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On Neumann’s Problem for a Quasilinear Differential
System of the Finite Elastostatics Type.
Local Theorems of Existence and Uniqueness.

M. LANZA DE CRISTOFORIS - T. VALENT (¥*)

1. Introduction.

This paper concerns the Neumann’s boundary value problem for a
quasilinear differential system of the type of finite elastostatics. More
precisely, let 2 be a bounded open subset of R, let » be the unit out-
ward normal to 92 and let a: 2 xR” — R, f: Q —R" and g: 02 —R"
be given functions with a(x,1) =0, Vo€ 2. Then we deal with the
problem of finding u: 2 — R» such that (see sect. 3)

(P) divdAdw)+9f=0 in 2, —Au)v+39¢g=0 on 092,

where A(u)(x) = a(x,1 + Du(x)), Ve € 2, Du = (D;w;); ;_4, ., and &
is a real parameter. When » = 3 this problem corresponds to the
«dead traction problem » of finite elastostatics.

The main achievements we reach are local theorems of existence
and uniqueness in Sobolev spaces and in Schauder spaces (see Theo-
rems 3.1 and 3.2, and Corollaries 3.1 and 3.2). We obtain such results
assuming that, if ¢,,..., ¢, are the eigenvalues of the « astatic » matrix
of (f,g) defined by (3.7), then ¢;+ ¢, 0 whenever 4 == j.

On the function @ we only make hypotheses suggested by the
physical problem from which our problem arises, thus avoiding ar-
tificial assumptions.

(*) Indirizzo degli AA.: Seminario Matematico Universitd di Padova -
Via Belzoni 7 - 35100 Padova (Italy).
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Our results are essentially generalizations in various directions of a
result of Stoppelli[11]. In fact, what we use throughout is a basic
idea of [11], while it seems to us that the method previously devised
by Stoppelli in [9] does not lead to a satisfactory uniqueness result
(indeed, we do not see how the theorem stated at the end of section 10
in [9] can be derived from the existence and uniqueness theorem
stated in section 9).

The starting point consists of a suitable modification of Problem (P)
above which leads to another problem apt to be locally studied by
iterated applications of the implicit function theorem. In effect, if
we seb

P(u,9) = (div A(uw) + 9f, — A(u)v + 9g),

we cannot directly apply the implicit function theorem to the equation
P(u,?#) = 0 in order to express  as a function of &4 near (0,0) when
the symmetries (3.6) hold, as we suppose. Indeed, from (3.6) it follows
that the partial differential d,P(0,0) takes « equilibrated » values (see
section 4 and Remark A.3 of Appendix), while the values of P are
not « equilibrated ».

We begin by replacing the operator P by the operator

N: (u, )~ (div A(w) + E(u)h + 9f, — A(u)y + d9),

where h is a suitable R*-valued function defined in £ and F is an
operator with values in the space of n X n skew-symmetric real matrices
and is such that the pair (div.A(u) + E(u)h + 9f, — A(u)y + dg) is
¢ equilibrated ».

Now, under our hypotheses, the kernel of the linear operator
d,N(0,0) is the set of functions 7= (7;);_;, . n: £ —R" such that
ri(®) = ¢; + 84;@;, Vo € 2, where ¢;c R and (8;);;=1,.,» 18 an nXn
skew-symmetric real matrix (see sect. 5 and Remark A.2 of Appen-
dix). Note that each u € (W1(£2))" can be obviously written in a uni-
que way in the form u(@) = (vy(2) + 8:;%;);=1,...,n, Where s = (8;); -1, ...
is an n X n skew-symmetric real matrix and v = (9,);—,, . € (W¥(2))
and verifies the conditions

f(D,m——D,m,)da: —0, Vij=1,...,n.

Q
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By the above considerations it is convenient to regard u as the
pair (v,s) and therefore to introduce the operator

M: (v,8,9)— (div A(p(v,8)) + B(y(v,8))h+ 9f, — A(p(v,8))» + 19g) )

where (v, s) is the R"-valued function defined in 2 by (v, s)(x) =
= (0:(®) + 8%, )s-1,...,n-

The implicit function theorem applied to the equation M (v, s, ¢) = 0
gives o locally as a function, say ¥, of s and 9.

At this point, we study the relation between the solutions of the
(modified) equation M(v,s,?¥) =0 and those of the (original) equa-
tion P(y(v,s),#) =0, and we show that y(d(s,?),s) is a solution
of Problem (P) for (s, #) close enough to (0, 0) if and only if z(s, %) = 0,
where v is a suitable Rr-valued operator (see sect. 7). Then, an
application of the implicit function theorem to the equation z(s, ) = 0
allows to express s as a function of ¥ near (0,0). Consequently, we
locally obtain the solution % of Problem (P) as a function of 4, and
thus we attain to Theorems 3.1 and 3.2 and to Corollaries 3.1 and 3.2.

The choice of spaces for solutions and data which are suitable
for a local treatment of Problem (P) requires a study of problems
of differentiability of operators of various types, and of isomorphism
problems for a divergence type linear matrix differential operator, in
Sobolev spaces and in Schauder spaces. (For the latter problems see
appendix.) In proving the differentiability of the nonlinear operators
we deal with, an important role is played by the fact that (under
suitable assumptions on p and Q) the Sobolev spaces Wm?(Q) and
the Schauder spaces 0™*(2) are Banach algebras.

