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Projectivity of Pure Ideals.

G. DE MARCO (*)

0. Introduction.

I 
A very interesting theorem of Bkouche ([Bk], Th . 6) characterizes

projectivity of pure ideals in terms of the topology of Max (A), when A
is a « soft » ring.

The original purpose of this paper was to exploit Bkouche’s result
for rings of real valued continuous functions, in order to see if some
classes of spaces can be characterized in terms of projectivity of ideals
in their ring of continuous functions. The investigation disclosed the
fact that Bkouche’s result, when suitably formulated, gives a character-
ization of projectivity for pure ideals in terms of the spectral topology,
for every commutative ring.

This characterization yields proofs of results already obtained by
Vasconcelos [V]; which are here obtained at once, in a compact way.
In the case of rings of continuous functions, several classes of spaces X
are characterized in terms of projective ideals of C(X).

1. Algebraic results.

1.1. Ring means commutative ring with an identity 1.

If A is a ring, Spec (A) denotes the set of all (proper) prime ideals
of A with the Zariski (or hull-kernel) topology, Max (A) denotes the

(*) Indirizzo dell’A.: Istituto di Matematica, Via Belzoni, 7 - - University
di Padova 35131 Padova (Italy).
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subspace of maximal ideals. If I is an ideal of A, then Tr(I ) _
- {p E Spec (A): PDI) denotes the associated closed set, D(I) _
= Spec (A)BTT(I ) the associated open set; subscript M denotes
relativization to Max (A) , e.g. DM(I) = D(I) n Max (A), etc.. For

principal ideals a A, V(aA) and D(aA) are shortened, as usual, to
V(a), D(a). If X is a subset of Spec (A), its specialization (resp: gen-
eralization) (resp: t%(X)) is the set of all primes which contain
(resp : are contained in) some prime belonging to ~; X’ is said to be
S-stable (resp: 9-stable) iff = X (resp : 9(X) = X).

Notice that closed sets of Spec (A ) are 8-stable, and that open sets
are 8-stable. Since the closure of a singleton (Po) C Spec (A ) is

{P E Spec (.A) : P:2 = ~(~P’o~), it easily follows that a set is 8-stable
iff it is a union of closed subsets of Spec (A). Trivially, the comple-
ment in Spec (A ) of an 8-stable subset is a !9-stable subset, y and
conversely.

Following Lazard [L1], call D-topology the topology on the set of
prime ideals of A whose open sets are the open 8-stable subsets of
Spec (A ) (it is a topology coarser than the spectral topology, strictly
Sol in general); denote by ~M its relativization to the subspace of
maximal ideals.

The 0 topology and the ~M topology are in one-to-one cor-

respondence :

PROPOSITION. The mapping U - UM = U n Max (A) is a bijection
of the set of 9)-open sets onto the set of 0,,,-open sets; and G -~ GM =
- G r’1 Max (A) is a bijection of the D-closed sets onto the 5).-closed
sets.

PROOF. It is immediate to see that if U is open and 8-stable then
and if G is closed and 6-stable then, again,

G-- 

1.2. A pm-ring A is defined to be a ring in which every prime
ideal is contained in a unique maximal ideal. If A is a pm-ring, then
the mapping ~c: Spec (A) -+ Max (A) which sends every prime ideal
of A into the unique maximal ideal containing it is a continuous closed
map, and Max (A) is compact T2 (see [DO] or [Bk1]; the «soft rings
in [BklJ are the pm-rings with zero Jacobson radical). It follows that
in a pm-ring A the open 8-stable subsets of Spec (A) are of the form
/~(F)~ with V spectrally open in Max (A). It is easy to get the

following:
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PROPOSITION. A is a pm-ring if and only if the spectral topology
and the 2)-topology coincide on Max (A).

1.3. A typical pm-ring is the ring C(X) of all continuous real valued
functions on a topological space X. If .~’ is completely regular Haus-
dorff, and f3X is the Stone-Cech compatification of ~’, then the
mapping ~: - Max (C(X)) defined by t(p) = = {/ E C(X) :

is a homeomorphism of onto Max (C(X)). We
shall freely identify flX and Max ( C(.~) ), via this map i.

