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On Neumann’s Problem for a Quasilinear Differential

System of the Finite Elastostatics Type.
Local Theorems of Existence and Uniqueness.

M. LANZA DE CRISTOFORIS - T. VALENT (*)

1. Introduction.

This paper concerns the Neumann’s boundary value problem for a
quasilinear differential system of the type of finite elastostatics. More
precisely, let .~2 be a bounded open subset of R~ let v be the unit out-
ward normal to and let a : 17 Rn’, f : 9 Rn and g : -~ R"

be given functions with a (x,1 ) = 0, b’x E SZ. Then we deal with the
problem of finding u : such that (see sect. 3)

where A (u) (z) = a(x,1 + Du(x)), Vz E Q, (D~~c2)~,~=1,...,~ and {}
is a real parameter. When n = 3 this problem corresponds to the
 dead traction problem » of finite elastostatics.

The main achievements we reach are local theorems of existence
and uniqueness in Sobolev spaces and in Schauder spaces (see Theo-
rems 3.1 and 3.2, and Corollaries 3.1 and 3.2). We obtain such results
assuming that, if Cl’ ... , cn are the eigenvalues of the « astatic » matrix
of ( f , g ) defined by (3. 7 ) , then whenever 

On the function a we only make hypotheses suggested by the
physical problem from which our problem arises, thus avoiding ar-
tificial assumptions.

(*) Indirizzo degli AA.: Seminario Matematico University di Padova -
Via Belzoni 7 - 35100 Padova (Italy).



184

Our results are essentially generalizations in various directions of a
result of Stoppelli [11]. In fact, what we use throughout is a basic
idea of [11], while it seems to us that the method previously devised
by Stoppelli in [9] does not lead to a satisfactory uniqueness result
(indeed, we do not see how the theorem stated at the end of section 10
in [9] can be derived from the existence and uniqueness theorem
stated in section 9).

The starting point consists of a suitable modification of Problem (P)
above which leads to another problem apt to be locally studied by
iterated applications of the implicit function theorem. In effect, if
we set

we cannot directly apply the implicit function theorem to the equation
P(u, v) = 0 in order to express u as a function of 0 near (0, 0) when
the symmetries (3.6) hold, as we suppose. Indeed, from (3.6) it follows
that the partial differential 0) takes « equilibrated » values (see
section 4 and Remark A.3 of Appendix), while the values of P are
not « equilibrated ».

We begin by replacing the operator P by the operator

where h is a suitable Revalued function defined in SZ and E is an

operator with values in the space of n x n skew-symmetric real matrices
and is such that the pair (div A (u) + E(u) h + ~ f, - A(u) v -E- is

a equilibrated ».
Now, under our hypotheses, y the kernel of the linear operator

0) is the set of functions r = (ri)i=l,...,n: Q -&#x3E; Rn such that

r=(x) = Ci -E- ‘dx E Q, where ci E R and (8iJ)i,i=1,...,n is an n xn

skew-symmetric real matrix (see sect. 5 and Remark A.2 of Appen-
dix). Note that each E can be obviously written in a uni-
que way in the form u(z) = (vi(x) + were 8 = (8u)i,i=1,...,n
is an n X n skew-symmetric real matrix and v = 
and verifies the conditions



185

By the above considerations it is convenient to regard u as the
pair (v, s ) and therefore to introduce the operator

where 1p(v, s) is the Rn-valued function defined in Q by 1Jl(v, s)(x) =
- + s;z; ); = 1,~ ~~ ,~ .

The implicit function theorem applied to the equation ~) = 0
gives v locally as a function, say v, of s and ~.

At this point, we study the relation between the solutions of the
(modified) equation M(v, s, ~) = 0 and those of the (original) equa-
tion = 0, and we show that s ) is a solution
of Problem (P) for (s, ~) close enough to (0, 0) if and only if ~) = 0,
where z is a suitable Rn-valued operator (see sect. 7). Then, an
application of the implicit function theorem to the equation z(s, ~) = 0
allows to express s as a function of 0 near (0, 0). Consequently, we
locally obtain the solution u of Problem (P) as a function of i9, and
thus we attain to Theorems 3.1 and 3.2 and to Corollaries 3.1 and 3.2.