2. Notations and technical preliminaries.

Throughout this work 2 denotes a nonempty, bounded, open sub-
set of R*, (n>1), such that J.widm =0,Vi=1,...,n, m denotes a
Q

nonnegative integer, p denotes a real number > 1 and A denotes a
real number such that 0 < A<1. @ is the closure of £, 022 its bound-
ary and v is the unit outward normal to 02 at any regular point of
0f2. Unless explicitly stated otherwise, we use the summation con-
vention, i.e., a summation from 1 to n must be understood when an
index is repeated twice.
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The gradient of a function v = (v;);_,, . ,: 2 —R" is denoted by
Do, i.e., we set

Dy = (Divi)vi,a’=1,...,n7

where D;v; = 0v;/ox;. The divergence of a function ¢ = (64,);4-1,.. n°
0Q —R" ig denoted by divo, i.e., we set

dive = (Di045)i=1,....;n

The following notations are standard. L?(£2) is the space of (classes
of) measurable functions v: 2 — R such that |v|? is Lebesgue-integrable,
while Wm2() ig the (Banach) space of elements v of L?(£2) such that,
for |¢|<m, the weak derivatives D*v belong to L*(£2) equipped with
the norm

[olmo= 2 [D*v]o,5

le|<m

where |- |, is the usual norm of L?(£2). If 2 has the cone property
(i.e., if there exist positive constants «, h such that for any x € 2 one
can construct a right spherical cone with vertex x, opening o, and
height h such that it lies in Q), and if mp > n, then Wmz(2) is a
Banach algebra, i.e.,

u, v € Wm(Q) = wve Wro(Q), | u0]mp <Cm,s|lms|]mo

where ¢, , is a positive number independent of « and v (see Adams [1],
Th. 5.23). (™%Q) denotes the (Banach) space of real functions of
class O™ on 0 such that, for |x|<m, D*v satisfies on 2 a Holder con-
dition of exponent A, with the norm

|Dxv(x') — Dxv(2”)|

V| 2= sup |D*v(x)| + ; sup
H ”m oS e I ] = w',w"e?) Iw/__ wllll
x' £

We say that Q is of class O™ [resp. O™*], with m>1, if Q is a sub-
manifold of R* with boundary of class C™ [resp. C™"], i.e., if for each
x € 082 there exists an open neighborhood U, of # in R* and a dif-
feomorphism ¢, of class O» [resp. C™*] of U, onto the ball {£eR":
|&| <1} of R~ such that t,(2 N U,) = {£eR": |§| <1, £,>0}. Ttis easy
to see that, if £ is of class C!, then it has the cone property.
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If Q2 is of class C™ and s is a real number such that 0 < s<m, we
can consider the spaces W*?(0£2): for a definition of such spaces we
refer to Lions and Magenes [8] and to Adams [1], p. 215.

If Q is of class O™* we denote by 0™*(0£2) the space of functions
g: 022 — R such that got;le C™*(0), Vo€ 02, where 0 = {£€R": |£|<1,
&,=0}. On C™*0R) we consider the norm defined by

"g m,4,002 — sup “got;1" omi(a)
2€0Q

for a fixed choice of the family {t,: x € 02}. It is easy to check that
different families give equivalent norms. One can prove (see [14],
Osservazione 1) that, if £ is connected and of class C?, then Cm™H(Q)
is a Banach algebra, i.e.,

u,vE C,p 1 (2) = wve C, 4(2), A <C | % o, 2]V 25

where ¢,, ; is a positive number independent of « and v.
If v = (v;);-,, belongs to (Wm2(2)) a.nd to (O™*(Q2))* respec-

tively, we set llvllm,— Z 1vilm,o a0d [[2],2= 2 1villn,2-
=1

=1

We denote by @ the set of n xXn real orthogonal matrices, i.e. 2
the set of real matrices ¢ = (qi;);;-1,...., Such that ¢g*q = 1, where ¢*
is the transpose of ¢ and 1 is the unit matrix.

We denote by S the set of n xn skew-symmetric real matrices.
§ will be regarded as a subspace of R

Moreover we denote by R the set of the functions r = (7,);-;,. ,a*
Q2 —R* such that r(2) = ¢; + s,,4;, with ¢,;eR and (8,);;-1,. €S-

In conclusion, we recall the statement of the implicit function
theorem in Banach spaces, which we will use later.

IMPLICIT FUNCTION THEOREM. Let X, Y, Z be Banach spaces, U an
open subset of X XY and let f: U — Z be a continuously differentiable
function. Let (x,,4,) € U be such that f(x,,y,) = 0 and that the differen-
ttal, d,f(%o,¥,), of the function y > f(x,,vy) at y, be a bijection of Y
onto Z. Then there exists an open neighborhood U, of (%,,%,) tn X XY
contained in U, an open neighborhood V, of x, in X and a continuously
differentiable function g: Vo— Y such that {(z,y)€ U,: f(x,y) = 0} =
= {(®,y): veV,y,y = g(»)}. Moreover, the differential, dg(w,), of g at @,
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is given by
dg(zo) = — (dyf(wo, ?/o))—l°dzf(woa Yo) -

where d,f(x,,y,) is the differential at x, of the function x — f(x, y,).

3. Formulation of the Problem and statements of the main results.

Let (2,9) — a(2,y) = (@:;(2, ) ); j=1,...n be a function from Q2 xR~
to R"* guch that

(3.1) a(z,1)=0, Vzel.

Moreover, let f = (f;);_1, ., be a function from 2 to R* and let
g = (g:)i-1,...,n De a function from o2 to R, If the functions a and
u: 2 — R are suitably smooth, we set, for any z e Q,

A(u)(x) = a(@, DI + u)(@)) [= a(x, 1 + Du(z))],
where I is the identity of 2 into itself. Let © be a real parameter.
We consider the problem of finding u: 2 — R* such that

div A(u) +9f =0,
(P) [

—A(u)y +9¢ =0
where A(u)y is the function of 02 into R" defined by
(A(w)v)(@) = (a:s(2, 1 + Du(®))95(@))i-1,....n -

We remark that in the case » = 3, Problem (P) corresponds to
the « dead traction problem » of non linear elastostatics. In the physical
context, 2 represents a fixed reference configuration of an elastic
body, « is the displacement from 2, I -+ u is the deformation cor-
responding to u, a defines the response of the material, in the sense
that a(x, 1+ Du(w)) is the first Piola-Kirchoof stress at the point
z € £ when the body is deformed by I+ u, f is the body force per
unit volume, and ¢ is the surface traction per unit surface area in
the reference configuration Q.
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On the function a we consider the further hypotheses (3.2) (3.3)
and (3.4), suggested by the physical problem from which our problem
arises.