1.4. Given a ring A, we define the support of a E A (in Spec (A) )
as V(Ann (a) ), where Ann (a) is the annihilator ideal of a in A. (We
always have Supp (a) D (D(a)), with equality if A is reduced,
i.e., if A has no nilpotents)- When I is an ideal of A, we define
Supp (1)= U Supp (a) (the same set is obtained if a ranges over any

aEI

generating system of I) . These definitions are equivalent to the

usual ones for modules, given, e.g., in [B2].

PROPOSITION. I is an ideal of A, then D(I) C Supp (I) .

(ii) Let J be an ideal of A, and a E A. Then Supp (a) C D(J) holds
iff a e aJ.

PROOF. (i) If P is prime, and P ~ I, then P D Ann (a) for every
.a E 

(ii) Supp(a)ÇD(J) =&#x3E; 
Take x E Ann (a) and y E J such that x -~- y = 1; then
a = ay E aJ; conversely, from a = ay, y E J, it follows
that 1- y E Ann (a). Then Ann (a) + J = A, and the proof
is concluded.

If A = C(X), and then f has a zero-set (in X) Z(f)
(- Zg(t)) = f~(~0~~ and a cozero set (in X), The

support of f in ~’ is usually defined as Suppx ( f ) = clx ( Cz( f ) ) ; it is easy
to see that being the
map defined in 1.3.

1.5. Pure ideals. There are various definitions for the concept
of pure submodule of a given A-module (see, e.g. [F]). However, for
ideals of commutative rings, they are all equivalent.

We say that an ideal I of a ring A is pure if J r1 I = JI for every
ideal J of A.
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PROPOSITION. Let I be an ideal of A. The following are equivalent:
(i) I is pure.

(ii) For every a E A, (aA) n I = al.

(iii) For every a E I there exists such that a = ab.

(iv) For every finite subset ... , of 1, there esists b E I
such that ai b = ai , for all i = 1, ... , m.

(v) D(I ) = Supp (1).

PROOF. (i) ~ (ii) ~ (iii) are immediate, from the definition of

pure ideal; (iv) =&#x3E; (iiii) is trivial. To prove that (iii) ~ (iv) : for every
i = 1, ... , m pick bi E I such that ai bi = ai . Since 1 + I is multipli-

catively closed, there exists b E I such that it is

immediate to see that b is the required element. That (iii) and (v)
are equivalent follows from proposition 1.4.

REMARK. As is stated in [Bk2], one can prove also that I is pure if
and only if A/I is a flat A-module. Another interesting characteriza-
tion of pure ideals is the following: I is pure if and only if it is the
kernel of the canonical homomorphism of A into the fraction ring

-f- I]-1] (see [B1]~; this is a trivial consequence of (iii) above.
This and the machinery of fraction rings could be used to introduce
some minor improvements in the proofs to follow. But we are not
interested in a full discussion of the concept of purity: the above Pro-
position is all we will need.

1.6. For every ideal I, Supp (I ) is a union of closed sets, hence it
is 8-stable. Hence 1.5, Proposition, (v), shows that if I is a pure ideal,
then D(I ) = Supp (I) is an open 8-stable subset of Spec (A) . Conver-

sely, for every 8-stable open subset U od Spec (A) there exists one
and only one pure ideal I such that U = D(I). This result is stated
in [Bk2], without proof. We give a proof of it later.

Here we note the following simple consequence of 6-stability of
Vr(I) for I pure:

PROPOSITION. The radical of a pure ideal I is the intersection of all
minimal prime ideas of A containing I.

1.7. For an ideal J of A, denote by y(J) the smallest cardinality
of the generating systems of J.
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PROPOSITION. The mapping I - D(I) (resp: an in-

clusion preserving bijection of the set of all pure ideals of A onto the set
o f all D-open (resp: all I)m-open) for every pure ideal I,
y(.I ) equals the smallest cardinality of families o f (spectrally) closed sets
o f Max (A) whose union is 

PROOF. We prove only the part concerning Spec (A); the part
concerning Max (A) then follows easily from Prop. 1.1. If I is pure,
then D(Z) is 8-stable, as remarked in 1.6.