The choice of spaces for solutions and data which are suitable
for a local treatment of Problem (P) requires a study of problems
of differentiability of operators of various types, and of isomorphism
problems for a divergence type linear matrix differential operator, in
Sobolev spaces and in Schauder spaces. (For the latter problems see
appendix.) In proving the differentiability of the nonlinear operators
we deal with, an important role is played by the fact that (under
suitable assumptions on p and ,~) the Sobolev spaces and
the Schauder spaces are Banach algebras.

2. Notations and technical preliminaries.

Throughout this work 42 denotes a nonempty, bounded, open sub-
set of Rn, (n &#x3E; 1), such that fxidx = 0, Vi = 1,...,n, m denotes a
nonnegative integer, p denotes a real number &#x3E; 1 and A denotes a
real number such that 0  ~  1. S~ is the closure of S2, 8Q its bound-
ary and v is the unit outward normal to 8Q at any regular point of
8Q. Unless explicitly stated otherwise, we use the summation con-
vention, i.e., a summation from 1 to n must be understood when an
index is repeated twice.
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The gradient of a function v = (~==1....~ is denoted by
Dv, i. e. , we set 

’

where The divergence of a function
S~ is denoted by diver, i.e., we set

The following notations are standard. is the space of (classes
of) measurable functions v: S2 -~ R such that IVIP is Lebesgue-integrable,
while Wm,p(Q) is the (Banach) space of elements v of such that,
for loci cm, the weak derivatives D"v belong to equipped with
the norm

where 11 - is the usual norm of If Q has the cone property
if there exist positive constants a, h such that for any x E S2 one

can construct a right spherical cone with vertex x, opening a, and
height h such that it lies in S~), and if mp &#x3E; n, then is a

Banach algebra, y i. e. ,

where cm,v is a positive number independent of u and v (see Adams [1],
Th. 5.23). denotes the (Banach) space of real functions of
class C- on D such that, for loci Dxv satisfies on Q a Holder con-
dition of exponent ~, with the norm

We say that Q is of class C- [resp. Cm,’], with if D is a sub-
manifold of with boundary of class Cm [resp. C,4,I], i.e., if for each
x E aSZ there exists an open neighborhood U,, of x in Rn and a dif-
feomorpbism tx of class Cm [resp. Cm,,’] of Uae onto the ball ($ e 3Egn :

I 1} of Rn, such that r1 Uz) = {~ c- Rn: ~)  1, ~n&#x3E;O}. It is easy
to see that, if S~ is of class C’, then it has the cone property.
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If Q is of class C- and s is a real number such that 0  we

can consider the spaces for a definition of such spaces we

refer to Lions and Magenes [8] and to Adams [1], p. 215.
If S~ is of class CM,’, we denote by Cm,’(aS2) the space of functions

g: 8Q ~R such that gotxlE dx E where a = 1~1:1,
~n = 0}. On we consider the norm defined by

for a fixed choice of the family E aS21. It is easy to check that
different families give equivalent norms. One can prove (see [14], y
Osservazione 1) that, if S~ is connected and of class C1, then 
is a Banach algebra, i.e.,

where cm Â is a positive number independent of u and v. _

If v = (vi)i=1,...,n belongs to and to respec-

tively, we set

We denote by Q the set of n X n real orthogonal matrices, i. e. ,
the set of real matrices q = such that q* q = 1, where q*
is the transpose of q and 1 is the unit matrix.

We denote by 8 the set of n X n skew-symmetric real matrices.

8 will be regarded as a subspace of Rn2.
Moreover we denote by Jt the set of the functions r = 

~ -~ Rn such that ri(x) = ci -f- 8ijxj , with CiE Rand 
In conclusion, we recall the statement of the implicit function

theorem in Banach spaces, which we will use later.

