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RexD. SEM. MAT. UNIv. PADpOvVA, Vol. 65 (1981)

Blocking Sets of Maximal Type
in Finite Projective Planes.

JURGEN BIERBRAUER (*)

1. Introduction.

Let (#, ¥) be a finite projective plane of order » and m the gre-
atest natural number not exceeding v/#. A «blocking set » is defined
as a subset & of & such that every line [ € ¥ contains at least one
point of & and no line is completely contained in &. It has been
shown in [4], that |S|>n 4+ v/n + 1.

If |©| = n + k, then no more than k points of & can be collinear.
Let’s call a blocking set & « of maximal type » provided there is a
line in .# which contains % elements of & (& is called a blocking
set «of type (m, k)» in the terminology of [5]).

Then obviously |S|<2n. Assume n is not a square. Then |S|=
>n + m -+ 2 for every blocking set © and Bruen has shown in [4],
that for |&| =n + m 4 2, the blocking set & is of maximal type.
The author showed in [2], that such blocking sets exist only in the
projective planes of orders 3 and 5.

First some elementary results about the ocurrence of blocking sets
of maximal type in finite projective planes. It is trivial to see, that
for » > 2 a projective plane of order n always contains a blocking
get S of maximal type with |S| = 2n.

LeMma 1. Let (2, ¥) be a ﬁﬁite projective plane of order =.
If n>4, the plane (#, ¥) does contain a blocking set & of maximal
type with |&| = 2n —1.

(*) Indirizzo dell’A.: Mathematisches Institut der Universitdit Heidelberg,
Im Neuenheimer Feld 288, 69 Heidelberg, Germania Occ.
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More precisely: Let 1€ ¢, P,, P,el, P, P,. Then the number
of Dblocking sets containing the point set IN{P;, P,} is exactly n!—
—n2+ n.

PrOOF. Give the lines different from ! through P, resp. P, names

Ry ey by TESD. V14 ..., V,. Then every point PeZ —1 has a unique
representation P = h;N v;. So these «affine points » are ordered in a
natural way in a n X n-square with rows &,, ..., h, and columns v,, ..., v,.

There are exactly n! sets of n affine points from different rows and
columns. Of these n(n — 1) correspond to lines in the plane. Let &,
be one of the remaining n!—n%-+ n sets of » affine points from
different rows and columns. Then & = &,U {X|X €, X ¢ {P,, P,}}
is a blocking set (of maximal type) with |[&| = 2n —1.

LeMMA 2. Let (2, #) be a finite project ve plane of order =,
le #, Py, P, and P, different points from I. Order the lines through
P, and P, in the same way as in the proof of Lemma 1 and consider
the latin square corresponding to the lines through P,, which are
different from 1.

Exactly then is there no blocking set of 2n — 2 elements contain-
ing the point set { — {P,, P,, P,} if the latin square determined by P,
has the following property

(T) Given two places in the latin square, which are in different rows,
in different columns and have different entries, there is exactly
one transversal containing these two places.

Proor. This is immediate as every transversal of the latin square
determined by P, either consists of collinear points or leads to a
blocking set of maximal type of 2m — 2 points. For the notion of
«latin square » and « transversal » see [1].

The main object of this paper is the proof of the following

THEOREM. Let (2, #) be a finite projective plane of order m,
where » is not a square, n = m?- ¢, 1 <g<2m. Assume & is a block-
ing set of maximal type of (%, ¥), where |&| =n + m + 3.

Further assume, that there are at least two lines containing m 4 3
elements of G. Then one of the following holds:

(i) n<T.

(ii) » = 8, |&| = 13. The points of & are ordered like given in
fig. 1. We have (#, ¥)~ PG(2,8) and PG(2, 8) does con-
tain such a blocking set of maximal type with 13 elements.
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Figure 1

(iii) n = 10, |&| = 16. The incidence structure of & as induced
from .7 is uniquely determined (see fig. 2).