(3.2) a(z,qy) =qa(z,y) for any (z,y)eQXR” and ¢€@Q,
(3.3) a(x,y)y*=ya*(z,y) for any (v,y) € IXR™,

(3.4) % (®,1)04;00>0  for any ze and
hk

g = ((7,-,'),;,5=1’_“,"€ R"’\{O} such that O = Oji

Here y* is the transpose of the matrix y and a*(«, y) is the transpose
of the matrix a(z, y).

In the physical context, the condition (3.1) expresses that the re-
ference configuration is that of a « natural state », while hypothesis (3.2)
derives from the principle of material frame-indifference, and (3.3)
derives from the symmetry of the Cauchy-stress. From (3.1) and
(3.3), it immediately follows

0a,;
a?/hk

0a;; ~
(@, 1) = 2 (%,1), Vzelf,

hk

(3.5)

while combining (3.1) and (3.2) we obtain (see Gurtin [7]).

da; ) _
% (51) = 2% (1), Veed.
0Yxn

(3.6)

As far as f and g are concerned, we suppose that the pair (f, g)
is equilibrated, in the sense that we have

[t@) do + [g(@) do =0,
Q o2

J@d @ —a1@) do+ [(@g(@) —o,00) do=0, §j=1,.,n.
Q a2

This implies the symmetry of the astatic matrix of (f, g), namely,
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of the matrix ¢ = (¢:;); -1, Where

(3.7) 0u=[2.1,(@) do + [0.9,(@) do
02

Q2

We assume that, if ¢,,...,c, are the eigenvalues of the matrix e,
then ¢; 4+ ¢;5= 0 whenever 4 = j.

It is easy to see that, in the case n» = 3, such hypothesis is equi-
valent to the condition det (¢;;— 0:;(¢11 + €22 + €35) )i j—1,0,57 0, Where
0;=1if i =4 and d,,= 0 if 454 j. The mechanical interpretation
of such a condition is that the «load » (f, g) does not possess an axis
of equilibrium (see Stoppelli [9]).

In order to obtain local results of existence and uniqueness for
Problem (P), a natural choice of the space for (u,f, g) might seem to
be the following (W12(R2))» x (W-12(R) )" X (W-42(2))", where W-1*(Q)
is the strong normed dual of Wy?(£2). But because of the arguments
exposed in [13] and [15], this choice is unfortunately not fruitful for
our purposes; while suitable choices of the space for (u,f,g) are (as
we shall see) the following: (Wr+22(Q) ) X (Wm2(R2))r x (Wmt1-1/22(50Q) )»
with p(m + 1) > n, and (Cm+2A(Q))» X (C™4(£2))" x (Cmt14(002) ).

Let us set

Vo= 0 € (Wnt2a(2))*: |vde =0, |(D;v,— D,v,)de =0,
{ :')" f ,j=1,.., n}
F,,={(f, 9) € (Wm»(Q))» X (Wm+1-1»2(0Q))": (f, g) is equilibrated},

and

V= foe (Omsx @) [ode =0, f (D, v, — D,v;) da = 0,
pe) h,j=1, }

Fop= {(f, 9) € (Om*(2))" X (Cm+14(02))": (f, g) is equilibrated} .

We now give the statements of the main results.

THEOREM 3.1. Assume that 2 is of class Cmt2, that p(m + 1) > n,
that a € (Om+2(Q xRY))"" and that (3.1), (3.3), (3.4) and (3.6) apply.
Moreover, let (f,g) € F,,, be such that, if ¢,..., ¢, are the eigenvalues
of the matrixz ¢ defined by (3.7), then ¢; + ¢;5% 0 whenever = j.
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Then there ewist two positive numbers r and o such that there is one
and only one family (Ug)oci—r,anjopy With uge (Wntao(Q))n, satisfying

the conditions ju,,dm =0, |Us|piop<o and
Q

div A(us) + 9f = 0
(3.8) {

for every & € [— r,r]1\{0}. Furthermore, if we set u,= 0, then the map
&> uy of [—r,r] into (Wmt22(Q))" is continuously differentiable.

COROLLARY 3.1. Under the hypotheses of the previous theorem, there
exist two positive numbers r and o such that, if 0 < [§]|<r, Problem (P)
has one and only one solution we (Wmt22(Q))* such that fu dr =0
and |u]m 0 <e- 2

THEOREM 3.2. Assume that £ is connected and of class C™t3, that
a e (Cm3(Q xR™))** and that (3.1), (3.3), (3.4) and (3.6) apply. More-
over, let (f,g) e F,, ; be such that, if ¢,,..., ¢, are the eigenvalues of the
matriz ¢ defined by (3.7), then ¢; + ¢;5= 0 whenever © = j.

Then there exist two positive numbers r and g such that there is one
and only one family (Us)sei—,, oy With use (Cm+24(Q))n, satisfying the
conditions fu,, dx = 0, |Us|mye,1<0, and (3.8) for every & € [—r,r]\{0}.

