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Blocking Sets of Maximal Type
in Finite Projective Planes.

JÜRGEN BIERBRAUER (*)

1. Introduction.

Let (~, P) be a finite projective plane of order n and m the gre-
atest natural number not exceeding A «blocking set » is defined
as a subset 6 of f!J1 such that every line contains at least one

point of W5 and no line is completely contained in @. It has been

shown in [4], that + + 1.
If 161 = n + k, then no more than points of W5 can be collinear.

Let’s call a blocking set W5 « of maximal type » provided there is a

line in se which contains k elements of W5 (6 is called a blocking
set «of type (n, k) » in the terminology of [5]).

Then obviously is not a square. Then 

~ n + m + 2 for every blocking set 6 and Bruen has shown in [4],
that for ( - n + m + 2, the blocking set @ is of maximal type.
The author showed in [2], that such blocking sets exist only in the
projective planes of orders 3 and 5.

First some elementary results about the ocurrence of blocking sets
of maximal type in finite projective planes. It is trivial to see, that
for n &#x3E; 2 a projective plane of order n always contains a blocking
set 6 of maximal type with IG51 = 2n.

LEMMA 1. Let (£P, L) be a finite projective plane of order n.

If n &#x3E; 4, the plane (9, 2) does contain a blocking set (S of maximal
type with = 2n -1.

(*) Indirizzo dell’A..: Mathematisches Institut der Universitdt Heidelberg,
Im Neuenheimer Feld 288, 69 Heidelberg, Germania Occ.
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More precisely: Let PI, P2 E l, P1 =I=- P2 . Then the number
of blocking sets containing the point set P2} is exactly 
n2 + n.

PROOF. Give the lines different from 1 through P~ resp. P2 names
hl , ... , hn resp. v~ , ... , vn . Then every point has a unique
representation P = hi r) vj. So these « affine points » are ordered in a
natural way in a n X n-square with rows hl, ... , hn and columns VI, ... , o

There are exactly n ! l sets of n affine points from different rows and
columns. Of these n(~ -1) correspond to lines in the plane. Let W5o
be one of the remaining n! - n 2+ n sets of n affine points from
different rows and columns. Then W5 = W5o W IPI P2~~
is a blocking set (of maximal type) with = 2n -1.

LEMMA 2. Let (&#x26;1, 2) be a finite project ve plane of order n,
1 E ~2,y Pl, P2 and P3 different points from 1. Order the lines through
P1 and P2 in the same way as in the proof of Lemma 1 and consider
the latin square corresponding to the lines through P3 , which are
different from l.

Exactly then is there no blocking set of 2n - 2 elements contain-
ing the point set 1 - P2 , if the latin square determined by P3
has the following property

(T) Given two places in the latin square, which are in different rows,
in different columns and have different entries, there is exactly
one transversal containing these two places.

PROOF. This is immediate as every transversal of the latin square
determined by P3 either consists of collinear points or leads to a

blocking set of maximal type of 2n - 2 points. For the notion of

«latin square » and « transversal » see [1].
The main object of this paper is the proof of the following

THEOREM. Let (£P, P) be a finite projective plane of order n,
where n is not a square, n = m2 + q, 1 Assume W5 is a block-

ing set of maximal type of where W5 = n + m + 3.
Further assume, that there are at least two lines containing m + 3

elements of G5,, Then one of the following holds:

(i) n  7.

( ii ) n = 8, ~ C~. ~ = 13. o The points of (0 are ordered like given in
fig. 1. We have (£F, :~) ~ PG(2, 8) and PG(2, 8) does con-
tain such a blocking set of maximal type with 13 elements.
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Figure 1

(iii) n = 10, lel ] - 16. The incidence structure of W5 as induced
from .5i is uniquely determined (see fig. 2).

Figure 2

REMARKS. (1) The case n  7 is not very interesting. It follows
from Lemma 2, that PG(2, 7) does contain blocking sets of maximal
type of 12 points.

(2) As for the case n = 8, it suffices to invoke [6], where the
uniqueness of the projective plane of order 8 has been shown.

It is easy to see, that PG(2, 8) does contain a blocking set as in (ii),
although this case is missing in the list of « Sylvester-Gallai &#x3E;&#x3E;-designs
embeddable in a desarguesian projective plane as given in [7].

