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On the Connection between the Real and the Complex
Interpolation Method for Several Banach Spaces.

J. I. BERTOLO - D. L. FERNANDEZ (*)

SUMMARY - The objective of this paper is to exhibit some connections bet-
ween the real and the complex interpolation method for 2n Banach spaces.
A version of the Lions-Peetre interpolation method for 2n Banach spaces
and some properties of the complex method involving multiple Poisson
integrals are presented. Applications to spaces with a dominant mixed
derivatives are given.

Introduction.

The study of the intepolation spaces of several Banach spaces by
real methods has been made by Yoshikawa [15], Sparr [14] and Fer-
nandez [4], and by complex method by Lions [7], Favini [3] and
Fernandez [5].

The aim of this paper is to exhibit some connections between the
real and the complex interpolation methods for several Banach spaces
and to give applications to the spaces with a dominant mixed deri-
vative.

First we give a version of a real interpolation method among 2n
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UNESP 13500 - Rio Claro - San Paolo (Brasil) and D. L. FERNANDEZ: Insti-
tuto de Matematica - UNICAMP - Caixa Postal 6155 - 13100 Campinas -
San Paolo (Brasil).

The second author was supported in part by a grant from the CNPq-
Brasil (Proc. 111.1600/78).
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Banach spaces along the lines of Lions-Peetre [8]. These spaces thus
constructed are similar to some studied by one of the authors in [4]
and [6]. We recall the definition of the complex method for 2" Banach
spaces and then give some new properties of these spaces along the
lines of Calder6n [2] and Peetre [13]. Using the Hausdorff-Young
theorem for Ll spaces with mixed norms, as given by Benedek-Pan-
zone in [1], and borrowing some ideas from Peetre [13] we give a
connection between the real and the complex interpolation space

among 2n Banach spaces. As a by-product we show that for Hilbert
spaces the two interpolation spaces coincide. Our development is

carried out in the context of the LP spaces with mixed norms of

Benedek-Panzone [1].
As an application of the theory we give some relationships between

the Lipschitz spaces of Nikol’skii [1-l-] and of potential spaces of

Lizorkin-Nikol’skii [10].

1. Generalities on interpolation for 2n Banach spaces.

Let us denote by D the set of such that

kj = 0 or 1. We have 0 = {O, 1} when n = 1, and D = {(O, 0), (1, 0),
(0,1 ), (1,1)} when n = 2. The families of objects we shall consider
will take indices in D.

We shall consider families of 2n Banach spaces E D) embed-
ded in one and a same linear Hausdorff space V. Such a family will
be called an admissible family (of Banach spaces (in V)).

If lE = E n) is an admissible family of Banach spaces, the
linear hull I E and the intersection n E can be introduced in the
usual way. They are Banach spaces under the norms

and

The spaces Y E and n E are continuously embedded in V.
A Banach space .E which satisfy

will be, called an intermediacte space (with respect to E).
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(Hereafter c will denote continuous embeddings).
A pair of Banach spaces (E, .F’), intermediate respect to the admis-

sible families l~ _ (Eklk E D) (in V) and F = (F, Ik E D) (in W ) respec-
tively, has the interpolation property if for every linear mapping from
I E into I F such that

it follows that

(we agree that -7 will denote bounded linear mappings).

REMARK. Observe that T : implies

2. The real interpolation spaces (E; O ; P) .

Let E= E D) be an admissible family of Banach spaces.
For t = (tl, ... , in) &#x3E; 0 and k = ... , kn) e D we set tk = tk,... tnn.
For y E n E we define

Observe that J(l,..., 1; y) = and for each t fixed, J(t; y) is
a functional norm in n E.

Now, let us denote by Lr the LP space, on Ri = 
with respect to the Haar measure d*t = dt1/tl ... dtn/tn . If .~ is a

Banach space, L:(F) is the Z~ space of the strongly measurable func-
tions such that L: . For notations and results

on LP spaces, with mixed norms see [1].
With the above notation we have the following proposition.

PROPOSITION 2.1. Assume that

, then the following conditions are equivalent

and
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PROOF. Indeed, the following inequalities hold:

and

Now, we introduce the spaces ( E ; O ; P).

DEFINITION 2.2. We de f ine (E; e; P) to be the space of all elements
x E ! E for which there exists ac f unction ~c : with II u(t) 111 E E .L* ,
which satisfy 2.1 ( 1 ) or 2.1(2) and 8uch that

PROPOSITION 2.3. The space (E; 8; P) is an intermediate Banach

space under any one of the following equivalent norms

where the in f imum is taken on all u which satis f y 2.2 (1 ) .
It will be convenient to work also with an interpolation space

slightly more general than the spaces (E; e; P ) just introduced.