IMPLICIT FUNCTION THEOREM. Let X, Y, Z be Banach spaces, U an
open subset ot X X Y and let f : U - Z be a continuously differentiable
function. Let (xo, yo) E U be such that f (xo, yo) = 0 and that the differen-
tial, d1Jf(xo, Yo), of the function y ~ f (xo, y) at yo be a bijection of Y
onto Z. T hen there exists an open neighborhood ZTo of (xo , in X X Y
contained in TI, an open neighborhood Vo of Xo in X and a continuously
dif ferentiable function g : Y such that ZIo : f (x, y) = 0~ _
- ~(x, y) : x E Vo, y = g(x)}. Moreover, the differential, dg(xo), of g at x,
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is given by

where yo ) is the differential at Xo of the function f (x, yo) .

3. Formulation of the Problem and statements of the main results.

Let (x, y) - a(x, y) = a function from Q X Rn2.
to R"’ such that

Moreover, let f = be a function from Sz to Rn and let

g = be a function from 8Q to Rn. If the functions and
u: are suitably smooth, we set, for any 

where I is the identity of D into itself. Let V be a real parameter.
We consider the problem of finding u : S~ --~ Rn such that

where .A. (u) v is the function of 8Q into Rn defined by

We remark that in the case n = 3, Problem (P) corresponds to
the a dead traction problem » of non linear elastostatics. In the physical
context, S2 represents a fixed reference configuration of an elastic

body, u is the displacement from I + u is the deformation cor-
responding to u, a defines the response of the material, in the sense
that ac(x, 1-f- is the first Piola-Kirchoof stress at the point
x E S~ when the body is deformed by I + u, f is the body force per
unit volume, and g is the surface traction per unit surface area in
the reference configuration S2.
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On the function a we consider the further hypotheses (3.2) (3.3)
and (3.4), suggested by the physical problem from which our problem
arises.

Here y* is the transpose of the matrix y and a*(x, y) is the transpose
of the matrix 

In the physical context, the condition (3.1) expresses that the re-
ference configuration is that of a « natural state », while hypothesis (3.2)
derives from the principle of material frame-indifference, and (3.3)
derives from the symmetry of the Cauchy-stress. From (3.1) and
( 3 . 3 ) , it immediately follows

while combining (3.1) and (3.2) we obtain (see Gurtin [7]).

As far as f and g are concerned, we suppose that the pair ( f, g)
is equilibrated, in the sense that we have

This implies the symmetry of the astatic matrix of ( f, g), namely,
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of the matrix c = where

We assume that, if cl, ... , cn are the eigenvalues of the matrix c,
then Ci + e~ ~ 0 

It is easy to see that, in the case n = 3, such hypothesis is equi-
valent to the condition det C22 + ~33))~=i,2,3=~ ~? where
3;; = 1 if i = j 0 if i =1= j. The mechanical interpretation
of such a condition is that the « load» (I, g) does not possess an axis
of equilibrium (see Stoppelli [9] ).

In order to obtain local results of existence and uniqueness for
Problem (P ) , a natural choice of the space for ( u, f , g ) might seem to
be the following where 
is the strong normed dual of But because of the arguments
exposed in [13] and [15], this choice is unfortunately not fruitful for
our purposes; while suitable choices of the space for (u, f, g) are (as
we shall see) the following: X X ~~) )n
with p (m + 1 ) &#x3E; n, and ( Cm+2’~’(,5G) )n X ( C~’~’(Sd) )n X ( Cm+1~~( a,~G) )n.

Let us set

and

We now give the statements of the main results. 
’

THEOREM 3.1. Assume that Q is of class C-+2, that p(m + 1) &#x3E; n,
that a E and that (3.1), (3.3), (3.4) and (3.6) apply.
Moreover, let (f, g) E .1"m,~ be such that, if Cl’...’ Cn are the eigenvalues
of the matrix c de f ined by (3.7), then ei -r- c~ ~ 0 i =F j.
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Then there exist two positive numbers r and e such that there is one
and only one family satisfying
the conditions

for every DE if we set uo = 0, then the map
is continuously differentiable.

COROLLARY 3.1. Under the hypotheses of the previous theorem, there
exist two positive numbers r and e such that, if 0  |V| C r, Problem (P)
has one and only one solution u E (Wm+2,p(Q))n such that f u dx = 0
and lIullm+2,f)  e. 