In fact, the author constructed PG(2, 8) starting from the above
blocking set, but this has not been included in the present paper.

(3) In case (iii) the methods of this paper don’t lead to a con-
tradiction. The author hopes to settle this case with the help of a
computer program.

(4) If there is only one line containing m --E- 3 points of 6,
somewhat different methods are needed. This case will be the subject
of a subsequent paper.
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2. Proof of the theorem.

Let ~, ~, n, m, q, 6 like in the statement of the theorem and

assume n&#x3E;8. In the sequel set theoretic symbols like « E » and « c »
are used in the set theoretic sense as well as with respect to incidences
in (£F, T). Hopefully no confusion will occur. The join of points X
and Y is denoted by X Y.

We introduce some further notation:

so that and by assumption of the theorem a~+3 ~ 2.

Elements of Yi are called i-lines, elements of Yi are tangents,
elements of 2? - ~1 are «lines of G5 ~&#x3E;.

For every

Like in [2] we speak of a « (P, Z)-argument » whenever P E 6,
E 2 m+3 and when we count I G51 by considering the m + 3 lines

of W5 joining P to the points of W5 m 1.

PROOF. This follows from IG51 = n + m + 3.
Let 1  st (1)  m + 3. Then we set

We have then

LEMMA 4. 
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(i) Assume in addition, there exists a triangle of (m + 3)-lines.

(ii) Assume there is no triangle of (m + 3)-lines, but am+3 ~ 2
and thus all the (m + 3)-lines meet in a common point
P0 E G.

COROLLARY. For 1  st (1)  m + 3 we have ~Z*~ c ~ .

PROOF. As IS - n + m -p 3, we have for every X that 

X) _ ~ (n + st ( Z ) ) = m + 3 - st (l) and thus z(l*) is like given in the
lemma. By lemma 3 we have i + st + 4 whenever .2i+(1*) # fl.
Observe that E W5 if st ( 7~ ) &#x3E; 1.

Assume there is a triangle of (m + 3)-lines. For every X E (6 n
r1 1,) - (l n 1,) we have exactly m + 3 lines of W5 passing through X.
Exactly st (l) of these don’t belong to E9(1*). This proves (i). The

proof of (ii) is analogous.
The proof of the theorem will consist of an examination of the

incidence structure (G5, ~~ - £f1) and its embedding in (&#x26;, Y). The

interested reader is advised to illustrate most of our proofs with
diagrams.

LEMMA 5.

PROOF. Assume !I!== 21U 2m+3. Then Pm+3) is a subplane
of (~, st) of order m + 2. Thus _ (m -~- 2 ) 2 -~- m + 3 and n =
- (m + 2 ) 2, a contradiction.

In the following, notation is chosen so that for example hypothesis
(1.1) is meant to include hypothesis 1. Consider first

HYPOTHESIS 1. There is a triangle of (m + 3)-lines.
Let l2’ t3~ be a triangle of (m + 3)-lines and set
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By lemma 5 there exists ? E V, where 1  t  m + 3. From the
corollary of lemma 4 we get Together with lemma 4
m2 -f - 2 - t c n --~- 1- t c (m -~- 2 ) (m -~-- 3 - t) = m2 --~- (5 - t)m - 2t + 6.
It follows t - 4 c (5 - t) m and thus t  4. So under Hyp. 1 we get

Let l E 2t like before, so that t  4. We can choose P2t!= 1.
Then a (P2 , 1,)-argument yields m 2 + n1 + + 2) +

+ 2(m + 1) + (m -1 ) 2 = 7m -~- 6, m (m - 6 ) c 2 and thus

HYPOTHESIS (1.1). There is a quadrangle of (m + 3)-lines.
Choose l4 E 1117 l2’ Zs ~~ l4 n 7 P2 ~’3 ~ = ø.
set xj = l4 n li, i =1, 2, 3.