DEFINITION 2.4. Let E = (Ek/k E D) be an admissibte family of

=(9iy...y~)l) we define the space o f all 

f or which there is a f unction U: Rj - n E with U e such
that 2.2(1) holds and the following conditions are satis f ied

We equip ( E ; O ; P) with the norm
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We see at once that the following proposition holds.

PROPOSITION 2.5. it follows that

The spaces (E; O ; P ) and (E; O ; P) have the so called interpolation
property. For the proof and further properties of these spaces see
Fernandez [4] and [6].

3. The complex interpolation spaces [E; 0].

We shall recall briefly the notion of the complex method of inter-
polation for 2n Banach spaces. For the proofs see Fernandez [5].

Let E= (Ek jk E D) be an admissible family of Banach spaces.

3.1. The spaces of all 5~ E-valued functions f (z) defined, continuous
and bounded on the n-strip Sn (product of n unit strips)

which are holomorphic on the interior of with respect to the norm

of I E, and such that f (k + it) E Ek and are Ek-continuous and boun-
ded for all k E 0 will be denoted by H(E).

The space endowed with the norm

becomes a Banach space.

This spaces is a intermediate Banach space under the norm

Also, the spaces [E; 0] have the interpolation property.
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EXEMPLE 1. Let Po = (Po, ..., Pl) and Pl = (Pi, ..., Pi) be given
with Consider (Pk)kED the sequence of admissible

powers associated with Po and Pi (Pk = (Pki, ... , P~~, ... , Pkn) where
k = 0 or 1), and set

where

be the space

If (Sklk E D) is a family of admissible parameters associated with

is a family of admissible powers
associated with Po and P1, where

where

proof and details see [5].

4. A characterization of [E ; O] involving the Poisson kernel.

4.1. The Poisson kernels for the unit strip S will be denoted by
Po(s, y) and P,(s, y). They can be obtained from the Poisson kernel
for the half-plane by mapping conformally the half plane onto the
strip. Explicitly these kernels are

4.2. For k = (k,, ... , let us set the k-Poisson kernel for the
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poly-strip Sn:

here

PROPOSITION 4.3..l~or all f E H(E) and) &#x3E;
we have

PROOF. Let gk be a bounded infinitely differentiable function such
that

Let F be an analytic function such that

Such a function exists and Re {F(k + it)) = gk(t). Furthermore, the

differentiability of gk implies that F(z) is continuous in 0 ~ ~’ ~ 1.
Consequently

and since

it follows that

Consequently

and

Hence
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Takink now a decreasing sequence of functions gk,y converging to
+ respectively, and passing to the limit we obtain

the result.

COROLLARY 4.4. For f E H(E) and 0  S = (S1’ .., sn)  1, we have

where

PROOF. We observe that

From this and from Jensen’s inequality it follows that

for all Now, from 4.3(1) and these inequalities, we obtain

this gives 4.4(1).
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It remains to prove 4.4(2). The following inequality holds

This follows by induction from the well known case n = l :

Let us set

in the above inequality. Again, by 4.3 (1 ), and the above inequality
we get 4.4(2 ) :

PROPOSITION 4.5. Let a E [E; O] and f E H(E) be such that f(09) = a.
Suppo-ge that

where E D) is a f amily of admissible parameters associated to Qo
and QI and such that 1  Qk  00. Then

PROOF. Due to corollary 4.4 we have
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PROPOSITION 4.6 Let f be a continuous and E-valued

function on the polystrip Sn which is analytic on the interior of Sn and
such that

where E D) are admissible parameters, with 1 00, and asso-
ciated to Qo = ... , and QI = (q’, ... , q’). Then, i f f (0) = a tt

follows that a E [ lE ; ÐJ.

PROOF. The assertion will be done if we show that there is a

Cauchy sequence (aj) in [lE, 0] such that aj - a in ! E, as j -7 00.
Let (q;j) be a sequence of non-negative continuous functions on
such that

Now, let f be given as in the hypothesis, y and let us set

and

We shall show that Ii E H(E) and aj ErE; 0]. First, we observe that fix
is 1 lE-holomorphic in Also, it is bounded:

From Minkowski’s inequality, y we have

Since E the Hölder inequality implies that f j(k + it) is
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Ea-bounded:

This inequality also implies that + it) is Ek-continuous. Thus
it follows that f ~ E H(E) and consequently aj = E [E; e].