S2

THEOREM 3.2. ,Assume that S~ is connected and of class Om+3, that
a E xRn2) )n2 and that (3.1), (3.3), (3.4) and (3.6) apply. More-

over, let (f, g) E F m,Â be such that, if c1, ... , Cn are the eigenvalues of the
matrix c defined by (3.7), then ei -E- Cj =1= 0 whenever i ~ j.

Then there exist two positive numbers r and to such that there is one
and only one family with (Om+2,Â(Q) )n, satis f ying the
conditions

s‘

.h2crthermore, if we set uo = 0, then the map P H uo of [- r, r] into
is continuously differentiable.

COROLLARY 3.2. tlnder the hypotheses of the previous theorem, there
exist two positive numbers r and e such that, if 0  10 c r, Problem (P)
has one and only one solution u E (C-+2,2(fl))n such that fu dx = 0 and

0

Corollaries 3.1 and 3.2 are straightforward consequences of Theo-
rems 3.1 and 3.2 respectively. The proof of Theorem 3.1 is given in
section 7. Theorem 3.2 can be proved in a quite analogous way (using
Theorems 5.2 and 6.1) ; therefore we will not give its proof.

4. Preliminary lemmas.

If the functions ac : lii X Rn2 and u : Rn are suitably smooth,
we consider the functions SZ - R and Aij,hk(U): SZ --~ R, (i, j,
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h, k = 1, ... , n ) , defined by

By considering that (see Adams [1], Th. 5.4) can be

continuously imbedded into when SZ has the cone property and
p(m + 1) &#x3E; n, it is easy to prove the following.

LEMMA 4.1. Assume thai Q has the cone property and that

is a continuously
ii

dit f erentiable operator of into Rnl when p(m + 1) &#x3E; n [in
particular, of (Cm+2,Â(,Q))n to Rnl] and its differential at any point u
is the operator

We now recall the statements of two differentiability results holding
for Sobolev and Schauder spaces (see [15], Cor. 5.1 and Cor. ~.2 ).

LEMMA 4.2. Assume that Q has the cone property, that p(m + 1) &#x3E; n

and that a E (Cm+2(Q xRn’) )n’ [resp. that Q is connected and of class C’
and that a E (0-+s(fl X Rn’) )n’. Then u f4- div A(u) is a continuously dif-
ferentiable operator of ( W-+2,2,(S2) ). into [resp. o f 
into ( Cm~~(S2) )~~ and its differential at any point is the operator v «

LEMMA 4.3. Assume that Q is of class Om+2, that p (m + 1 ) &#x3E; n and

that a E ( Cm+2(Q xRn’) )nl [resp. that Q is connected and of class C-+2,1
cand that ac E (Cm+3(Q Then u ~ A (u)v is a continuously dif-
f erentzabte operator of ( Wm+2’p(S2) )n into [ref3p. of

I and its differential at 0 is the operator

PROOF. In [14] (see Theorems 1 and 2) it has been shown that,
under our assumptions, u - Au is a continuously differenti_able op-
erator of (W-+2,P(Q)), into [resp. of into

and its differential at any point u is the operator v ~
Thus, it suffices to show that the linear
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So the continuity of r; from is proved. L7

5. Local theorems of existence and uniqueness for a modified boundary
value problem.

For technical reasons we always assume (without loss of generality)
that the astatic matrix c = of (f, g) defined by (3.7) is

diagonal. 
’ ’ ’

Let be a C°°-function verifying the fol-
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lowing conditions:

L where no summation is understood .

Such a function certainly exists.

PROPOSITION 5.1. Assume that Q is of class C1 and that a E 
X Rn2) )n2. There exists one and only one operator .E = (Eï;)i,;=l,...,n of

into 8 such that the pair
-E- E(u) h, - A (u) v) is equilibrated (see sect. 3). Here

Operator E is de f ined by

(where no summation with respect to i and j is understood) Moreover,
u « E(u) is a continuously differentiable operator f rom (Wm+2,p(Q))n to 8
when p(m + 1) &#x3E; n, and consequently f rom (Om+2,ít(Q))n to 8.

