RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

FRANCO PARLAMENTO

Binumerability in a sequence of theories

Rendiconti del Seminario Matematico della Università di Padova, tome 65 (1981), p. 9-12

http://www.numdam.org/item?id=RSMUP_1981_65_9_0

© Rendiconti del Seminario Matematico della Università di Padova, 1981, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Binumerability in a Sequence of Theories.

FRANCO PARLAMENTO (*)

Summary - In this note we answer a question raised by A. Ursini in [2]. In that work he defines a denumerable sequence of arithmetic theories Q_n , whose union is complete, and asks a question concerning the binumerability of the Δ_{n+1} relations in Q_n . We show that a relation is in Δ_{n+1} if and only if it is binumerable in Q_n .

We are going to follow the notations and terminology of [1] and [2]. In particular K_0 is the language of first order arithmetic, and a K-system is a set of sentences in the language K. $Prf_T(x, y)$ is the relation « y is a proof of x from axioms in T». Let's recall that, given a K-system, where $K_0 \subseteq K$, a numerical relation $R \subseteq \omega^n$ is called numerable in T is there is a formula $\varphi(x_1, \ldots, x_n)$ in K such that

$$R(k_1, ..., k_n)$$
 holds if and only if $T \vdash \varphi(\overline{k}t, ..., \overline{k}_n)$.

In that case we say that φ numerates R in T.

A relation R is binumerable in T if there exists a formula φ in K such that φ numerates R and $\neg \varphi$ numerates $\omega^n - R$.

The result expressed in the following proposition is obtained as a straigtforward application of the «Rosser trick».

PROPOSITION 1. Let T be a consistent K-system, where $K_0 \subseteq K$, such that $T \vdash x \leqslant \overline{n} \leftrightarrow x = \overline{0} \lor x = \overline{1} \lor ... \lor x = \overline{n}$ and $T \vdash x \leqslant \overline{n} \lor \overline{n} \leqslant x$. Let the relation $Prf_T(x, y)$ be binumerable in T and $R \subseteq \omega^n$.

(*) Indirizzo dell'A.: University of California, Berkeley, Cal. and Università di Torino.

If both R and $\omega^n - R$ are numerable in T then R is binumerable in T.

PROOF. For notational convenience let's suppose $R \subseteq \omega$. Let $\varphi(x)$ numerate R and $\psi(x)$ numerate $\omega - R$, and let Prf(x, y) binumerate $Prf_T(x, y)$ in T.

Consider then the following formula

$$\chi(x) = \exists y (Prf(\bar{\varphi}(\bar{x}), y) \land \forall z \leqslant y \neg Prf(\bar{\psi}(\bar{x}), z)).$$

We claim that $\chi(x)$ binumerates R in T. Since T is consistent it is clearly enough to show that

(i) if
$$k \in R$$
 then $T \vdash \chi(\overline{k})$,

and

(ii) if
$$k \notin R$$
 then $T \vdash \neg \chi(\overline{k})$.

(i) If $k \in K$ then $T \vdash \varphi(\bar{k})$, since φ numerates R in T, therefore for some $n \in \omega$, $Prf_T(\varphi(\bar{k}), h)$ holds and therefore

(1)
$$T \vdash Prf(\overline{\varphi(\overline{k})}, \overline{h}) .$$

On the other hand, since ψ numerates $\omega - R$, we have

$$orall i \leqslant h \; , \;\;\;\; T dash \lnot Prf(\overline{\psi(\overline{k})}, i)$$

and thus

(2)
$$T \vdash \forall z \leqslant \overline{h} \neg Prf(\overline{\psi}(\overline{k}), z) .$$

From (1) and (2) we have

$$T \vdash \chi(\bar{k})$$
.

(ii) Let's assume that $k \notin R$.

Since ψ numerates $\omega-R$ in T, we have $T \vdash \psi(\bar{k})$ and therefore, as above, for some $r \in \omega$

(3)
$$T \vdash Prf(\overline{\psi(\overline{k})}, \overline{r}) .$$

On the other hand for $i \leqslant r Prf_T(\varphi(\bar{k}), i)$ doesn't hold, hence, as

above

$$T \vdash \forall z \leqslant \overline{r} \neg Prf(\overline{\varphi(\overline{k})}, z)$$
.

Therefore

(4)
$$T \vdash Prf(\overline{\varphi(\overline{k})}, y) \rightarrow \neg y \leqslant \overline{r}.$$

From (3) and (4) we have

$$T \vdash Prf(\overline{\varphi(\overline{k})}, y) \rightarrow \exists z \leqslant y \, Prf(\overline{\psi(\overline{k})}, z)$$

namely

$$T \vdash \neg \chi(\bar{k})$$
.

In [2] two sequences $\{Q_n: n \in \omega\}$ and $\{R_n: n \in \omega\}$ with the following properties are defined.

- 1) $Q_n = Pr_{R_n}$.
- 2) R_n is a Σ_{n+1} valid K_0 -system containing Robinson's Arithmetic Q.
- 3) $R \in \Sigma_{n+1}$ if and only if it is numerable in R_n .
- 4) R_n is binumerable in Q_n via a formula α_n (Proposition 8 in [2]).

Applying Proposition 1 we have the following result,

PROPOSITION 2. $R \in A_{n+1}$ if and only if R is binumerable in Q_n .

PROOF. Let's first notice that by 1) numerability (and binumerability) of a relation in R_n or in Q_n are equivalent. Hence, by 4) we have that R_n is binumerable in R_n via α_n . Thus the relation $Prf_{R_n}(x, y)$ is binumerable in R_n , via, say $Prf_{\alpha_n}(x, y)$, since it is just a primitive recursive combination of R_n and PR relations, which are binumerable in R_n by 2). Also from 2) we have that R_n is consistent and,

$$R_n \vdash x \leqslant \overline{n} \leftrightarrow x = \overline{0} \lor x = \overline{1} \lor ... \lor x = \overline{n} \quad \text{and} \quad R_n \vdash x \leqslant \overline{n} \lor \overline{n} \leqslant x.$$

If $R \in \Delta_{n+1}$ we have that both R and $\omega - R$ are numerable in R_n . We can thus apply Proposition 1 to get that R is binumerable in R_n . Conversely if R is binumerable in R_n it follows immediately from 3) that both R and its complement are in Σ_{n+1} , namely $R \in \Delta_{n+1}$.

REFERENCES

- [1] S. Feferman, Arithmetization of metamathematics in a general setting, Fundamenta Matematicae, 49 (1960), pp. 35-92.
- [2] A. Ursini, A sequences of theories whose union is complete, Rend. Sem. Mat. Univ. Padova, 57 (1977), pp. 75-92.

Manoscritto pervenuto in redazione il 28 gennaio 1980.