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On Minimal Conditions

Related to Miller-Moreno Type Groups.

BRUNELLA BRUNO (*) - RICHARD E. PHILLIPS (*)

1. Introduction.

In [1] and [2], Belyaev and Sesekin have given a detailed account
of locally finite groups G in which G’ is infinite while every proper

subgroup of G has finite derived group. In [2] such groups are said
to be of Miller-Moreno type; these groups are special types of Cer-
nikov groups. Details of such groups can be found in [2] and also
in our Section 7.2.

In the paper we present what amounts to a three way generali-
zation of the Belyaev-Sesekin results. We denote the class of locally
graded groups by L... see §2 for the relevant definitions. Our prin-
cipal result is given as

THEOREM 1. Let GEL and positive integer. Suppose
further that for every properly descending chain of subgroups

there is a t ~ 1 such that the k-th lower central yk(Gt) is finite. Then

either G is a Cernikov group or yk(G) is finite.

This result provides the lever necessary for proving

(*) Indirizzo degli AA. : B. BRUNO : Istituto di Algebra e Geometria, Uni-
versith, Via Belzoni 7, 35100 Padova; R. E. PHILLIPS : Departement of Ma-
thematics, Michigan State University, East Lansing, Michigan 48824, USA.-
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THEOREM 2. The following conditions on a locally graded group G
are equivalent.

i) For some y,(G) is in f inite and for every proper subgroup H
of G y,(H) is finite.

ii) G’ is infinite and for every proper subgroup H of G, H’ is
finite.

iii) G is a Cernikov group with G’ in f inite and every proper sub-
group of G is either Abelian or finite.

The generalizations mentioned above are

1) the replacement of the «all proper subgroups » condition

implicit in the Miller-Moreno groups by the weaker « minimal
condition » on certain subgroups;

2) the replacement of the «derived group » condition by the
condition on the k-th lower central term;

3) substituting «locally graded &#x3E;&#x3E; for «locally finite ».

A portion of the Belyaev-Sesekin results-namely that the locally
finite Miller-Moreno groups are Cernikov groups-follows directly
from Theorem 2. Finer structural properties of such groups do not
follow directly, but can be obtained with a little additional work-we
will do this in § 7.2.

The locally graded condition is present in order that we avoid the
Tarski and other such « monsters ». Indeed, the results of Ol’0161han-
skii [11] and Rips show that our theorems are false without some sort
of finiteness condition.

Possible generalizations to the results herein as well as the methods
used in our proofs will be discussed in § 2 where more precise termino-
logy is available.

Our Theorem 2 falls within that body of results known as « groups
with restricted subgroups ». We refer to the introductions of [13]
and [3] or the interesting [6] for general discussions of these types
of problems.

Theorem 1 adds to the vast literature on groups satisfying various
minimal conditions (see [15; Chapter 3], [10], [12]). Obviously, every
£-group with the minimal condition on subgroups ( = min) satisfies the
hypotheses of our Theorem 1 and it is not difficult to deduce from
Theorem 1 that every with min is a Cernikov group. Thus

Theorem 1 may be viewed as a generalization of the 0160unkov-Kegel-
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Wehrfritz theorem for locally finite groups with min [10; p. 172].
We note however that we use the recently confirmed classification of
finite simple groups, which gives considerable insight into locally
finite simple groups with various minimality conditions. This, in ef-
fect, is used to overcome what has been recognized for some time as
the principal difficulty in dealing with questions of this type.

2. Notation.

We quickly review some elementary facts to be used in the sequel.
If n is a positive integer, inn denotes the class of nilpotent groups of
class n or less while 9t denotes the class of nilpotent groups. The terms
of the upper central series of a group G are denoted while .R(G)
is the set of right Engel-elements of G (see [16; Chapter 7] for the
relevant definitions). We make frequent use of a result of Baer (see
[16; p. 52]) which asserts that in a Noetherian group (= groups with
the maximum condition on subgroups),

(2.1) there is a positive integer n such that

The terms of the lower central series are denoted by yi(G) (begin-
ning with yo(G) = G). We need both the Schur-Baer properties and
related results of P. Hall (see [15; pp. 111-119]).