We have to show that if U is open and 8-stable then there exists one
and only one pure ideal .I such that ~7==D(I). Put G = Spec (A)B U,

then Y(J) = G. Let I = clearly I is an
pea

ideal, I C J; by 1.4, I = ta E A : Supp (a) C D(J) = U~. We claim
that I is pure, and that Supp (I) = U: for this evidently it suit-lees
to show that Given P EV(I), observe that the multi-

plicative subset ~S = (ABP) (1-E- J) does not contain 0 (the anni-
hilator of 1 -~- J is I, 1.4); thus there exists a prime ideal Q disjoint
from it.

Since Q n (1 + J) = 0, Q -f- J is a proper ideal; every maximal
ideal containing it belongs to V(J) ; but hence Q belongs to V(J),
which is 9-stable; and since Q C .P, P belongs to Y(J), which is closed.

Uniqueness of I is clear from its description in terms of U,
I = la E A : Supp (a ) ~ U~. For the part concerning y(I) first observe
that D(I) = Supp (Z) = U Supp (fA), where is any generating

;teA

system for I. And if I is pure, and is any family of closed sub-
sets of Spec (A) such that one can see that there exists

a family of elements of I such that Fa C D(a,,) C Supp (aa) C
c D(I ) ; it is easy to prove that (aA)AEA generates the ideal I. To prove
existence of such family notice that for every 2 E !1 the ideals I
and Ji = r’1 are co-prime, i.e. there exist aAEI, 
such that b~ = 1.

1.8. We collect here some elementary facts on pure ideals.

PROPOSITION. (a) If is a family o f pure ideals, then
is a pure ideal. 

-

is a finite family of pure ideals, then .

is a pure ideal.
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(e) I f I is pure ideal and J is any ideal, then I + is a pure
ideal of AIJ.

(d) A pure ideal contained in the Jacobson radical of A is zero.

(e) Let I be a pure ideal. Then : for every ideal J of A, I c J holds
z f and only if DM(I) ç DM(J) .

(f) A finitely generated pure ideal is generated by an idempotent.

(g) In a reduced ring, pure ideals coincide with their radical.

PROOF. Easy computations : use 1.5, 1.6, 1.7.

1.9. The decompositions of a pure ideal I into direct sums of
(necessarily pure) ideals are in one-to-one correspondence with open
partitions of D(I) (notice that if an open 8-stable set is partitioned
into spectrally open sets, then each of these sets is also 8-stable; so
there is no need to distinguish between spectrally open partitions and
8-open partitions).

PROPOSITION. Let I be a pure ideal.

(a) If ( TI~)~,E~ is an open partition of D(1 ), then where IA

is the pure ideal such that D(IA) = Ua, for every Â E A.

Å. ~,u then each J~, is

a pure ideal, and I = Q JA (and, of course D(I) is the disjoint
AEA

union of {J9(J~): ~e~l}).

PROOF. Easy.

1.10. An A-module M is projective if and only if for every system
of generators of M there exists a family (99.1)zc-A, where each

(= M*) such that for every xEM the set 11(x) =
- ~~. ~ o~ is finite, and x (see, e.g. [Bl]). When

AEA(x)
this holds, (99,a, is called a projective basis for M.

Mutuating the terminology from general topology, we say that
a subset E of a ring A is star-finite (resp: star-countable) if for every
a E E the set == = 0} is finite (resp. countable).

This implies that ~D(a) : a E E~ is a star-finite (resp. star-countable)
family of open subsets of Spec (A) ; and if A has no nonzero nilpotents,
these facts are equivalent.



295

1.11. The following interesting result is a particular case of a

theorem of [L2] ; a direct proof of it is however much simpler.

PP-OPOSITION. A countably generated pure ideal is projective; moreover,
I has a generating system (Cn)neN such that for every x E I, the set 4 (z) =
= {n EN: xc,, = 0} is f inite, and

The proof is in the following number, which contains another im-
portant result (also found in [L2]~.

