addition to condition i) a(n) = 0(1 ), we have also ii)
= o(x) then = 0.

For the proof see [3], theorem 2.
It is now easy to prove the following

LEMMA 5. Put where the sequence

(a(n))neN satisfies the conditions

and ) J satisfies the same assumptions as in

lemma 4. Then the Fourier-Bohr series of g(x) is given by

(3) The convergence of the series I follows from the

estimate A(n) = O(1/n), since f(x) is of bounded variation (cfr. [1], vol. 1, p. 71).
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where the sum is taken over all the rationals rls with (r, s) = 1,

PROOF. Set

Let us first prove that

By choosing with a’ &#x3E; 1 in formula (1.1) of Lemma 1

we get

If we denote with y-1 the inverse function of , we have,
for xo fixed large enough,

because f (x) is periodic with a zero mean value.
From (8.4) and (8.5) follows immediatly (8.3).
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In order to prove lemma 5, apply lemma 4 to gl(x) and g2(x) in (8.2).
To complete the proof of theorem 2 we remember the following

result :

LEMMA 6. Set where

with a’ &#x3E; 1. and suppose that the sequence bounded and

that for the function j [2ninx] hold the same as-

sumptions as in lemma 4: then M(lg3(x)12) is finite and we have (4)

For the proof see [3], pp. 242-243.
We can now prove theorem 2.

The formula (3.1) of lemma 3 allows us to write

where y(x) = x(lg-"’x) with and = o(l).
If we remember lemma 6 we obtain immediately

It is easy to justify (8.8) if we observe that (8.5) implies M(g~(x)) - 0,
.and that = 0 follows from Schwarz inequality.

In order to conclude the proof of theorem 2 it is enough to remember

(4) The convergence of the series on the right side of equality (8.6) fol-
lows from the estimate A(n) = since f (x) is of bounded variation.
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the following identity (for a proof see [3] p. 239)

the lemma 5 and (8.8).
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