(2.2) a) if is finite then y~(G) is finite, and

b) if yn(G) is f inite then G/~’2n(G) is f inite.

For any two classes of groups SZ and A, is the class of all ex-
tensions of Q-groups by A-groups. Thus, with a the class of finite
groups, y 5in is the class of « finite-by-nilpotent » groups.
A group G is locally graded if every non-trivial finitely generated

subgroup of G has a non-trivial finite image. The class of locally graded
groups is very extensive as it contains each of the classes  locally
solvable &#x3E;&#x3E; (or more generally the SN-groups), y (locally finite », «resi-
dually finite », etc.

Recall that a group G is a Cernikov group if G is an « Abelian-by-
finite » group with the minimal condition on subgroups. We denote-
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this class by C and throughout assume many special properties of
these groups (as, for example, in [15; Chapter 3] and [10; 1. E]).

If Z is any class of groups, ~f(27) is the class of locally graded groups G
such that G has the minimal condition on non-E (= 27) subgroups;
i.e., every properly descending chain

~ of subgroups of G has the property that for implies that
Gi E 27. and if ~ is a subgroup closed class then
2~~f(27). Our Theorem 1 may be rephrased as

THEOREM 1. c.
It will be convenient to have a special notation for the class of

locally graded groups G such that G E E while every proper subgroup
of G is in ~; we denote this class by 1:*. Thus, 27*M(27) and Theo-
rem 2 now becomes

THEOREM 2. The following conditions on a group G are equivalent.

iii) G E C, G ~ and every proper subgroup of G is either Abe-
lian or finite.

Possible generalizations of our Theorems could come from chang-
ing the class ~~k to some wider class. For example it may be pos-
sible to obtain variants of the Theorems for the class .ll ( ~d ~ ) ; here
8d is the class of solvable groups of derived length d. One must keep
in mind that there are infinite locally finite simple groups with all
proper subgroups in (8, ~J ir)  82ir [17] and so these groups would
have to be incorported into any such generalizations. The first author
has studied the class in [4]; non-trivial examples of such

groups are the p-groups of Heineken and Mohamed [9]. Such com-

plexities can also be expected in the classes and 
The methods used to prove Theorem 1 consist of several steps.

Our Section 3 is devoted to developing criteria that insure that certain
groups have «enough» large normal subgroups. Such criteria will

ultimately be used to study the class (~~K)*. In § 4 we show that the
groups G in our Theorem 1 are locally finite. The non-existence of

simple groups in the class (Cu is taken up in § 5. We use, in
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an essential way and in more than one place, the recent classification
of finite simple groups and some recently verified consequences of

this for locally finite groups. It may well be possible to prove such a
non-simplicity result without using the classification but we have

been unable to do so.
The indirect proof of Theorem 1 is taken up in § 6; one passes

immediately to a minimal counter example 8 which is a locally finite
group in the class (Cu Here the non-simplicity of S is used
together with the preliminaries in § 3 to complete the proof of Theo-
rem 1. The much easier proof of Theorem 2 as well as other characteriza-
tions of (Propositions 3 and 4) is taken up in § 7.1.

In § 7.2 we go on to develop a complete classification of the Miller-
Moreno type ~-groups ; as noted earlier, y this has already been done
by Belyaev and Sesekin and we include this section only for comple-
teness.

3. Basic Lemmas.

We here present the notion of an n-decomposable group which is
an extension of an idea put forth in [2].