2
Furthermore, if we set uy= 0, then the map 9+ ug of [—r,r] into
(C"‘+2’*(.G))" 18 continuously differentiable.

COROLLARY 3.2. Under the hypotheses of the previous theorem, there
exist two positive numbers r and o such that, if 0 < |P|<r, Problem (P)
has one and only one solution w e (Cm+24(0))" such that fu dx =0 and

Q

J]msz,<e-
Corollaries 3.1 and 3.2 are straightforward consequences of Theo-
rems 3.1 and 3.2 respectively. The proof of Theorem 3.1 is given in

section 7. Theorem 3.2 can be proved in a quite analogous way (using
Theorems 5.2 and 6.1); therefore we will not give its proof.

4. Preliminary lemmas.

If the functions a: 2 X R — R"* and u: Q —Rrare suitably smooth,
we consider the functions A;;(u): Q >R and 4, . (uw): @ >R, (4,7,
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h,k=1,...,n), defined by

2a,
Ay(u)(®) = a5(2, 1+ Du(@)),  Aum(u)(@) = 5;— (@, 1 + Du(@)) .

By considering that (see Adams[1], Th. 5.4) Wnt2»(Q2) can be
continuously imbedded into C%(£2) when 2 has the cone property and
p(m + 1) > n, it is easy to prove the following.

LEMMA 4.1. Assume that £2 has the cone property and that
a e (0Y(2XR™))". Then u+> (f(A,-,(u) dm))i,i=1,...,'» is a continuously
Q

differentiable operator of (Wmtz2(Q))* into R** when p(m + 1) > n [in
particular, of (C™t>*(Q))* to R"'] and its differential at any point u
48 the operator

V= ( fA,-j,hk(u).Dk’Uh dw)
Q

,i=1,...,n

We now recall the statements of two differentiability results holding
for Sobolev and Schauder spaces (see [15], Cor. 5.1 and Cor. 5.2).

LEMMA 4.2. Assume that 2 has the cone property, that p(m + 1) > n
and that a € (Cmt2(Q2 xR""))** [resp. that 2 is connected and of class C*
and that a € (C™3(Q xR™))*. Then w > div A(u) is a continuously dif-
ferentiable operator of (Wmt22(2))r into (Wm»(£2)) [resp. of (Cmt24(2))"
into (C™*))"] and its differential at any point is the operator v —
g (Di(Dk’UhAu,hk(’"') ))1'=1,...,n'

LEMMA 4.3. Assume that Q is of class Cmt2, that p(m + 1) > n and
that a € (C™t2(Q xR~") )" [resp. that Q2 is connected and of class Cmt2?
and that a € (Cm3(Q xR™))"']. Then w > A(u)y is a continuously dif-
ferentiable operator of (Wmt22(Q))» into (Wmti-Uro(5Q)) [resp. of
(Cmt2 X)) into (Cm+140Q))r] and its differential at O is the operator
0> (v D03 A5 50(0) )icy, e

ProoF. In[14] (see Theorems 1 and 2) it has been shown that,
under our assumptions, u —> Au i8 a continuously differentiable op-
erator of (Wnt22(Q)) into (WmtLe(Q))** [resp. of (Om+»*£)) into
(Om+14(2))™] and its differential at any point u is the operator v
> (Dxvadispe(%)); i1, n- Thus, it suffices to show that the linear
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operator T;: w > W|s0v;, (j =1,...,m), where w e WntL2() [resp. we
€ Cm+1A(Q)], maps WntLe(Q) into Wmti-1Ues(30Q) [resp. Cm14(Q) into
Ont+14(90)] and is continuous. For this purpose we first consider the
case of the Sobolev spaces. Let N: R"— R"” be a function of class
Ont1 extending ». Evidently, if we Wmtbr(Q), then wN,; € Wnil2()
and there exists a positive number ¢; independent of w such that
N[ y2,0 < C5]|W|mya,5- Since wN; e Wntto(Q), then, by a well-known
trace theorem (see Lions and Magenes [8], Theorem 5.1), (wN;){s0 €
€ Wnt1-1/n2(3Q) and there exists a positive number ¢; independent
of w such that | (wN;)|selmi1-1/s.0,00 <G| WN;|mi1,0y Where |- |mis 0,00
denotes a norm on Wmt1-1r2(9Q) defining its topology. Hence, ob-
serving that wN;|,o= w|s07;, We have ”wla!)”j"m+1—1/a»,p,an<050;||w”m+l,r
Thus 7; i8 continuous from Wmts(Q) to Wmti-Un»(9Q). We now
prove that the operator 7; is continuous from C=+L4((Q) to Omt1:4(00).
Accordingly, for any x € 02 let U, and ¢, be respectively a neigh-
borhood of # in R* and a differomorphism of class C™+1:* of U. onto
the ball {£ € R": |£|<1} such that t,(2 N U,) = {£eR": |§| < 1, £,>0};
obviously wot;'e Omt1%(g), where o = {£eR": |£|<1, &,= 0}. Now, »,€
€ Cm+1490) and therefore v;of;' is an element of Cmtb(g). Since
Cmt1.4(g) is a Banach algebra (see section 2), we have (w|sov;)ot;' €
€ Cm1(0) and  |(w]agi) otz mir,a,0<Cmin, a0t s 1,0,01750t [ mr1,3,00
where ¢, i8 a positive number independent of w. Then

lw]o@vi]|m+1,2,6 = sUD | (wlaev;) otz | mr1, 1,6 <
2€00Q

< sup "wot;l”m+],2,a sup ""’5°t;1"m+1,z,a= "w]aal]m+1,1,69"1’5"m+1,2,an .
z€0Q z€0Q

So the continuity of 7; from O=+14(Q) to C™*+149Q) is proved. O

5. Local theorems of existence and uniqueness for a modified boundary
value problem.

For technical reasons we always assume (without loss of generality)
that the astatic matrix ¢ = (¢;;);;-1,.,» Of (f,g) defined by (3.7) is
diagonal.