Obviously m ~ 3. Further ~2Ç = 1, 2, 3 ~ and a2  3.
Assume m = 3. First let 1 E Y, 4. By lemma 4 ( i ) we have =10.
Further 2(l*) = ,P2(l*) U 23(l*) and

As Il*1 = n - 3 we have n E {13, 12}, 1 S E {19, 18}.
Especially a6 = 4 as otherwise C~ ~ ~ 20.
Assume first n = 13, 1 S = 19. There exists 6 - l2U t3 U ~4).

we can choose notation so that 24 for i = 1, 2, 3.
It follows from (*) that -r~(gi ) _ ~’’~3 (gi ). Thus = 0.

As a4(P2) =1= 0, a yields the contradiction ~ 20.
Let n = 12, ~C~~ = 18. A (Pi, li)-argument gives a2(Pi) =1= 0 for

i = 1, 2, 3 and thus = 0, = 1, a2 = 3. Choose M1 like
above. Then a4 ( 1VI1 ) ~ 0. Let Then I

~3} = 0. Thus I ~~2 ( g* ) ~ = 3, a contradiction.
We have shown a4 = 0 in case m = 3.
Assume next m = 3, a2 ~ 0. We can choose (.~’2 ,

l2)-argument shows 161 c 19 and thus a6 = 4. It is however immediate

that a contradiction. Thus by (1) we have Y == 9. U
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U 2m+a and 0 by lemma 5. Let 1 e Y3 . A 1*-argument gives an
immediate contradiction.

We have 4 c m c 6 under Hyp. (1.1).
Assume a2* 0. Choose P1X1 E 22. A (P2, 1,,) -argument shows m2 -f-

-~-m+4~~(g~3(m+2)+(m+l)2 =5~+8,m(m20134)4. It fol-
lows m4 and thus m = 4. Assume a,(P,) = 0. The same (P2, l2)-
argument gives then the contradiction 161 18 + 5 = 23, n  16.

So let P2ElE ~4 . By lemma 4 P(l*)1 == (m + 2)(m + 3 - 4) = 18.
Further Il*1 = n - 3. On the other hand I ~2(l*)1 == I ~a(l*)1 E {1, 2},

£f(1*) + y~(1*) u 2a(l*) U 

Case 1: Let I P2(l*) = 1 = ! Then ~4(Z*) ~ =16, 18 =
- ~ ~(Z*)) == Il*1 -~- 1 = n -2. Thus n = 20, IG51 = 27.
A (Pj, li)-argument f or j = 2, 3 shows a2 = 1. A (Pl , l1)-argument

shows a4(Pl) * 0. Let Pl E g E 24. Then Y2(g*) = 0, thus =

- P4(g*) and 17 = _ ~ 12(g*) = 18, a contradiction.

= [ £f(1*) [ = [1* -~- 2 = n -1 = 26. For j = 2, 3 a
(P~ , 1,)-argument gives = 4 and = 0. Clearly a7(Xi) = 2,
i = 1, 2, 3 and thus a4(.~’~) = 4, = 0. As every 3-line has to

pass through one of the points P~ or Xi , we have ~3 = cP3(Pl). Let
X = Z r1 P1Xl. Then a3(X) # 0, a contradiction.

We have shown 2= 2lu 2m+3 under Hyp. (1.1).
If m = 6, lemma 4 shows a3 # 0 and for l E we get 48 =

= ~(Z*) ~ ~ 2 ~ l* ~ 1 = 2 (n - 2) and n c 26, a contradiction.
If m == 5, then a4 -~ 0 and for 1 E £% we have 28 = j =

211*1 = 2(n - 3) and n = 17, a contradiction.
So m = 4. Let Then 18 = ~ ~(Z*) ~ _ ~ Z* ~ = n - 3 and

n = 21. The Bruck-Ryser theorem [3] gives a contradiction.
We have c~4 == 0. By lemma 5 then 0. Let 1 E ~3: Then 24 =

- i -~(Z*) ~ = 2 [1* 1 = 2 (n - 2) and n = 14. Again we get a contradic-
tion by [3]. We have proved.

LEMMA 6. Under Hyp. 1 we have

Assume am+3 &#x3E; 3. We can choose 
Assume further Then 

-(- 3 = j(g~ == 3(m + 2) + m + 1 = 4m + 7. It follows m(m-3)3,
m ~ 3 and n = 3m + 4. If m = 2, then n = 10, a contradiction.