DEFINITION. Let n be a positive integer, y n &#x3E;2. The group G is
n-decomposable (and called a Dn-group) if there are normal sub-

groups of G such that

(3.1) i) and

(here, as elsewhere,  means proper subgroup).
The importance of this concept for our purposes is indicated in

LEMMA 1. Suppose and that every proper subgroup of G is in
ðinn. If G is a then G E 

PROOF. Let A1, ... , be normal subgroups of G that satisfy (3.1).
Then

and each commutator ... , lies in the n-th lower central
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subgroup of a proper subgroup of G ; thus ... , is finite. Further, y
there are only a finite number of commutators and it fol-
lows that is the product of a finite number of finite normal sub-
groups and so is finite. Thus G E and the proof is complete.

The next two lemmas determine situations in which Lemma 1
can be applied.

LEMMA 2. I f G is a non-trivial torsion-free Abelian group, then G
satisfies Dn for every n ~ 2.

PROOF. Let n&#x3E;2 be a positive integer and suppose first that there
are primes qi , ... , qn such that gi G  G. Then the periodic group

has n primary components and the lemma follows easily. Thus if p
is a prime we must have pG = G with at exceptions.

Since in an infinite cyclic group Z we have pZ C Z for all p we
may assume that G is not free. Let T be a maximal free subgroup
of G; then 0 ~ T and H = G/T is periodic. If x is a free generator of T
and q is a prime for which qG = G then there is a y E G such that qy = x.
Since T is free y 0 T so that H has elements of order q. Thus g has
an infinite number of primary components and it follows that G sati-
sfies Dn .

The following two facts are, no doubt, y well known; since they
play an essential role in what follows, we indicate proofs.

(3.2) Let G be a periodic group;

a) if G si nilpotent and GIG’ has a divisible subgroup of finite
index, then G’ is finite,

b) if .H is a normal divisible Abelian subgroup of G and for some
H ~ ~~,(G), then H  ~’1(G). Thus if G E rl C) and B

is the maximat divisible subgroup of G, B ~ ~1(G) ; in particular
G is ».

For the proof of (3.2 (a) ) write GIG’== where D is divisible
and .R reduced. Since the lower central factors of G are images of tensor
powers of GIG’ [15; pp. 54-57] and D~ C = 0 for any periodic Abelian
group C we see that is finite for thus, G’ is finite.

The proof of ( 3 .2 ( b ) ) follows easily from the fact that [H, G, G] =
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= [g, G] (see [15; p. 69]; this also uses a tensor product argument).
Since [.g, nG] = 1 we must have [H, G] = 1. The second part of ( 3.2 ( b ) )
follows from the first part together with ( 2.2 ( b ) ) .

LEMMA 3. Let G be a n2lpotent group and suppose that for some
not a Dn-group. Then G has a finite normal subgroup V such

that G/V is a periodic divisible Abelian group. In particular such groups
are periodic and have finite derived groups.

PROOF. If G/G’ is not periodic then G has a non-trivial torsion-
free Abelian image. Lemma 2 shows that G is n-decomposable for
every n ~ 2. Thus, we may assume that G/G’ is periodic (and so G
is periodic [15; p. 55]).

If the reduced part of G/G’ is infinite then for every n ~ 2, G/G’
has at least n-direct factors. Thus, for n&#x3E;2, GEDn; we conclude
that the reduced part of G/G’ is finite and the lemma now follows

from (3.2(a)).

4. Reduction to locally finite groups.

In this section we show that the are locally finite
if they are not in g-9t,,; for this we require two preparatory lemmas.

LEMMA 4. Let G be a finitely generated locally graded group with
every proper subgro2cp in Then G E 

PROOF. We may certainly suppose that G is an infinite finitely
generated group. Since G is locally graded G has proper normal sub-
groups .g with G/H finite. Since any such .g is a finitely generated
%%-group, G is Noetherian. At this point the proof splits into two
cases.