PROOF. Fix arbitrarily E with p(m + 1) &#x3E; n. Note

that, being p(m + 1) &#x3E; n, ‘Y~m+2,p(S~) can be continuously imbedded
into (see Adams [1], Th. 5.4), and therefore it is easily seen
that Au E Let now s = (Sï;)i,j=l,...,nE 8 and set sh =
= Imposing that the pair (div A(u) + sh, 2013~i(~)~) be
equilibrated and recalling the properties of h, we deduce with ease
that Sij is exactly the right hand-side of (5.1).

The second part of the statement follows immediately from Lem-
ma 4.1. 0
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If v E V m,f’ (in particular if v E Vm a) and s = S, we
will denote by s ) , (i = 1, ... , n ) , the real function defined in .S~ by

THEOREM ~_.1. Assume that ,SZ is of class Om+2, that p(m --E- 1 ) &#x3E; n,
that a E (Om+2(QxRn2))nS and that a verifies (3.4), (3.5) and (3.6) . If
(f, g) E F m,fJ’ then there exist an open neighborhood ’’GY of 0 in x 8 X R,
an open neighborhood 8 of 0 in 8, an open neighborhood R of 0 in R
and a C’ macp v of into such that

where

PROOF. Let (t, g) E .F,n,~: We begin by observing that, from Lem-
mas 4.1, 4.2 and 4.3 it follows that the operator

maps into is continuously differentiable and the
differential at zero of the operator v « (div 0 ) ) + 0 ) )h +
-}-0~2013~.(y(~0))~+0~) is (by the hypothesis (3.5)) the operator

Note that E Then from Theorem A.1 of the ap-

pendix it follows that the operator (5.5) is an isomorphism of V,,,,,
onto F,,,,,, because of the hypoteses (3.4), (3.5) and (3.6). Furthermore
operator (5.4) vanishes at ( o, 0, 0 ) , and hence we can apply the implicit
function theorem to the equation (div s ) ) + s))h 
- .~. y~ ( v, s ) v -f - ~g~ _ ( o , 0 ) near the point ( o, 0, 0 ) , so obtaining the
desired result. C7

Analogously, using Lemmas 4.1, 4.2 and 4.3 and Theorem A.2
of the appendix, we can prove the following
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THEOREM 5.2. Assume that Q is connected and of class C-+2,1 , that
a E X and that a verifies (3.4), (3.5) and (3.6). I f (f, g) E
E then there exist an open neighborhood W of 0 in 
an open neighborhood S of 0 in S, an open neighborhood R of 0 in R
and a C’ map v of S x R into V m,Â such that (5.3) holds.

6. A relation between the set of solutions of Problem (P) and the set
of solutions of the modified problem.

LEMMA. 6.1. Assume that Q is of class C’ and that a E ( C1(SZ 
Moreover let

particular,

it follows that

and therefore (see (5.1)) (6.1) implies

Moreover, ( 6.3 ) implies ( 6.1 ) if and only i f (6.2) holds.

PROOF. Using the divergence theorem, from (6.1) we easily deduce
that

Then (6.1) implies (6.2), because (f, g) is equilibrated. The second
part of the statement is an immediate consequence of ( 5.1 ) . D
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implies

if and only if the pair (v, s) veri f ies

where no summation with respect to the indices i and j is understood.
of condition (6.6) holds in the case V = 0 too.

PROOF. We will prove the theorem for Sobolev spaces. In the
case of Schauder spaces, the procedure is exactly the same.

First of all we remark that (6.6) is equivalent to

To justify this equivalence it suffices to recall that we have as-

sumed that (f, g) is equilibrated and that the astatic matrix of ( f, g),
defined by (3.7), is diagonal.
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We now prove the existence of two neighborhoods V’ and of 0
in and 8 respectively such that if (v, s) E V’ x S’ then (6.4) implies
(6.5). Let ( v, s, ~ ) E V m,p x 8 x R. Using the divergence theorem, it is
not difficult to verify that from (6.4) it follows that

if i = j 0 if The penultimate integral
vanishes because of the hypothesis (3.3). Therefore, from (6.4) it

follows that

Thus, if ( v, g, 0) E x 8 x R and (6.4) applies, then ( 6. 7 ) , or (6.6)
as well, gives

where
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We shall consider for any (v, s) E V m,v x 8 the linear operator n(v, s)
8 - 8 defined by

The determinant of this operator is a continuous function in

because the functions ggi, defined by (6.9) are evidently
continuous in Moreover, since it is easy to verify that

then det ;r(O, 0) =1= 0 (because of the hypotheses made on h at the
beginning of section 5).