Thus m = 3, n = 13. It follows ~2 = 22(Pl), a2 = 3. Let g G Y2.
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For every X E g* we have a~(X ) = 1 and thus c~3{X ) = 2. It fol-
lows 20 = ( = 2 ll* = 24, a contradiction.

Hence there exist s Take 
n such that .M.X n (Pi , P3 ~ = 0. Then st (MX»5

and thus MX E a.~m+~ . This contradicts lemma 6. We have proved

LEMMA 7. = 3 under Hyp. 1..
A (Pl, l1)-argument shows now m2 + m + 4 |C| ( c 3{m q- 2) +

+ 2(m + 1) = 5m + 8, m(m - 4) 4 and thus

LEMMA 8. m  4 under Hyp. 1.

Assume n = 8, 1 G51 = 13. Let I E Then 4 = ~ ~°(Z*) ~ = = 5,
a contradiction.

Assume next m = 3. First let Pl c- 1 E .~4 and assume there is a
Set = P, r1 X2}.

As a.= 0, 3 we can choose P2 E P3 EMX2. . Thus there

exists g E /E4 with M c g and g r1 10 (S, a contradiction to lemma 3.
Thus I

Then

Obviously a2 = 7. It follows |L2(q*) = 7 - 2 = 5. A g*-argument
yields a contradiction. We have = 0, i = 1, 2, 3.

Assume n &#x3E; 10. There are then tWO elements X, Y E W5 - (1, U
U l2U It), Y. As = 0 wTe get X Y E contradiction.

Thus n = 10, 1 S = 16. Set ~1~1 ~ = C~ - ( Z1 V Z2 V ~3 ), 
Obviously Y,= 4(~!1). Thus /(I*) = ~~ 2(Z*) V ~ ~(Z*) and even

~ ~°2(Z*)~ ~ = 8. On the other hand ,:¿f2(l*) = -r~2(.L-2) U ’e’ ~(P~) and
( ~z°2(Z*) ~ ~ 6, a contradiction.

Finally let m = 4. Set = 6 - (ll U Z2 U Z3). For .Xt Y E.A,
Y we have X Y E Pi, i E {1, 2, 3} as otherwise st (X Y) &#x3E; 5, thus

, a contradiction to lemma 7. It follows

and thus
, I

We have
for every )-argument shows

= 10, a contradiction.
We have shown

LEMMA 9. n c 7 in case of Hyp. 1.

From now on consider

HYPOTHESIS 2. 
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HYPOTHESIS (2.1).
set i Obviously 2(Z:) =

’) and for every
i = 2, 3, ... , m + 2, we have by lemma 4 (ii) = n - m -1-

-(m + 1) = n-2m-2. On the other hand 

-- n - m - 2. It follows

LEMMA 10. Under Hyp. (2.1) we have

Assume am+2(Q1) &#x3E; 2. Let Apply lemma 10
to these (m + 2)-lines. It follows flJ2. But 
~ eP((QIP2)*), a contradiction to lemma 10.

LEMMA

Assume

Let first

Then 6
So there is a 4-line, which doesn’t intersect P1Sl in 6. This

contradicts lemma 3.

We have 7~ ~ 3 . Assume QlEgE2m+l’ set 

and so

Thus m 2 -~- 1 ‘ n ~ 3~n + 2, m(m - 3) 1 and thus m = 3.
From (*) we get Yi = 11, 1 S I - 17. On the other hand I S I &#x3E;- 11 +

+ 6 + 2 = 19, a contradiction. We have = 0.

Assume E 2m. Use a (Q2, l1)-argument. We know a2(Q2) = 2.
As a2(Pl) = 1 and PIQ2E ~2 , we have am+2(Q2) = 0 because of

lemma 10.

Further a.(Q2) + a4(Q2) &#x3E; 1 as I Y(9*1 Q2)1 = 3. It follows

and
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which contradicts a5~ i

----.- 1-- ,*BV 7 ., , I I I I -

Then Ov4 and the g*-argument gives

Figure 3

W5 = Ml, Then k = NM1E 26 as k n ~Pi, P2~ _ ø.
We can assume P5E k. Then and because a,(Q,) = 1, P5Q5E

E we get 22(k*, Q5) = ~(k*, ~Q5) = ø, a contradiction.
We have am+1(Q1) = = 0. A (Ql, 1,)-argument gives

It follows n E ~m2 + 1, m2 + 2} and 0. Thus +
and our -argument gives

and thus
Then I because of
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It follows

As by lemma 3 every 4-line has to intersect v in points of
, a contradiction.