Now, the inequality

implies that
It remains to show that (aj) is a Cauchy sequence in [E; e]. We

shall use the inequality 4.5(2):

Now, given E &#x3E; 0, there is an integer N such that
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if Hence, for n, m ~ N it follows that

~ 

The proof is complete.

. The Hausdorff-Young theorem, for L’ spaces with mixed norm, and
spaces of type P.

We recall the Hausdorff-Young theorem in the form given by
Benedek-Panzone [1].

THEOREM 5.1. Let Ff be the Fourier trans f orm of f E and
such that Then

where 11P _-_ 1 and C(P) =1. I f 1 c P c 2 and the components
of P are not monotonically non-increasing then ~.1 (1 ) does not hold

for any C(P).

Now, following Peetre [13] and the above theorem we set.

DEFINITION 5.2. Let E be a given Banach space and P = (p,, ... , pn)
an n-tuple with 1 ~ pn  ... ~ pl ~ 2. I f for some constant C(P) it holds

that

for all f E LP(E), the space .E will be called of type P.

When p1= ... = p~ = p theorem 5.1, reduces to the usual Haus-
dorff-Young theorem, and the definition 5.2, coincides with Peetre’s
definition 2.1 in [13].

EXEMPLES 5.3.

5.3(1) Banach spaces are of type 1 = (1, ... , 1);

5.3(2) Hilbert spaces are of type 2 = {2, ... , 2);

5.3(3) (J. Peetre) the space is of type P if 1.P2;
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5.3(4) If Ek is of type Pk (k E D), where E D) is a family of
powers associated with Po and Pi, then 
is of type .P, where = ( 1- O/P2 .

Indeed, by hypothesis we have

Thus

But

and

5.3(5) If .E is reflexive then E and the dual spaces E’ are either
of type P.

6. A connection between the real and the complex method.

As in the case n = 1, we know that

where 1 = (1, ... , 1 ) and oo = (00, ..., 00). We shall give a generaliz-
ation of this result.

THEOREM (Eklk E D) be an admissible family of Banach
spaces and (P = (Pklk E D)) a f amily of admissible powers associated

with .Po and Pl. Now, if .Ek is o f type Pk, then

PROOF. We follow the ideas of [13] (see also [5]). Let a E (E; O; P)
and u = u(t) E E) such that



206

with

Let us set

the n-dimensional Mellin transformation of u.
We see that U(z) is a ~ E-valued holomorphic function with

But, by the change of variables tj = exp (- s~ ), we get

where v(s) = u (exp (-s)). But

and since Ek is of type Pk is follows that

By proposition 4.6 it follows that a E [E; 0].
CONVERSE. Let a c [E; 19]. Then, there is u c- H(E) such that

ac = = u ( 81, ... , 6J. Moreover u(k + iy) is E7,-bounded and conti-
nuous, for any k E 0. But, here we can replace u(z) by u(z) exp (z- e)2.
Thus we can suppose that
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If we set

(the inverse of the n-dimensional Mellin transformation) we shall have

and

We see the 2.2(l) and 2.4(l) are satisfied and thus a E (E; O ; P’ ) as
desired.

When the elements of an admissible family are Hilbert spaces
we have the following result.

THEOREM 6.2. Let H = E D) be an admissible family of Hil-
bert spacees. Then

PROOF. Since Hilbert spaces are of type 2 = (2, ..., 2) we have

7. Applications.

If .M- _ (ml, ... , mn) E liTn and 1  P = (pl, ... , pn)  oo, let us

consider the Sobolev Nikols’kii spaces (see [11]):

the potential space of Lizorkin-Nikols’kii i

(see [l0a) :
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Now, given ltl = (ml, ... , mn) E let (Mk)kEp be the family
of admissible parameters associated with .M = (m,, ..., m.) and
0 = (0, ..., 0) (that is = (mkl’ ..., mkn), with Mk, = 0 or m;). Let
us set

where 1 C P = (Pi, ... , p n ) C oo, 1 c Q = ( q, ... , q ) c oo, ~’ = (81 , ... , 8n)
and O - ( 8~, ... , On) with 6~ = Sj!mj, 0  =1, ... , n.

On the other hand we know that the spaces and are

isomorphic via the Mihlin-Lizorkin theorem ([9] and [10]). Thus,
we have

where S, Mk and P are given as above.
The Mihlin-Lizorkin theorem implies also that WM,P is isomorphic

to Thus, if lp~...pi2 and the spaces
P is of type P.

Now, by theorem 6.1 we have

Moreover, y theorem 6.2 implies that

The embeddings 7.0(1) and 7.0(2) hold for also P = 1 and P’ = oo,
but not by theorem 6.1.
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