Therefore there exist V’ and S’, where Tr’ is a neighborhood of 0
in Ym,p and S’ a neighborhood of 0 in 8, such that det 7r(v, s) ~ 0, V(v,

Then, if the kernel is trivial.
Hence by (6.8) we have (i, j = 1, ..., n), for any

(v, s) E By Lemma 6.1 this is enough to conclude that con-
dition (6.6) is sufficient in order that (6.4) imply (6.5) when 
E 

We now prove that condition (6.6) is necessary in order that (6.4)
imply (6.5) at any E V’ X S’ X R with 0 =A 0. We note that by
calculations analogous to those developed at the beginning of the
proof, y from (6.5) it follows that

To complete the proof it sufficies to note that the last integral
vanishes in virtue of hypothesis (3.3) on the function a. 0
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7. Proof of Theorem 3.1.

Let W, S, R and V m,2’ be as in the statement of Theo-
rem 5.1, and let V’ and S’ be as in the statement of Theorem 6.1.
Without loss of generality we can assume that V’ and S’ are such that

and where R’ is a suitable

neighborhood of 0 in R with Then, if we set W’ = Y’ x’ 
from Theorem 5.1 we evidently derive that

To simplify the notation we set

We remember that we have assumed (see section 5) that the ma-
trix c defined by (3.7) is diagonal.

We now set bij = cii (i, ~ = 1, ... , n), where no summation
is to be understood, and consider the function r : defined

by

where no summation is to be understood. We remark that con-
dition (6.6) of Theorem ( 6.1 ) takes the form T(~)==0. 7: is of
class C1, being a composite of functions of class Ci; furthermore

T(0,0)=0.
We denote by the diff erential at 0 of the function 

r(~ 0) of Sf into S, by the diff erential at 0 of the function

~~-~(~0) of S’ into by the diff erential at 0 of
the function v « M(v, 0, 0 ) of V m,2J into F m,2J’ and by ~~)~f(0,0y0)
the differential at (0, 0) of the function ( s, ~ ) ~ .l~l ( O, s, ~ ) of 8xR
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where no summation with respect to the indices i and j is to be
understood. In fact, since the function v is of class C1, we have (see
the statement of the implicit function theorem in section 2)

and hence 0) (s) = 0, since Aii,kl(O) =0 - The last

equality derives from the hypothesis (3.6).
We recall that we have supposed 0 when i ~ j ; hence the

function s 1-+ 0 ) (s) of 8 into 8 is an isomorphism. Consequently,
by the implicit function theorem, y there exist an open neighborhood
.R" of 0 in R, contained in .R’, an open neighborhood S" of 0 in 8
contained in ~S’, and a function of class H from to S’
such that

Then let us set uo= y~w(s(~), ~ ), g(t5)). The is

continuously differentiable from 1~" to ( m+2’p(SZ) )n since it is com-

posite of functions of class Cl. Moreover u, = 0.
Fixed (arbitrarely for now) a positive number e, let r be a positive

number such that Since
s maps R"(C R’) into ~S’, by the definition of uo we derive that

up = so), with and E ~S’ x R’. Then, from (7.1)

from (7.2) it follows that z~ ( s ( ~’ ) , ~ ) = 0 and therefore by Theorem 6.1,
(3.8) holds. Furthermore we have , because ~ and

We now proceed to prove the uniqueness of 
is suitable.
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be the functions of Ran into R defined by

t be the function defined by
setting

Since this function is evidently continuous, then B+-( V’ X 8" X R")
is an open neighborhood of the origin in (Wm+2,p(Q))n x R. Hence
there 0 such that, if we set 3 = E x R :

where r is related to e as above, then we have
Therefore, if and 19 are such

that V) E J, (u’, and such that (~c,~, ’l?) and (u’, V) satisfy
Problem (P), then by ( 7.1 ) and (7.2), it follows that u, = u’, VO E
e[--~]B{0}. 0

Appendix : isomorphism theorems for a linear matrix differential operator.