-argument shows

Let first. Then ; and ~ shows 1

from ( -~ again. However and

tradiction. We have

L EMMA . for every
We have Assume

-argument:

Thus m 2 -f - 1 3m + 3, m(m - 3) 2 and m c 3.
First let i

From (*) = 1 and so ST 0 We get the
contradiction ~ST E ~5.

If n = 10, then L4 = {l4} u = 1, 2; j = 1, 2, 3}, a4 = 7.
Let r E {2, 3, 4, 5}. Then 0, hence a4(Qr) # 0 by a (Qr, 

argument. Let = L4. There exists v’ - c 24 such
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and v r1 v’ n ll. As v r1 v’ E 6, we have Qr E v’.
Thus for every r E {2y 3, 4, 5} and ~&#x3E;9y a contradiction.
If n = 11, set Q1 E 6 _ {Q1, P3 , T}. Then as

a2(Pl) = 1. It follows ~5 and we can choose 
TS2. Thus &#x3E; 1, a contradiction. In case

n = 12 we get the same type of contradiction. We have

LEMMA 13. = = 0 under Hyp. ( 2 .1 ) . Further

w&#x3E;3.

PROOF. The case n = 8 is clearly impossible under Hyp. (2.1).

HYPOTHESIS (2.1.1). 0.

Choose Q1 E IRm, Use a l4*-argument : BIR2(l:, P0)| = n -
- 2m. Further BIR2(l:, = 1 for i = 3, 4, ... , m + 2.

We get the inequality 3 ( n + 1 2013 m) ~~ 2013 2~ + 2m’3 + 9,
-~- 6 or

Thus m2 + 1  4n1 + 3, n1(n1 - 4) 2 and mE {3, 4}.
Let m = 4 first. Then n  19 by ( ~ ). Obviously a4(Q~1) -&#x3E;- 2.
Let l4 = ·

Assume a4(Ql) = 2. Because of 161 :&#x3E;24 then Q1PiE 23 for i = 4, 5, 6.
Set Q1Pin (g = Xjl, i = 4, 5, 6. The points 1V14, 

cannot be collinear as a7 = 2. So we can choose Piw Then

M4M5 E L6.
Let Qi = M4M5n ~2’ Then PiQ1E ~’2 by lemma 10, a contradic-

tion. So we have 3. Let 1, = ~4, choose if e W5, X 0 li,
1~6, set 1in G5 = (Qi , 7 pi-2 Ri-2’ ~i_2~~ i = 4, 5, 6.

Choose g = Then g E 26 and thus g n 0. We
can choose Set g n Z2 = Then T2 by lemma 10. It

follows QIP6E Y,, Q6E g. Choose R3 on 15 such that 0 P,, - Then

MR E 26 and like above we get Q6 E which is a contradiction.
So we have m = 3. As ~&#x3E;16~ we have a3(Q1) ~ 2. Set 14 = QlP2E

E , G s = Q1P3E °~ 3 7 ~’ 4 ~ W5 = P2 7 MI)9 15n 6 ~Q 1 ~ 7 P3 
Assume n &#x3E; 10. Then we can choose Q1P 4 E ~°3 , 6 _

== {~1~4~ 1~3}. The points lVl1, M2, are not collinear because

as = 2, a s (Pl ) = 1.
Set 91 = g2 = .1V~3 ~12. As = a4(Ql) = 0, we have gi r1

n{pl,Ql}==Ø,i=1,2 and thus ~g1 ~ 92~ c ~s · Set gin12=Qj. By
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lemma 10 then thus j==5. We have ~,3~5, ~ == 1, 2, a
contradiction.