Let h = (h);_1, . .t 2 —R"* be a C~-function verifying the fol-
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lowing conditions:

fh,.(x)zo, (E=1,...,m)

2

fw,-hj(mdw:o, (B, =1, .0y mj 0 )
2

f(wih’i(w) +mjhj(w))dw7é0, (T gy =1y.cym; L5 G),
2 where no summation is understood. .

Such a function certainly exists.

PRrOPOSITION 5.1. Assume that 2 is of class C* and that a € (01 (2 x
XR¥))"'. There exists one and only one operator E = (Ey);;-1,.. n of
(Wmt22(Q))» with p(m + 1) > n into 8 such that the pair (div A(u) +
+ B(u)h, — A(u)v) is equilibrated (see sect. 3). Here

E(u)h = (Eﬁ(u)hi)i=1,...,n .

Operator E is defined by

1
~ [@hi(@) + @ k(@) do
Q

(5.1) E;(u)

~f(aij(m, 1 + Du(x)) — a;(@, 1 + Du())) do,

2

(where no summation with respect to ¢ and j is understood). Moreover,
u > B(u) is a continuously differentiable operator from (Wmt2(Q))nto §
when p(m + 1) > n, and consequently from (Cm+2*Q))" to 8.

Proor. Fix arbitrarily u € (W=+22(Q2))" with p(m 4 1) > n. Note
that, being p(m + 1) > n, Wnt22(Q) can be continuously imbedded
into C1(2) (see Adams [1], Th. 5.4), and therefore it is easily seen
that Aue (Wb2(Q))". Let now s= (8i);;-1,.,.€S and set sh=
= (84s1;);-1, ., Imposing that the pair (div A(w) + sh, — A(u)v) be
equilibrated and recalling the properties of k, we deduce wich ease
that s;; is exactly the right hand-side of (5.1).

The second part of the statement follows immediately from Lem-
ma 4.1. O
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If ve V,, (in particular if ve V, ;) and s = (84,);;-1,.. 4€ S, We
will denote by y,(», 8), (¢ =1, ..., n), the real function defined in 2 by

(5.2) (v, 8) (@) = v;(®) + 8,2 .

THEOREM 5.1. Assume that Q is of class C™t2, that p(m + 1) > n,
that a € (Om+2(QXR""))** and that a verifies (3.4), (3.5) and (3.6). If
(f,9) € P, ,, then there exist an open neighborhood W of 0 in V,, , X SXR,
an open meighborhood S of 0 in S, an open neighborhood R of 0 in R
and a C map ¥ of SXR into V,, such that

(8.3)  {(v,s8,) e W: (div A(yp(v, s)) + E(y(v, 8))h + 9,
— A(yp(v, 8) )y + 9g) = (0, 0)} = {(v, s, P): (s, %) € SXR, v = (s, 9)} ,

where p = (9:)i_1,.. n, and p; is defined by (5.2).

Proor. Let (f,g) € F,,: We begin by observing that, from Lem-
mas 4.1, 4.2 and 4.3 it follows that the operator

(5.4)  (v,8,9) > (div A(yp(v, 8)) + E(y(v, 8))h + 9,
— A(yp(v,9))v + g)

maps V,,xSxR into F, ,, is continuously differentiable and the
differential at zero of the operator vi— (div A(y(v,0)) + E(y(v,0))h +
+ 0f, — A(p(v, 0))» + Og) is (by the hypothesis (3.5)) the operator

(6.5) v ((D}(—Dkthi:i,hk(O)))i=l,...,n ’ (— ’VjDk’UhAﬁ,hk(O))i=1,...,n) .

Note that 4, ,.(0) € Cmt1(0). Then from Theorem A.1 of the ap-
pendix it follows that the operator (5.5) is an isomorphism of V,,
onto ¥, ,, because of the hypoteses (3.4), (3.5) and (3.6). Furthermore
operator (5.4) vanishes at (0, 0, 0), and hence we can apply the implicit
function theorem to the equation (div A(y(v,8)) + E(y(v, s))h + 9,
— Ay(v, 8)y 4 #g) = (0, 0) near the point (0,0,0), so obtaining the
desired result. 0

Analogously, using Lemmas 4.1, 4.2 and 4.3 and Theorem A.2
of the appendix, we can prove the following



196 M. Lanza de Cristoforis - T. Valent

THEOREM 5,2. Assume that Q2 is connected and of class Cmt2A that
a € (0™3(QxR") )" and that a verifies (3.4), (3.5) and (3.6). If (f,g)
€ F,, ;, then there exist an open neighborhood W of 0 in V,, ;X SXR

an open neighborhood S of 0 in 8, an open neighborhood R of 0 in R
and a C* map ¢ of SXR into V,, ; such that (5.3) holds.

6. A relation between the set of solutions of Problem (P) and the set
of solutions of the modified problem.

LEMMA 6.1. Assume that Q is of class C* and that a € (C1(2 xR™))»",
Moreover let u e (Wmta2(Q2)), with p(m + 1) >n, and (f,9) € F,, (in
particular, u € (C™t»*Q))* and (f,g) € F,,,,,l). Then from
(6.1) (div A(w) + Of, — A(u)v + 9g) = (0, 0)

it follows that

(6.2) f (aus(, 1 + Du()) — ayi(e, 1 + Du(z))) de =0,
2
Vi,j=1,...,m
and therefore (see (5.1)) (6.1) implies
(6.3) (div A(u) + E(u)h + 0f, — A(u)y + 9g) = (0,0) .
Moreover, (6.3) implies (6.1) if and only if (6.2) holds.