1.12. PROPOSITION. Let J be a pure Every countably generated
ideal I contained in J is contained in a pure countably generated ideal K
contained in J.

Before the proof, notice:

COROLLARY. The open Fa-subsets o f Spec (A) are a base for the
1)-topology.

PROOF OF PROP. 1.12. Let (a.).,N be a generating system for I.
Define bn E J inductively as follows: is such that ao bo = ao;
given is such that == an+lbn = bn (1.3 (iv) ). It is

easy to see that the ideal .~ generated by (bn)neN has the required pro-
perties ; notice also that for 

PROOF or PROP. 1.11. The above proof, with J = I, yields that I
has a generating system (bn)nEN such that bibn = bi for thus
x E I holds iff x for all m larger than some n(x) E N. Put

moreover

Hence is the required generating system. To see projectivity: for
each n e N take dn E I such that cndn = c~; it is simple to check that

is a projective basis for I (cfr. (1.7); here cn has to be inter-
preted as « multiplication by cn », to make it an element of HomA (I, A) ).

1.13. Here we give a characterization of pure and projective ideals.
Whenever G is a G-closed subset of Spec {A), or even a ÐM-closed subset
of Max (A), we denote by OG the corresponding pure ideal, i.e. the

unique pure ideal I such that Y(I) = G(or = G).
THEOREM..Let I be an ideal of A. The following acre equivalent:

(i) I is pure and projective.
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( ii ) I has a generating s ystem E A) such that f or ever y x E I
the set !l.(x) = is finite, and x 

AEA(x)

(iii) I is pure, and has a star-finite generating system.

(iv) I is pure, and has a star-countable generating system.

where each IY is pure and countably generated.

, where each Zy is a elosed Ga in Spec (A).

(vii) I is pure, and D(I) is a disjoint union of open Fa subsets
o f Spec (A ) .

PROOF. (i) implies (ii). Let be a projective basis for I.
For every take by such that fibg = fi. Then --

= = cp).(f).), i.e. E I. Put aA = f/J).(f).): this is the required
generating system: in fact, for every x E I we have g~~ _ (x) ~ 0
only for a finite of 2 E 11, and

.----,_, ..---,,,

(notice also that, 
leA(r) 

alx (notice also 

that, 
for (x), TA(X) = 0 =:&#x3E; TA(X) fa

- 0 « 99A(f)x = 0 =&#x3E; aiz = 0). (iii) ~ (iv) Trivial. (iv) implies (v).
Let E be a star countable generating system for I. Introduce an

equivalence relation on E by saying that a - b if there exist ao , ... , E E

with ao = a, for i = 0, ..., n - I (cfr. 1. 7).
Call T the set of equivalence classes so obtained. Each y E h is
countable since the equivalence class of a E E may described as

nei,

by 7y the ideal generated by y; if y2 E r, Yl ~ y2 , we have
moreover and I is pure. The conclusion fol-

lows from 1.9 (b). By 1.11, (v) implies (i).
Equivalence of (vi), (vii) is trivial; that (vi) is equivalent to (v)

follows from 1.7.

1.14. The trace r I of and ideal I is the ideal where

1* = HomA (I, A); ’i I is the image of the trace homomorphism

PROPOSITION. Let I be a projective ideal of A. Then :



297

(i) T I is pure and projective; T I is the smallest pure ideal contain-

ing I ; and D(zI ) = Supp (I) .

(ii) The decomposition of I and zI into direct sums of ideal are
in one-to-one correspondece via -r: that is if I = then

(iii) I is finitely generated if and only if zI is finitely generated
(and in this case zI is generated by an idempotent, see 1.8 (f)).

(iv) I f I is not f initely generated, then yI = y(iI).

PROOF. Let (g~~, f).);’EA be a projective basis for I and put a~= 991(fx).

(i) Easy calculations prove that (aÂ,);’EA is a generating system
for rI, satisfying to 1.13 (ii); hence zI is pure and projective. Moreover
Ann (~~) c Ann (a~), hence Supp (I) = Supp (rI) C The mini-

mality of i1 follows from 1.7 and -D(r7) = Supp (I) .