Finally n = 10, 161 ] - 16. Choose P4 E MlM2. Clearly lJIlM2E 25
and by lemma 10. Further Q5E .1JI1M2 and consequently
PlQ5E ~3. This is case (iii) of the theorem. It is easy to see, that

(6, 2 - is uniquely determined. We have

LEMMA 14. Under Hyp. (2.1.1)~ case (i) or (iii) of the theorem
holds.

We can assume = = 0. A (Q1, l1)-argument yields
the contradiction 1n2 + hi + 4  ) Gi ) ‘ 3 m + 5 + ( m + 1 ) ( m - 3 ) _ 
--~- m + 2.

Thus we can assume, that Hyp. ( 2.1 ) is not satisfied.

HYPOTHESIS (2.2). ~m,+2 = ·

Set l3== P1QlE 2m+l’ use a l3*-argument : z(1/ ) = 2(n - m), 
~+m+32013(3m+4)==~20132m2013l. For ~e{2,...,~+2} we
have |L(l3*, Pi)| = 2, thus z(l3*,Pi)4. 
-1 + 4(m + 1),

Thus M2 + 1 c 4m + 3, m ( m - 4 ) c 2 and n~ c 4.
Let first n = 8. It is then immediate, that we are in case (ii) of

the theorem.
Let m = 3, set l3n 6 = Ql, R1, Assume first ~4(Q1) ~ 3,

so that n &#x3E; 11. Set l4 = °~ 4 ~ 11 = ~4 ~ l4n 6 == P2 f
1811 ~’2~, ls n 6 = (Qi , P3, T1, For X, Y E 6 - (11 U l2 U l3)’ g ~ Y7
have because of lemma 3 and L5 = 

So we can choose {P0, R1, S1, Tj c g1, {P0, R2, S2, Tj c g2.So we can choose {P0, Rl, gl, {P0, R2, S2’ T2} C g2.
Then z(Z3 , Po) ~ 11 and instead of (*) we get n  11, thus n = 11.
We have SlT2 == 1 E .P4, z(l*) = 16, z(l*, Po) = 0, z(l*, Pi)  3 for

i = 4, 5, z(l*, P,)  4 for = 2, 3. The contradiction 16 = z(l*) c2 ~3 +
+ 2-4 = 14 follows.

Assume next a4(Q1) = 2. Define l4 like above. As &#x3E;16, there
is Like above we can choose 1 such that
1 D Z’, E Pi for every X E (I r1 S) 2013 tp. Sx , 
we get 1 E ~4 , S2T 3 P1. ..

Further 82R23Po as otherwise ~4 , but 10 6.
Clearly now 161 - 16, n = 10. We have z(l*) = 14, z(l*, Po ) =

z(l*, Pi) = z(l*, P2) = 0. But z(l*, Pi) ~ 4 for i E {3, 4, 5} and so we
have the contradiction 14 = z(1*)  3.4 = 12,
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Hence a,(Q,) = a,(P,) = 1, n E {10, Let first n = 11, so that
= 0. Like above we see, that all the points in 15 - (Zl U Z3)

are collinear with Po and thus a6 === 3, a2 = 1.
We can choose POR2E .P2. Further a~ = 0, ac4 = 5, ac3 = 20 (see

fig. 4).

Figure 4

Let ~3 . Then 1* = 9. There are at least four points 
with a4(X) = 0. But then a 1*-argument shows a2(.X) ~ 0 and so

~2&#x3E;4, a contradiction.
Let n = 10. Like above we see a5(Po) = 1, a,(PO) = 1, POR2 E 22.
Let ~5 . Then == 122(l*)1 = 6. On the other hand

and thus ~(l*) ~ = 5, a contradiction.
Let now m = 4. By (*) 17n19. Set 

let J1í consist of the pairs of different elements of -#7 and for X G 9
set n",== Clearly 

Assume st (1) &#x3E; 5. Then 1 r1 t3 by lemma 3 and
instead of (*) we get n  16, which is impossible. If st (1) = 4, again

l n l3 E G. So we have nP01/2 |M|.I r) 13 c- S. So we have n,.  .11,-,# 2 1. 

io) =Let n = 19. We have equality in (*), 1,&#x26;i = 10, = 2 - 45,

n pt ~ 5, a contradiction.
Let n = 18, so = 9, = 36. We have 
Assume 4. Then clearly a5(Pl) &#x3E; 1. Let P1E k E 25, k ~ Z3 .

