RENDICONTI del Seminario Matematico della Università di Padova

C. Menini

Errata-Corrige : "Linearly compact rings and strongly quasi-injective modules"

Rendiconti del Seminario Matematico della Università di Padova, tome 69 (1983), p. 305-306

http://www.numdam.org/item?id=RSMUP_1983__69__305_0

© Rendiconti del Seminario Matematico della Università di Padova, 1983, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Rend. Sem. Mat. Univ. Padova, 69 (1983)

ERRATA - CORRIGE

« Linearly Compact Rings and Strongly Quasi-Injective Modules ».

C. MENINI (*)

Introduction.

I) Statement (d) of THE MAIN THEOREM of [M] must be changed in the following form:

«(d) Let _RU be the minimal cogenerator of $\mathcal{C}_{\mathcal{F}}$, $T = \operatorname{End}_{(R}U)$. Then _RU_T is faithfully balanced and the module U_T is s.q.i.»

Consequently the last assertion of the same theorem has to be erased.

The proof of $(a) \Rightarrow (d)$ of this theorem is now the following:

«Let us remark, first of all, that in view of Lemma 5, R is linearly compact in its U-topology. Thus, since $_{R}U$ is a selfcogenerator, by Corollary 7.4 [2], $R = \operatorname{End}(U_{T})$ and hence $_{R}U_{T}$ is faithfully balanced. Moreover, since we already proved that $(a) \Rightarrow (b)$, U_{T} is q.i. Thus it is enough to prove that R separates points and submodules of U_{T} . Let $L < U_{T}$ and let $x \in U_{T}$. Assume that $\operatorname{Ann}_{R}(x) > \operatorname{Ann}_{R}(L)$. Since Ris linearly compact in the U-topology, Rx is linearly compact discrete. Thus, since $Rx <_{R}U$, Rx is finitely embedded. Hence, by Lemma 8, there is a finite subset $\{y_{1}, \ldots, y_{n}\} \subseteq L$ such that $\operatorname{Ann}_{R}(x) > \bigcap_{j=1}^{n} \operatorname{Ann}_{R}(y_{j})$. Let $S_{1}, \ldots, S_{m} \in S_{\mathcal{F}}$ such that the R-submodule of $_{R}U$ spanned by xand y_{j} 's, $j = 1, \ldots, n$, is contained in $_{R}M = \bigoplus_{i=1}^{m} t_{\mathcal{F}}(E(S_{i})) <_{R}U$. Since

(*) Indirizzo dell'A.: Istituto di Matematica dell'Università di Ferrara, Via Machiavelli 35, 44100 Ferrara (Italy). ${}_{R}M$ is quasi-injective, by the proof of Lemma 7, there exists a morphism $f: {}_{R}M^{n} \rightarrow {}_{R}M$ such that $x = ((y_{1}, ..., y_{n}))f$. Since ${}_{R}M$ is a direct summand of ${}_{R}U, f$ extends to a morphism $g: {}_{R}U^{n} \rightarrow {}_{R}U$. Thus there exist $t_{1}, ..., t_{n} \in T$ such that $x = \sum_{i=1}^{n} t_{i}y_{i}$ and hence $x \in L$.

II) The last assertions of Theorem 10, concerning the explicit form of $_{R}K$ and K_{A} are false, while equivalence of statements (a), (b) and (c) is true and is also true that if (a), (b), (c) hold then A is linearly compact in its K-topology.

The proof of $(c) \Rightarrow (b)$ rules as follows.

«Let $x \in K$. Rx is linearly compact discrete and hence Soc(Rx) is a direct sum of a finite number of left simple *R*-modules S_1, \ldots, S_n . By hypothesis, $Soc(_RK)$ is essential in $_RK$. Hence Soc(Rx) is essential in Rx. It follows that

(1)
$$Rx \leqslant \bigoplus_{1=i}^{n} t_{\mathcal{F}}(E(S_i)).$$

Let us prove that R separates points and submodules of $K_{\mathcal{A}}$. Let $L \leq K_{\mathcal{A}}$ and let $x \in K$. Assume that $\operatorname{Ann}_{R}(x) \geq \operatorname{Ann}_{R}(L)$. Note that, by (1), $R/\operatorname{Ann}_{R}(x) \cong Rx$ is finitely embedded. Hence, by Lemma 8, there is a finite subset $F \subseteq L$ such that $\operatorname{Ann}_{R}(x) \geq \bigcap_{i \in F} \operatorname{Ann}_{R}(l)$. Thus, by Lemma 7, x belongs to the submodule of $K_{\mathcal{A}}$ spanned by F and hence $x \in L$.

III) Finally, the first part of the proof of Theorem 14 is modified as follows.

«PROOF. Let \mathcal{F} be the filter of open left ideals of τ and let U_R be the minimal injective cogenerator of $\mathcal{C}_{\mathcal{F}}: {}_R U = t_{\mathcal{F}} \left(E \left(\bigoplus_{s \in \mathcal{S}_{\mathcal{F}}} S \right) \right)$. Set $\mathcal{A} = \operatorname{End}_{(R}U$. By theorem 10 and Lemma 6, ${}_R U_{\mathcal{A}}$ is faithfully

balanced and both the modules $_{R}U$ and U_{A} are s.q.i. »

At this point the remaining part of the proof works.

Manoscritto pervenuto in redazione il 7 dicembre 1982.

REFERENCES

[M] C. MENINI, Linearly compact rings and strongly quasi-injective modules.