(ii) Easy. To conclude, observe that plainly y( zI ) c y(I ) ; using
the generating system as above, from 1.13 (v) and (ii) it follows
that we are reduced to 11 contable, i.e. it remains then only
to prove that if zI is generated by an idempotent e, then I is finitely
generated; this is an easy computation

As a corollary, we obtain a particular case of Kaplansky’s theo-
rem [K] :

COROLLARY 1. A projective ideal is a direct sum of countably gener-
ated ideals.

COROLLARY 2. A projective ideal has a stacr ’ f inite generating system.

PROOF. It is easy to see that such a system if la,, f.: (~,, p) 
the meaning of a;., f p, being as in the preceding proof. Observe that
a pure ideal which contains a non zero divisor is necessarily A. Then
(iii) above implies the following known fact ([Bl]’ p. 84).

COROLLARY 3. A projective ideal wlzich contains a non zero divisor
is finitely generated.
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2. Applications.

2.1. If A is a pm-ring, then Max (A) is compact Hausdorff, and
the spectral topology on Max (A) is the DM-topology (1.2).

The zero-sets of Max (A) are the closed Ga sets, hence the countably
generated pure ideals are, in a pm-ring, exactly the ideals OZ, where Z
is a zero-set of Max (A).

THEOREM. Let A be a pm-ring, and let I be a pure ideal of A. The

following are equivalent:

(i) I is projective.
where each Zy is a zero set of Max (A).

(iii) DM(I) is paracompact (Bkouche, [Bk2]).
PROOF. Immediate consequence of 1.13. Observe also that DM(I)

is a locally compact space, and recall that a locally compact space is
paracompact if and only if it is a topological sum of or-compact spaces.

2.2. In C(X), pure and projective ideals are related to star-finite
partitions of unity (cf. [Bri], [D2]).

PROPOSITION. An ideal I of C(X) is pure and projective if and only
if it is generated by a family of continuous functions such that

star-finite partition of unity on Cz(I ) = U Cz(f).
fEl

PROOF. This is essentially 1.13 (ii): we only have to prove that the
ai’s described there can be assumed positive; and this is easily done by
replacing them with the functions u, defined by
for x E Cz(I), uA(x) = 0 otherwise.

2.3. PROPOSITION. Let A be a ring. The following are equivalent:

(i) Every projective ideal of A ’is finitely generated. (i.e., A is
an F-ring, [V]).

(ii) Every pure ideal of A is generated by an idempotent.

(iii) Every open 8-stable subset of Spec (A) is closed in Spec (A).

(iv) In the 0-topology, Spec (A) is a finite sum of indiscrete spaces.

PROOF. Use 1.13, 1.14. For (iv) (cf. [I~2]~ observe that a compact
space in which every open set is also closed is necessarily a finite sum



299

of indiscrete subspaces. Equivalence of (i) and (ii) has been proved
in [V]; (iii) and (iv) are found in [L,]. Notice tat:

COROLLARY. Â pm-ring A is an F-ring iff Max (A) is finite; in
particular, C(X) is an F-ring iff X is finite (we assume X Tychonoff).

2.4. If a countably generated ideal I of the ring A is generated by
idempotents, then where each en is an idempotent.

PROOF. Any ideal generated by idempotents is clearly pure. By
the hypothesis, D(I) is a union of clopen subsets of Spec (A). Since

D(I ) is an an obvious compactness argument shows that =

, where each bn is an idempotent and Let-

each en is an idempotent, and .

PROPOSITION. Let A be a ring. The following are equivalent:
(i) Every pure ideal is generated by idempotents (i.e., A is an

f -ring, [V]).
(ii) The 0-topology has the clopen subsets of Spec (A) as a basis.

(iii) Every projective ideal of A is a direct sum of finitely generated
ideals; see also 1.7, 1.9.

PROOF. 1.13, 1.14. Equivalence of (i) and (iii) is proved in [V]
(there it is also remarked that S. Jondrup has obtained a purely spec-
tral characterization of f -rings ) .