CASE finite image of G is cyclic. Let H be a proper normal
subgroup of finite index in G. Since H is finitely generated and in ~9t
we may suppose that H is finitely generated nilpotent. Thus, H is resi-
dually finite [16; p. 129] and so G is residually finite. The assumption
that all finite images of G are Abelian now implies G is Abelian, and
we now proceed to

CASE 2. For some normal subgroup H of f inite index in G, G/H is
not cycZic. In this case V,, = is a proper subgroup of G for every
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It follows from (2.2(b)) that for each x E G there is a positive
integer nx such that is finite. Thus Ua~ = .g n has
finite index in If and if y E Vae then [Uz, = 1.

Let T = ... , tk~ be a transversal of H in G and put Ui = 

If a = max ... , and then [S, ax] = 1 for all x E G.

Thus, ~’ c.R(G) and since S has finite index in G, we have G/R(G) finite.
We now use (2.1) and deduce that for some GI’8(G) is finite;
application of (2.2(c~)) now completes the proof.

LEMMA 5. Let and suppose G E (~~k)*. If G has a local system
of then G is locally finite.

PROOF. Suppose G satisfies the above hypotheses. Then yk(G) is

locally finite; further, if T is the locally finite radical of G then GIT
is a torsion free 9èk-group. If T  G then Lemma 3 gives G E ~~2
and Lemma 1 then implies that G E From this contradiction
we have T = G, as desired.

PROPOSITION are locally finite if they
are not a-9?’

PROOF. We will first prove

(4.1) are locally finite; consequently there are no fini-
tely generated 

For the proof of (4.1) let G E (~~k)* and suppose I~ is an infinite
finitely generated subgroup of G ; by Lemma 4, Thus, H
has a non-trivial, nilpotent, torsion-free image and, by Lemma 3,

Lemma 1 now gives H E and (4.1) now follows immedia-
tely from Lemma 5. 

__

Now suppose G E and let .H be any finitely generated sub-
group of G. If H is infinite, the fact that G is locally graded implies
that .H has a properly descending chain of subgroups of finite index.
Thus, H has an FRk-subgroup of finite index and so H is Noetherian.
Hence, every finitely generated subgroup of G is Noetherian.

If G has a finitely generated subgroup U with U 0 then U
contains a subgroup V with V e (~~k)*; since Vy is finitely generated we
have contradicted (4.1) and we conclude that every finitely generated
subgroup of G is Thus the set T of all elements of finite order
in G is a locally finite normal subgroup of G and G/T is a torsion-free
9èk-group.
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Suppose that T  G ; then G has an infinite cyclic subgroup x&#x3E;
and since the sequence = 0, 1, 2, ... is a properly descending
chain of subgroups of G we must have T E a-91,. But since G 0 ~~k
there are subgroups V of G with V E ( ~~k ) * ; by (4.1), VT and from
the contradiction we have G = T.

5. Simple 

There is now available, thanks to the classification of finite simple
groups, enough information regarding locally finite simple groups to
establish

PROPOSITION 2. For there arc no simple groups in the class
(a%k U C)*-

Before proceeding we note that Belyaev has shown in [1] (without
using the classification of finite simple groups) that there are no locally
finite simple groups in the class (ð9èl)*. Extensions of Belyaev’s ideas
can be used to show that there are no locally finite simple groups in

C)*.
There is a related result, essentially more general than Proposition 2,

now known and we record this as

PROPOSITION 2’. Let G be an infinite locally finite simple group with
all proper subgroups « solvable- by-finite ». Then either G ^~ PSL(2, F)
or G ci Sz(F) where F is some suitable locally finite field.

The Proposition 2’ is a consequence of recent work of G. Shute [18]
whose results are far too complicated to give in detail here. Before
we give a (very brief) sketch of the methods of Shute we note that
Proposition 2’ does, in fact, imply Proposition 2. To see this, suppose
that G is a simple group in (~~k U C)*. Then G is infinite and Propo-
sition 1 implies that G is locally finite. Since the proper subgroups
of G are « solvable-by-fin ite » (from ( 2.2 ( b ) ), Proposition 2’ asserts

that G must be one of the two types PSL(2, F) or Sz(F), ~’ some infi-
nite locally finite field. Both of these groups contain subgroups which
are neither C-groups nor in ... we refer to [12; p. 59] where these
subgroups are explicitly given; Proposition 2 now follows.