As a2(Ql) = 2, a k*-argument analagous to the 1*-argument at the
beginning of the paragraph leads to a contradiction.



99

Thus~(Qi)3,~(~i)3,~7,~7and/&#x3E;362013(4+7+7)==18.
There exists then a ... , Ps~ with nx &#x3E; 4, which is impossible.

Finally n = 17. Assume first ~5(9i)2&#x3E;~(Pi). Then 
and f ~ 28 - (4 + 5 + 5) = 14. So there are at least four points
P E ~P2, ... , with np = 3. For these points ac2(P) ~ 0. As c 1

6

we and the 1*-argument leads to a contradic-3

tion. So we can choose a5(Q.1) = 3. Set 25(Ql) == Ill, Z4, lin ~1=
Pi-2 ~ i = 3, 4, 5. Set Y~ = 15 - (11 u ... U l5).

Choose l5 such that n {Po, ~6. Then E ~5
and thus P1 E XM. It follows Y5 and so = 3.

We have shown E tO, 3} for every ... , 

Let P c 7 P5, A l2-argument and lemma 3 show, that
c~ 5 (P ) ~ 0. For every ~e{1~..~6} we have a 5 (PE ) = 3 and thus

again and the 1*-

argument provides us with a contradiction.
From now on we can assume, that Hyp. (2.2) doesn’t hold, so

that Lm+2 = Lm+2(P0), Lm+1 = Clearly m&#x3E;3.
Assume -w2(P,,), choose P E 11 n 6, P ~ .Po, a2(P) "* 0.
A (P, Z2)-argument yields the contradiction

Thus ~2 = !f2(PO).
Assume ~3~ ~3(PO)7 let 23, c l3. · A (Ql, Z1)-argu-

ment like above leads to equality and we get one of the following:

Let first m 37 it = 10. As ~5 = 25(PO), ~4 = 24(PO), we get
c~g = 3, ac2 = c~4 = 0. Let 1 E =~3. A 1*-argument leads to a contradic-
tion. So m ~ 4. Clearly = m + 1. Assume P, c- l =1= l3’ st (1) &#x3E; 5.

Because of (ii) and lemma 3 then 2 m+3, which is impossible.
Thus m = 4, n = 17. Let QlE l E 24, l3 f1 6 = Qi , Then

there is n n 1,1 such that 8M;p Po . It follows

~4. In this way we get the five lines of (B through S, which
don’t contain Q, or Po . Necessarily then As 25 ==
- 25(PO), 7 the points in are collinear and so Po E

26. À k*-argument yields the contradiction ~~ ~ 
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Hence we can assume 23 = 23(PO). Assume ~m~ 2 m(Po), choose
22M 7 As Y3 = 23(PO), I we have m &#x3E; 4. Use a

1*-argument. We get

Thus ~ + 1 5m + Sy m(m 2013 5) ~2 and m e {4~ 5}. We have 2(l:,
Pi) = ~(~~,)~=2,3,...,m+2because 22= 22(PO), 23= 
It follows z(11) = 3(n + 1 - n1) &#x3E; 9(n1 + 1) and

First let m = 5, i E {2, 3, ... , 7}. Then a l3*-argument together with
lemma 3 shows a4(Pi)&#x3E;3. A (Pi, l2)-argument shows |G|15+3-
’2 -f- 4.3 = 33, n  25, which is impossible.

Finally let m = 4, so that n ~ 18 by ( ~ ) . A Z 1 ) -argument shows
n ~ 18, so that ~=18~0~ = 2~. Then XPi E 24
f or i = 1, 2, ... , 6. Thus E 27. It follows a7 = 4. Set 27 == 
Z2 ~ l~ m 15 = = 1, 2, ... , 6}, ls n 6 = =

- 1, 2, ... , 6 } (see fig. 5 ) .

Figure 5

Consider the 6 X 6-matrig with entry 8,) in the i-th row and
j-th column whenever are collinear, It is immediate,
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that this has to be a pair of orthogonal 6 X 6-latin squares. However,
such a pair doesn’t exist (see [1], Chap. 5). Thus the proof of our
theorem is complete.
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