Recall that a compact Hausdorff space is totally disconnected if
and only if it has a clopen basis ; if .X is Tychonoff, then flX is totally
disconnected if and only if X is (strongly) zero -dimensional [GJ, Ch. 14].

COROLLARY. A pm-ring A is an f -ring iff Max (A) is totally discon-
nected ; O(X) is an f-ring iff X is strongly zero -dimensional.

This is an algebraic characterization of strongly zero-dimensional
spaces, as those spaces such that every projective ideal of C(X) is a
direct sum of finitely generated ideals.

2.5. We deduce here some more results on pm-rings.

PROPOSITION, Let A be a pm-ring.

(a) Max (A) is hereditarily paracompact if and only if every pure
ideal of A is projective.
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(b) Max (A) is perfectly normal if and only if every pure ideal
of A is countably generated.

(c) The following are equivalent:

(i) Max (A) has countable cellularity.

(ii) Every projective ideal of A is countably generated.

(Recall that the cellularity of a space is the supremum of car-
dinalities of disjoint families of open susets of the space; recall also that
a topological space is said to be hereditarily paracompact when every
subspace of it is paracompact: this is equivalent to assume that every
subspace is paracompact).

PROOF. (ac), (b) 2.1. (c) Easy (by complete regularity of Max (A),
for every disjoint family of open subsets of Max (A) there exists a
disjoint family of cozero-sets with same cardinality).

3. Applications to C(X).

For unexplained terminology in this section the reader is refer-
red to [GJ].

3.1. If I is an ideal such that I - I, then rI = I. Calling 
prime an ideal which coincides with its radical, we observe that for
every semiprime ideal I of C(X) equality 12 = I holds (every f E C(X)
has a cubic root in C(X)); thus rI = I holds for every semiprime ideal
of C(X). Call z-free an ideal I of C(X) such that Cz(I ) = X (thus
z-free ideal = free ideal of [GJ] ) ; since ([FGL]) every 99 E 

C(X)) is a multiplication by some b E C(X), we have zI = I for every
z-free ideal of C(X). Thus (1.14):

PROPOSITION. If a projective ideal I of C(X) is either semiprime,
or z- f ree, pure ideal,.

REMARK. In [Br!] it is proved that projective ideals which are
z-free, or z-ideals, are pure. The projective z-ideal associated in [Bri]
to a given projective ideal I is, of course, y the trace ideal rl.

3.2. We now address the question of projectivity of some pure
ideals of C(X ) . First we need a simple Lemma.
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LEMMA. Let T be an open non-compact, paracompact subspace of the
-compact space Y. Let S be a s2cbset of T such that cly T.
Then S contains an in f in2te discrete subset L1 which is O-embedded (see
[GJ]) in T ; and clY (4) C YBT. 

PROOF. White T as a disjoint union of open a-compact subsets
Uy, y E r. If 8 n Uy is non-empty for infinitely many y E r, con-
,struct L1 by picking a point form each non empty S r1 Uy; otherwise,
there exists y E T such that cly (S r1 T. Take 9 E C( Y) such

Czy(g) = Uÿ; the range n E 1~~ of any sequence Xn E S (1 such
that lim g(xn) = 0 gives the required set L1.

n

COROLLARY. ~Y’ is pseudocompact if and only if no z-free ideal of
.o(X) is projective.

PROOF. It is well known [GJ] that X is pseudocompact if it con-
tains no C-embedded copy of an infinite discrete subspace, and also
if and only if no non-empty zero set of ~~’ is contained in 
the conclusion f ollows then from the above Lemma, with X in place
of ~S, Supp,3x (I ) in place of T, I being an hypothetical z-free projec-
tive X hence pure ( 3.1 ) ideal) and 2 .1.

3.3. PROPOSITION. (a) A z-free projective ideal of C(X) is contained
-in at least 2C maximal ideals. Thus, if p E the ideal 0’ is not

projective,.

(b) If p is non isolated in X, and Op is projective, then every sub-
sets S of which contains p in its closure contains a sequence which

.converges to p. In particular, some sequence of converges to p in X.