Proor. Using the divergence theorem, from (6.1) we easily deduce
that

?[(@f(@) — 2,i)) do + 9 [(0.9,(0) — 0,9,(0)) do =
Q a2
=J(a,,.(m, 1 + Du(x)) — ay(z, 1 + Du(w) )) dx
2

Then (6.1) implies (6.2), because (f, g) is equilibrated. The second
part of the statement is an immediate consequence of (5.1). O
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THEOREM 6.1. Let Q be of class ' and ac€ (042 XR™))" such
that (3.3) applies. Assume that (f, g) € F,,,, with p(m + 1) > n [respec-
tively that (f, g) € Fp,;]-

Then there exist a meighborhood V' of 0 in V,, [respectively
in V] and a neighborhood 8' of 0 in 8 such that, if (v,s)e V'x8’
and & %0, then

(6.4) (div A(y(v,8)) + B(p(v,8))h + 9, — A(yp(v,8))v + ﬁg) = (0,0)
implies
(6.5) (div A(p(o,8)) + 9, — A(p(v, 8))v + 9g) = (0, 0)

if and only if the pair (v,s) verifies

6.6) s [(aefi(@) + 2,1,@)) do + [(w:g:(@) + 2,9,(0)) do) +
Q a2

Q2

+ [ (0@ 1,(@) — vi(@) fu(@)) da + [(04(2)g,(0) — vs(@)g.@)) do = 0 ,
02
Vi,j=1,...,m,

where no summation with respect to the indices ¢ and j is understood.
Sufficiency of condition (6.6) holds in the case & = 0 too.

Proor. We will prove the theorem for Sobolev spaces. In the
case of Schauder spaces, the procedure is exactly the same.
First of all we remark that (6.6) is equivalent to

67 [((@+ @) + su) fi@) — (2, + v,(@) + 820) f(0)) do +

2
+[((@+ 0i@) + 802:)9,(@) — (2 + v4(0) + 5,2:)gu(@)) do =0,
a2
Viyj=1,...,m.

To justify this equivalence it suffices to recall that we have as-
sumed that (f, g) is equilibrated and that the astatic matrix of (f, g),
defined by (3.7), is diagonal.
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We now prove the existence of two neighborhoods V' and 8’ of 0
in V,,, and S respectively such that if (v,s)e V' x 8’ then (6.4) implies
(6.5). Let (v,s,%)€ V,,xX8xR. TUsing the divergence theorem, it is
not difficult to verify that from (6.4) it follows that

ﬁj((mi + vi(x) + Suxz)fi(x) — (”:i + v;(%) + Sjlml)fi(x)) dow +
0
+ ﬁf((wi + vi(®) + Silxl)ga'(w) — (wa' + v;(x) + 3:‘1«”1)91‘(‘”)) do =
R
ZJ.((ém + Dyypi(v, 3))Aih(’ﬂ('vy 3)) - (6:ih + Dyyp;(v, s))Aih(¢(”7 $) )) de —
Q

—f((wc + vi(®) + 3iz$z)E5k('P(va 3))”%(”) -
Q
— (@4 v3(@) + 8,m:) Ba( (v, 8)) (@) de,

where 6,,=1 if ¢ =j and d,,= 0 if ¢~ j. The penultimate integral
vanishes because of the hypothesis (3.3). Therefore, from (6.4) it
follows that

0[((“'5 + v,() + silml)fi(w)— (“7:' + v;(x) + Silxl)fi(m)) de +
Q

+ ﬁf((“}i + vi(2) + Sua'/'t)!]a'(w) - (mi + v;(x) 4 Snwz)g,-(w)) do =

82

= —f((wz + vi(®) + 3izwz)E;‘k(?]1(v, 8))hk(x) —
Q

— (@ + 0,(@) + 8,8) Ba(p(0, ) he(®)) d .

Thus, if (v, s, #) € V,n,, XS XR and (6.4) applies, then (6.7), or (6.6)
as well, gives

(6.8) Eik(’/’(")’ 8))(Pilc(vy s)— Eik(y)(”? 3))(I7ik('v7 8) =0,

(t,j=1,...,m),
where

(6.9) (v, 8) = | (@, + v,(®) + 8.2) he() diw .

Q
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We shall consider for any (v, s)e ¥, , X 8 the linear operator w(v, )
8 — § defined by

7 (v, 8)((wii)i,5=l,...,n) = ('wik??ik(”y 8) — Wi @ix(v, 3))1,5:1,...,7» .

The determinant of this operator is a continuous function in
Vs XS, because the functions ¢, defined by (6.9) are evidently
continuous in V,,%x 8. Moreover, since it is easy to verify that

det 7(0,0) =] f (hi(®)2; + hy(2);) da

1<J
Q2

then detw(0,0)5= 0 (because of the hypotheses made on % at the
beginning of section 5).

Therefore there exist V' and 8', where V' is a neighborhood of 0
in V,,, and 8’ a neighborhood of 0 in 8, such that det n(v, 8) <0, V(v,
s)e V'x8'. Then, if (v,s)e V'x8’, the kernel of m(v,s) is trivial.
Hence by (6.8) we have KE,(y(v,s))=0, (i,j=1,...,n), for any
(vy8) € V'xS'. By Lemma 6.1 this is enough to conclude that con-
dition (6.6) is sufficient in order that (6.4) imply (6.5) when (v,s,8) €
e V' x8 xR.