The proof of Proposition 2’ will appear in [18]. Here we only indi-
cate the way in which the classification of finite simple groups is used.
We make free use of the terminology of [10; Chapter 4] and [5].
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Let G be any infinite locally finite simple linear group; i.e.,
G  GL(n, K) where K is a locally finite field. From 4.6 of [10] and the
classification of finite simple groups there is a Chevalley functor (or
type) D and a chain Gi of finite simple subgroups of G, each of type ~,
such that G = U Gi ; here 5) may be of twisted or untwisted type
and has fixed rank parameter. The unions of such chains have been

analyzed by Shute [18] who shows (along with many other results)
that G = U Gi contains a subgroup V such that is isomorphic
with either PSL(2, F) or Sz(F), .F’ some infinite locally finite field.

Using these results, Proposition 2’ easily follows provided we show
that the group G in Proposition 2’ is linear. Now let G be an infinite
locally finite simple group with all proper subgroups «solvable-by-
finite ». From [10; p. 114], G is countable and it is easy to prove that G
is not « enormous » (see [10; p. 122] for the definition of « enormous »)
It now follows from 4.8 of [10] together with the classification that G
is linear and this concludes our discussion of Proposition 2.

6. Proof of Theorem 1.

§ 6.1. The following lemma is of fundamental importance for the
proofs of Theorems 1 and 2.

LEMMA 6. Let G be a locally finite group with all proper subgroups
either in C or a9t and suppose also that G has a proper subgroup of finite
index. T hen

a) if G has the minimal condition on subgroups of finite index
then either or G is « central- by-finite »;

b) if G does not have the minimal conditions on subgroups of finite
then G E 9-W.

PROOF OF (a). Suppose and let U be the unique minimal
subgroup of finite index in G; we may assume that TI  G. If Z~ c- C
then GEe also and we have ZT E An easy argument shows that

is divisible and (3.2) now implies that U’ is finite; there is no
loss in assuming that 1I’= 1 and so U is a divisible Abelian group.
We now prove

(6.1.1) every prope1’ subgroup of G is in ~~.

For the proof of (6.1.1) suppose that K is a proper subgroup of G
with K 0 Then K E C; further, the group Uo generated by the
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elements of prime order in U is a normal subgroups of G with C.

Since Uo.K is neither C nor ~~ we must have G. Then GI UO r--J
~ r1 Uo is a C-group; on the other hand GI Uo contains U/ Uo
and since U is divisible and U 0 C, UIUo i C. This contradiction com-

pletes the proof of (6.1.1).
Suppose that U is not central in G. Thus there is a subgroup D

of U with D 1;’l(G). Since G is locally finite there is a finite subgroup L
of G such that G = UL. We now analyze the subgroup D, L) =
- DLL; note that since U and DL is generated by a finite number
of C,.-groups, DL is a C-group. Thus, DLL is in C and so DLL  G.
From (6.1.1) and ( 3.2 ( b ) ) now shows that DLL is «central-
by-finite )}. Thus, [D, L] = 1 and since [D, U] = 1 we have 
This contradiction completes the proof of part (a).

PROOF OF ( b ) . Here G does not have the minimal condition on

subgroups of finite index and every subgroup of finite index is ~~.
Let U  G with G/ U finite and T be a finite subgroup with G = UT.
Since G does not have the minimal condition on subgroups of finite
index there is a G-subgroup V of U with G/ Y finite and TrT  G. Since
VT has finite index in G, and so for some Yk(VT) is finite.
Further, since has only a finite number of
conjugates in G. It follows that is finite. There is also an

such that is finite ; thus L = is finite and
there is no loss in assuming that L = 1. We now have

The U-central series

becomes the identity in a finite number of steps. Between each pair
and [V, ( m -E- 1 ) ZT ] interpolate a T-central series of finite

length. The resulting series is a G-central series of finite length and
so there is a t with from (2.2(cc) ) G E a% and this completes
the proof of (b).