(c) A prime ideal of C(X) is projective if and only if it is generated
by an idempotent.

PROOF. ( a ) Apply lemma 3.2 with T = Supp,6x ( I) , ~’ _ ~ ; since
X, L1 is C-embedded in ~’, hence C*-embedded in .X’; then

Iclpx (A)Bd ~ _ ~2~~~ ~ 2c.

( b ) Apply lemma 3.2 with T = observe that is the

one-point compactification of T.

(c) Since P is prime, its trace TP coincides with P(3.1) ; if P
is projective, then rP = P is pure and projective; then we have
_P = 01, where 0? is the pure ideal corresponding to the maximal
ideal which contains P. By (b), there exists a sequence n 
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of distinct points of X§(p) which converges to p in .~. Put .1~ = 
U and define h E C(K) by means of h(p) = 0, h(xn) =
= (-1)n2-n. Since .g is compact, there exists g E such that

= h. Put f = We have f+ f- = 0, but f+, f- 0 0~. Then 01
cannot be prime.

REMARK 1. (c) is proved also in with a more direct argument.

REMARK 2. (c) holds for any uniformly closed q-algebra [HJ],
with almost exactly the same proof. It may fail for non uniformly
closed q-algebras: in the sub-cp-algebra A of RN consisting of eventually
constant functions, the ideal of functions with finite support is a pro-
jective pure maximal ideal, countably but not finitely generated.

3.4. COROLLARIES. (a) C(X) is hereditary if and only if X is fi%ite.

(b) T he following are equivalent:
(i) X is compacct and hereditarily pecraccompact (see 2.5).
(ii) .Every pure ideal of C(X) is projective.

( c ) The following are equivalent :
(i) X is compact and perfectly normal.
(ii) .Every pure ideal of C(X) is countably generated.

PROOF. (a) By 3.3 (c), M" is projective iff it is generated by an
idempotent. This forces .X to be discrete, hence finite; but then
flX == ~; (b), (c). From 3.3 (a), projectivity of the pure ideals 0~ for
every p implies .X = ; the remaining statements now follow easily
from 2.5.

REMARK. is proved also in [Br1]; I have reproduced here
Brooks-hear’s proof, more direct than my original one.

3.5. In a ring A, a principal aA is projective if and only if Ann (a)
is generated by an idempotent, i.e. if Supp (c~) is open. It follows that

is projective iff Suppx ( f ) is open in .X. Hence: every principal
ideal of C(X) is projective if and only if X is basically disconnected [GJ].
Since basically disconnected spaces are F-spaces, i.e. spaces such that
every finitely generated ideal of C(X) is principal, we have

PROPOSITION. T he following are equivalent:
(i) C(X) is semihereditary (i.e., every finitely generated ideal of

C(X) is projective).
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(ii) C(X) is principally projective (i.e., every principal ideal of

G(X) is projective).
(iii) X is basically disconnected.

REMARK. This proposition is proved also in [Br2].

3.6. An ideal generated by idempotents is pure. And pure, finitely
generated ideals are generated by idempotents.

Rings in which every ideal is generated by idempotents are exactly
the absolutely flat rings, (called also von Neumann regular rings ; see,
e.g. [GJ, 4K]). We have proved:

LEMMA. Let A be a ring.

The following are equivalent:

(i) Every ideal of A is pure.
(ii) A is absolutely flat.

In C(X), the radical of a principal ideal fC(X) is countably gener-
ated, having {|f|1/n: n = 2, 3, 4,...l as a set of generators. If such
an ideal is projective, then it is pure (3.1) and this implies Z( f ) open
in..X’, as is easy to see. Recall that the P-spaces are exactly those
spaces .~ for which C(X) is a regular ring, and those in which every
zero-set is open [GJ, 4K] ; using also 1.11 it is easy to get the following :

PROPOSITION. The following are equivalent:

(i) .X is a P- space.
(ii) Every ideal of C(X) is pure.
(iii) Every countably generated ideal of C(X) is projective.
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