We now prove that condition (6.6) is necessary in order that (6.4)
imply (6.5) at any (v,8,3) e V' X8’ XR with &£ 0. We note that by
calculations analogous to those developed at the beginning of the
proof, from (6.5) it follows that

79]((“'{ + vi(@) + saw)fi(x) — ("L'a' + v;(x) + Snwz)fi(m)) dz +
Q
+ ﬂf((wi + vi(x) + 'gilxl)gi(x) - (“99' + (@) + szwz)gi(w)) do =
Y]
=f((6ik + Dy (v, s))A,-,,(w('v, 3)) - (5ﬂc + Day;(v, 3)) Aih(‘l)("’, 3))) dw ,
Q
where 6,,=1 if i =j and 6,,=0 if ¢%7.

To complete the proof it sufficies to note that the last integral
vanishes in virtue of hypothesis (3.3) on the function a. O
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7. Proof of Theorem 3.1.

Let W, 8, R and 4: S XR — V,,, be as in the statement of Theo-
rem 5.1, and let V' and 8’ be as in the statement of Theorem 6.1.
Without loss of generality we can assume that V' and 8’ are such that
8'cl8, VX8 xR'CW and 6(8'xR')C V', where R’ is a suitable
neighborhood of 0 in R with R’ C R. Then, if we set W' = V' X8’ X R/,
from Theorem 5.1 we evidently derive that

(7.1)  {(v,8,8)e W': (div A(p(v, 5)) + B(p(v, 8))b + 5f,
— A(p(v,9))v + 9g) = (0,00} = {(v, 5,8): (5,8) € §'X R, v = (s, D)} .

To simplify the notation we set M(v,s,?) = (div A(p(v,8)) +
+ E(y(v, 8))h + 9f, — A(p(v, 8))v + 09) for any (v,8,9) €V, X SXR.

We remember that we have assumed (see section 5) that the ma-
trix ¢ defined by (3.7) is diagonal.

We now set b;; = ¢;; + ¢;;, (4,7 =1,...,n), where no summation
is to be understood, and consider the function 7: 8’ X R'— § defined
by

o(s,8) = (subus + [(6ils, 0)1,— b,(s, )1.) do +
Q2

+ [ 99— 805,990 o),

seees?
oR

where no summation is to be understood. We remark that con-
dition (6.6) of Theorem (6.1) takes the form z(s,9#)=0. 7 is of
class C!, being a composite of functions of class C'; furthermore
7(0,0) = 0.

We denote by d,z(0,0) the differential at 0 of the function s+
7(s,0) of §' into S, by d,6(0,0) the differential at 0 of the function
s+—>9(s,0) of §' into V,,, by d,M(0,0,0) the differential at 0 of
the function v — M(v,0,0) of V,,, into F,,, and by d M (0,0, 0)
the differential at (0,0) of the function (s,?) M(0,s,?) of SXR
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into F,,. If s = (8);;-1,. €S, We have

— (@80, 0)(s)), f:(@)) do + [((&6(0, 0)(s)).9,(2) —
aQ

— (@,6(0,0)),9:@)) do), = (subi)i=1,.ms

seeey

where no summation with respect to the indices ¢ and j is to be
understood. In fact, since the function ¢ is of class C!, we have (see
the statement of the implicit function theorem in section 2)

d,9(0, 0)(s) = (0, 0)(s, 0) = — ((d, (0, 0, 0))*0d, 4, M(0, 0, 0)) 5, 0)

and hence d,9(0,0)(s) =0, since A, :(0) = A4,;:(0)=0. The last
equality derives from the hypothesis (3.6).

We recall that we have supposed b;;= 0 when ¢5=j; hence the
function s+ d,7(0,0)(s) of 8§ into S is an isomorphism. Consequently,
by the implicit function theorem, there exist an open neighborhood
R" of 0 in R, contained in R’, an open neighborhood 8" of 0 in §
contained in §’, and a funection of class C* & — §(®) from R’ to §’
such that

(7.2)  {(s,#) e 8" xXR": 7(s,9) =0} = {(5,9): De R", s = §(9)} .

Then let us set us= 1/)(6(§(19),z9),§(19)%.v The function & u, is
continuously differentiable from R’ to (Wmt+2?(Q))* since it is com-
posite of functions of class Cl. Moreover u,= 0.

Fixed (arbitrarely for now) a positive number g, let r be a positive
number such that [—7,r]CR" and |us|misn<o, V& €[—r,7]. Since
8§ maps R'(CR') into S’, by the definition of w, we derive that
Us = p(vy, 85), With vs= 9(s,, ) and (sy,?) € 8’ XR'. Then, from (7.1)
we get (div A(uy) + E(us)h + 9f, — A(us)v + 9g) = (0,0). Moreover
from (7.2) it follows that 7(8(d),?) = 0 and therefore by Theorem 6.1,
(3.8) holds. Furthermore we have f ugdx = 0, because f vedxr = 0 and
J.a: de =0,Vi=1,

We now proceed to prove the uniqueness of (uy)sei—r, r\joyy if ©
is suitable.
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Let =;, (j =1,...,n), be the functions of R” into R defined by
7;(x) = x;. Trivially m;&€ Wmt22(0Q),

Let B: (Wt22(Q2))» xR — V,,, X 8 XR be the function defined by
setting

1
B(u, 0) = ((’M,— m ﬂkf(.Dk'u,——' D,uk) dm)i=1’.”,n,
2

1
2 mis .Q(f(Dkui_ D) dw)i,k=1,...,n’ ?9) )

Q

Since this function is evidently continuous, then B*(V'X 8" X R")
is an open neighborhood of the origin in (Wmt»7(Q))*xR. Hence
there exists ¢ > 0 such that, if we set J = {(u, #) € (Wm+»#»(Q))" XR:
%] my2p <oy |#|<r} where r is related to o as above, then we have
JCB(V'X8"XR"). Therefore, if (4s)9c;_y ) a0 (%p)ge;—y, are such
that (ug,?) € J, (us,?) €I and such that (us,?) and (us,?) satisfy
Problem (P), then by (7.1) and (7.2), it follows that wy,= uy, V&€
e[—r,7N{0}. O

Appendix : isomorphism theorems for a linear matrix differential operator.
Let Uk, (3§, by k =1,...,n), be real functions defined in 2. We

consider the (linear) matrix differential operator L = (L);s=1,..
where

Ly=— D;(lijnDr)
and the boundary matrix operator B = (B);4-1,. ., Where
Bin= Linxv; Dy .