§ 6.2. PROOF OF THEOREM 1. We proceed indirectly by supposing
that there is a group G E and that G is neither a C-group nor
an Then G has a subgroup V which is minimal with respect
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to being neither nor C. Thus, every subgroup of V is either in
~~k or is a C-group; i.e., Tr is in the class (~~k U C)*. We have already
seen that such groups are locally finite (Proposition 1) and have no
infinite simple sections (Proposition 2). We proceed to show that the
class (~~k U C)* is empty and this will provide a proof of Theorem B.

Let C)*; we verify

For the proof of (6.2.1) note first that Tr can not satisfy the hypo-
theses of Lemma 6(a). Thus, if V has a proper subgroup of finite index
Lemma 6 ( b ) yields (6.2.1). We assume then that V has no proper sub-
groups of finite index.

Since V has no infinite simple section, V is the union of a chain
E 1} of proper normal subgroups. Suppose that for some ce

we have Na E (C - and let Na be the maximal divisible Abelian
subgroup of Nex. Then from the Corollary of [15; p. 85] we have

finite. Thus V = CV(NO) and .Na c ~1( ~’fr) and so Hex is «cen-
tral-by-finite ». Application of ( 2 . 2 ( ac ) ) gives a contradiction and we
may now assume that for every Lx E I, Na E Since yk(Na) is finite,
CV(Yk(Nex)) has finite index in TT and so for all a, yk(Na) c ~1(Na) and
thus Hex E 9Z,+,. It is now clear that V E 

We have established (6.2.1) and it is now easy to complete the proof
of Theorem 1. From Lemma 3, and Lemma 1 now implies
that V has a normal subgroup if with Thus every

subgroup of V above ll’ is in C and it follows that is a FR-group
with the minimal condition on subgroups. Thus V/M e C [15; p. 68]
and since also we have V E C; this completes the proof of Theo-
rem 1.

’1r Structure of ( g8G) *-groups.

§ 7.1. PROOF OF THEOREM 2. Some of the implications in Theorem 2
are immediate and we dispense with these first. To prove that (i)
and (ii) are equivalent let G E (~~1)*; then from Theorem 1, 
and ( 3.2 ( b ) ~ now shows that G 0 This gives the implication
« (ii) implies (i) ».

If G E (3%)* again and from ( 3.2 ( b ) ) the proper subgroups
of G are « central-by-finite ». Thus, if H is a proper subgroup of G,
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~’ is finite and this gives « (i) implies (ii) ~. We actually have proved
the stronger

G E ( ~~k ) * then and every proper subgroup of G Zs~

« central -by -finite ».

Before proceeding to the other implications we require the follow-
ing (amended) terminology of Hartley [8].

Let p be a prime; denote by C~~ the direct sum of n-copies of a
C.,,--group. If ~M = is a faithful module for the finite cyclic group
x~ we say that ~x~ acts divisibly irreducibly on .M~ if for every non-
zero divisible subgroup U of If we have U~x~ == If (see [13] and [14]
for different terminology).

Amongst the essential facts for our purposes is Lemma 2.2 of [8J
which asserts that If is a divisibly irreducible x~-module if and only
if If has no decomposition If = B + C where B and C are proper,
non-zero x&#x3E;-invariant divisible subgroups of If.

These considerations will aid in giving yet other characterizations
of (~~k)* _ 

PROPOSITION 3. Let G E (~~1)*. Then ’

i) for some prime p and positive integer n ~ 1 there is a normal

subgroup A of G with A C~ ~ and an element y in G of prime
power order qs with G = A ~y~, and

ii) V’ _ ~y~~C~~~(A) has order q and A is a divisibly irreducible
V-module.