Let (i, j, h, k = 1, ..., In), be real functions defined in SZ. We
consider the (linear) matrix differential operator L = 
where 

’

and the boundary matrix operator B = (Bih)i,~-1,...,n~ Where

Recall that v is the unit outward normal to 8Q at any regular
point of 8Q. We set

and we remark that, putting - = lijhk(X), the operator
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(5.5) is exactly ; so the con-

ditions (3.4), (3.5) and (3.6) take the form

- (L*, B*), then T* is the formal adjoint to T.

REMARK A.l. Assume that ~2 has the cone If the 
lijhk are continuous in Q and verify (A.2), then L is uniformly strongly
elliptic and T has the complementing property (as given by Agmon,
Douglis and Nirenberg [2]).

PROOF. If the functions are continuous on D, from (A.2) it

easily follows that there exists a positive number c1 independent of x
and ~ such that for every and every 
symmetric real matrix a = · Clearly, this implies that L
is uniformly strongly elliptic and that

On the other hand, it is well-known (see Gobert [6]) that, if Q
has the cone property, then the following (Korn’s) inequality holds:

where c, is a positive number independent of v. Combining (A.3)
with (A.4) we get

where Cg is a positive number independent of v. It is possible to prove
(see Thompson [12], Theorem 12) that (A.5) implies that T has the
complementing property. D
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REMARK A.2. Let lii of class C-+2 and [resp. Q of
class Cm+3 and li j hk E Cm+1’~(S~) ] . T hen T and T* are continuous operators

[resp. if (.A..2 ) applies, then 
I

PROOF. As far as the first part of the statement is concerned,
we can refer to the proofs of Lemmas 4.2 and 4.3. Since Djri +
-f- Di rj = 0, Vr e jt, the symmetries = ljihk and = imply,
respectively, y jt ç Ker T and Jt C Ker T*. In order to prove that

Ker T C Jt when (A.2 ) applies, we can suppose p&#x3E;2. Indeed, if Tu = 0
and E for some PI &#x3E; 1, then U E (’’Ghm+2~~(S~) )n, Vp &#x3E; 1,
in virtue of a regularizing result of Browder (see [3], Theorem 1).
Then let p&#x3E;2 and suppose that (A.2) applies. From Tu = ( f , g) it

follows (by the divergence theorem) that

Combining (A.3) with (A.7) we get

Hence, from Tu = 0 it follows that Djui -f- Djuj = 09 Vi, j =
= 1, ... , n, namely, that u E because A is the kernel of the operator

(see, e.g., Fichera [~] ). Thus Ker T C 9i,.

Analogously one can prove that Ker T* -C Jt when (A.2 ) applies. C7

REMARK A.3. Let Q of class C’ and Zi j hk E The symmetries
lijhk Iiihk [resp. lijhk = liikh] imply that Tu [resp. is equilibrated
(see section 3) for any u E ( W2’~(,S~) )n.

PROOF. Let !iihk and u E (’GY2’p(S~) )n. Then from (A.7) it

follows that
S.

where ( f , g ) = Tu, and this

immediately yields that Tu is equilibrated. Analogously we can see
that = liikh implies that T* u is equilibrated for any u E (W2,p(S2))-n.
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With Remarks A-1, A.2 and A.3 in mind, it is possible to prove
the following Theorems A.1 and A.2 on the ground of well-known
estimates for elliptic boundary value problems (see Agmon, Douglis
and Nirenberg [2], Theorems 9.3 and 10.5). A proof of Theorems ,A.1
and A.2 can be developed, e.g., by the procedure of Browder [3].

THEOREM A.1. Let Q of clacss Cm+2 and let liihkE be such

that (A.2) applies. T hen the operator T defined by (,A.1 ) is an iso-

morphism (for the topological vector structures) of onto F’m,9.

THEOREM A.2. Let Q of class Cm+2 and let be such

that (A.2) applies. Then T is an isomorphism (for the topological
vector structures) of V.,,a onto F m,Â.

For the definitions of Y~,~, and see sect. 3.
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