Recall that » is the unit outward normal to 82 at any regular
point of 00Q. We set

(A.1) T = (L, B)

and we remark that, putting — (9a.;/0y:) (%, 1) = l;;s:(), the operator
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(8.5) is exactly v > Tv = ((Li¥)i=1,... s (Bin®s)iz1,...,n); 80 the con-
ditions (3.4), (3.5) and (3.6) take the form

li:’hk - liihk == lijlrh )
(A.2) Line(®) 0500 >0  for every zef and every mXm sym-

metric real matrix o = (04)i=1,..,n -

If we set Uy, = luessy Liy = — D;(UinaDs)y By = Upyv; Dy, and T* =
= (L*, B*), then T* is the formal adjoint to 7.

REMARK A.1l. Assume that Q2 has the cone property. If the functions
Lisne are continuous in Q and verify (A.2), then L is uniformly strongly
elliptic and T has the complementing property (as given by Agmon,
Douglis and Nirenberg [2]).

Proor. If the functions l,;,, are continuous on £, from (A.2) it
easily follows that there exists a positive number ¢, independent of «
and & such that 1;,.(®) 000> ¢ o2 for every z€Q and every nxmn
symmetric real matrix ¢ = (04s); 1, .., Clearly, this implies that L
is uniformly strongly elliptic and that

n
(A.3) fl,-,th,-v,-Dkvh dr>0, Y |D;vi+ Divylls., Voe (WL2(Q))".
sl
2

On the other hand, it is well-known (see Gobert [6]) that, if £
has the cone property, then the following (Korn’s) inequality holds:

A4)  [olia<a(lolda+ 3 1D+ Dol

=1

32), Vve(Wn@),

where ¢, is8 a positive number independent of ». Combining (A.3)
with (A.4) we get

(A.5) fliihkl)j’oil)k'vh dw + |95 2> )03, Ve (Wh2(Q)),
2

where ¢; is a positive number independent of ». It is possible to prove
(see Thompson [12], Theorem 12) that (A.5) implies that T has the
complementing property. 0O
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REMARK A.2. Let Q of class Om+2 and 1;5.€ Om+1(D) [resp. Q of
class O3 and 15, O+ 4 Q)]. Then T and T* are continuous operators
from (Wmt22(Q))n [resp. (Cm24(Q))"] to (Wm2(Q))" X (Wmti-1p2(3Q) )
[resp. (O™*Q))»x (C™+402))"]. Moreover, if (A.2) applies, then

(A.6) Ker T = Ker T* = R..

Proor. As far as the first part of the statement is concerned,
we can refer to the proofs of Lemmas 4.2 and 4.3. Since D;r;+
+ D;r;= 0, Vre R, the symmetries 1,5, = i and 1,z = U2, imply,
respectively, RKCKer T and RCXKerT*. In order to prove that
Ker T C R when (A.2) applies, we can suppose p>2. Indeed, if Tu = 0
and u e (Wnt22:(Q))* for some p, >1, then ue (Wnta2(Q)) Vp > 1,
in virtue of a regularizing result of Browder (see [3], Theorem 1).
Then let p>2 and suppose that (A.2) applies. From Tu = (f,g) it
follows (by the divergence theorem) that

(A7) f fo0; do -+ f g:0; do = f limeDywn Dyv,dw,  Vve (Wo(Q)).
Q2 oR 2

Combining (A.3) with (A.7) we get

2
0,2

ffiui dx +J.giui do> 01.2": [D;u; + D;uyl
Q o0

1,d=1

Hence, from T =0 it follows that D;u;-+ D,u;=0, Vi, j=
=1,...,n, namely, that v € R, because R is the kernel of the operator
u > (D;u, + Du;); m,..,n (800, e.g., Fichera [5]). Thus Ker T C R.
Analogously one can prove that Ker 7*C R when (A.2) applies. 0O

REMARK A.3. Let Q of class O and ;€ C(2). The symmetries
Lisnie = Lisnie [1€8D. Uijnx = lijun)] smply that Twu [resp. T*u] is equilibrated
(see section 3) for any ue (W?(2))".

Proor. Let ljne=ljme and we (W2»2(2))". Then from (A.7) it
follows that f]‘m dz -|-fgm do = 0, Vr e R, where (f, 9) = Tu, and this
Q2 R

immediately yields that Tu is equilibrated. Analogously we can see
that lia = lijwy implies that T*u is equilibrated for any u e (W22(£2))".
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With Remarks A.1, A.2 and A.3 in mind, it is possible to prove
the following Theorems A.1 and A.2 on the ground of well-known
estimates for elliptic boundary value problems (see Agmon, Douglis
and Nirenberg [2], Theorems 9.3 and 10.5). A proof of Theorems A.1
and A.2 can be developed, e.g., by the procedure of Browder [3].

THEOREM A.1. Let Q of class Cm*2 and let ;€ Cm+(Q) be such
that (A.2) applies. Then the operator T defined by (A.1l) is an iso-
morphism (for the topological vector structures) of V., , onto F,, 5.

THEOREM A.2. Let Q2 of class Cm2 and let ;€ Cm+14 Q) be such
that (A.2) applies. Then T 4s an isomorphism (for the topological
vector structures) of V,, , onto F,, ;.

For the definitions of V,,, V1, Fu, and F, ; see sect. 3.
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