PROOF. Suppose that G E (FR1)*, then G is in C and has a (unique)
maximal divisible subgroup A. From (2.2(b)) we have

Let x E G ; if A~x~ ~ G then (7.1.2) implies that Thus,
since A 6 we must have Ax&#x3E; = G for some x E G. Using (7.1.2)
again we see that G/A has a unique maximal subgroup and so has prime
power order e. If Ixl = where (q, r) = 1 then y = xr has order q8
and G = A y&#x3E;. Yet another application of (7.1.2) shows that yq E CG(A).

It remains to show that A is a « divisibly irreducible» V-module.
Suppose that A = B + C where B and C are proper, divisible, y&#x3E;-
invariant subgroups of A; one shows easily that By&#x3E; and Cy&#x3E; are
proper subgroups of G and from ( 3.2 ( b ) ) we have A = B + 
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From this contradiction we deduce that A is a p-group and so A - 
for some n. Further .A is a divisibly irreducible and so
the proof of Proposition 3 is complete.

PROPOSITION 4. If G conditions (i) and (ii) of Proposi-
tion 3, then G E C, G 0 and every proper subgroup of G is Abelian
or finite.

PROOF. Suppose G satisfies the stated conditions; G is obviously
in C-if G’ were finite then ( 3.2 ( b ) ) implies that G is «central-by-
finite », contrary to the divisible irreducibility of A.

Let B be an infinite proper subgroup of G. We may certainly sup-
pose that B 6A and so B contains elements of the form ay~ where
a E A 1. Suppose that yj E Ca(A) ; since V has prime order q,
y&#x3E; = yj). Denote by BO the maximal (necessarily infinite) divisible
subgroup of B ; then

the last equality forced by the « divisible irreducibility )&#x3E; of A. Thus,
and now y~ _ ~y~ ~ c B which gives B = G. From this con-

tradiction we may assume that ay~ E B implies Thus B 
 CG(A), and (7.1.2) implies that CG(A) is « central-by-cyclic » and so
Abelian. Thus, B is Abelian and Proposition 4 follows.

Propositions 3 and 4 give another characterization of 
and the equivalence of parts (ii) and (iii) of Theorem 2 now follow

easily.

§ 7.2. Using the results of Hartley [8] it is possible to give presenta-
tions of the groups satisfying the conditions (i) and (ii) of Proposi-
tion 3 and thus give presentations for the (g%i)*-groups. We assume,
as in Proposition 3, that

Since the divisibly irreducible modules for V’ are known [8; Theo-
rem 3.4] we need only describe the possible extensions of A by
y~/( ~y~ r1 A). Let 0 be a homomorphism from y&#x3E; into Aut (A)
with Ker 0 = ~yq~ and A a divisibly irreducible module for y’9. If

q, then G is a split extension of ~1. by ~y~ and this gives us the first
type;



167

(a) G = A a ey~ ; ~ ~ q, yq8 =1 (here as is the semidirect

product defined by A, y and 0).

If p = q, then one possibility is again the split extension.

If A n y&#x3E; # 1 let r be minimal such that E A. Then ypr E 
n A. Since G’ is infinite, the divisible irreducibility of A implies G’.

Thus, E G’= ~[ac, E A~ and so there is an a E A such that ypr -
= [a, y]. Since is central in G, = [a, = [a, y-1] = 1 and
thus == 1. Hence y&#x3E; r’1 A is a central subgroup of G of order p.

From Proposition 5.9 of [8] we see that /O..4(y)/ = p. Thus our

final type is the semidirect product with amalgamation (c.f. [7; p. 29] ~

It is immediate that each of the three types (a), (,8), (y) satisfy
the conditions of Proposition 3 and therefore are (g%i)*-groups.
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