Figure 2

REMARKS. (1) The case n<7 is not very interesting. It follows
from Lemma 2, that PG(2, 7) does contain blocking sets of maximal
type of 12 points.

(2) As for the case n = 8, it suffices to invoke [6], where the
uniqueness of the projective plane of order 8 has been shown.

It is easy to see, that PG(2, 8) does contain a blocking set as in (ii),
although this case is missing in the list of « Sylvester-Gallai »-designs
embeddable in a desarguesian projective plane as given in [T7].

In fact, the author constructed PG(2, 8) starting from the above
blocking set, but this has not been included in the present paper.

(3) In case (iii) the methods of this paper don’t lead to a con-
tradiction. The author hopes to settle this case with the help of a
computer program.

(4) If there is only one line containing m -4 3 points of &,
somewhat different methods are needed. This case will be the subject
of a subsequent paper.
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2. Proof of the theorem.

Let &, #,n,m,q,S like in the statement of the theorem and
assume n>8. In the sequel set theoretic symbols like «€» and «c»
are used in the set theoretic sense as well as with respect to incidences
in (%2, .#). Hopefully no confusion will oceur. The join of points X
and Y is denoted by XY.

We introduce some further notation:

Li={lle Z, In&| =4}, a;=|%| fori=1,2,..,m+3,
m+3

so that ¥ =) %; and by assumption of the theorem @, ,>2.
i=1

Elements of #; are called i-lines, elements of ¥, are tangents,
elements of ¥ — ¥, are «lines of & ».

For Pe # set Z(P)={l|Pele L}, aiP) = |Z(P)|.

For every le & set st (l) = |IN &|, the «strength» of ! and
I*= {P|Pel, P ¢ 3}, so that |I*| =n + 1 —st (1).

Like in [2] we speak of a «(P,l)-argument» whenever Pe S,
Pé¢le Z,,, and when we count |&| by considering the m - 3 lines
of © joining P to the points of S N1I.

LeMMA 3. Let Iy, Le &, I, 1y, st (L) + st () > m + 4. Then I,N
Nle@.

PrOOF. This follows from |&S| =n 4+ m + 3.
Let 1 <st(l) <m + 3. Then we set
PA*)={klke P— L, k# 1L, kN1¢S}, L= 2% N %,

t=2,3,....,m-+2,

m+3

2(1*) =_2 (t—1) 2|, 2L0*X)={klke L(1*),Xeck}
for XeZ,

=2
m+2
2(1*, X) = Z (¢ —1)| Zi(t*, X)| .
i=2
‘We have then

LemMA 4. (I*-argument.)
Let 1<st(l)<m + 3, l,€ Ly, P=1N1,.
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Then z(I*) = (n + 1 —st (1)) (m + 3 —st(1)).
If 2,1%)5 0, then i + st ()<m + 4.

(i) Assume in addition, there exists a triangle of (m - 3)-lines.
Then |Z(1*, X)| =m + 3 —st (l) for every X e(&Nl;) —
— {P} and thus | Z(*)| = (m + 2)(m + 3 — st (1)).

(ii) Assume there is no triangle of (m - 3)-lines, but @, ,>2
and thus all the (m - 3)-lines meet in a common point
P,e .

If P = P,, then | Z(l*, X)| =m + 3 —st (l) for every X (&N
N 1) —{P,} and thus | Z({*)| = (m + 2)(m + 3 — st (1))

If P+« P, then |Z(* X)|=m -+ 3—st(l) for Xe(@&Nl,)—
— {Po, P} and | 2(1%)| = (m + 1)(m + 3 —st (1)) + | Z(*, Py)l.

CorOoLLARY. For 1 < st(l) <m 4+ 3 we have |I*| <|2Z(1*)].

Proor. As |&| =n + m -+ 3, we have for every X el* that z(I*,
X) =|&|—(n -+ st (1)) = m + 3 —st (I) and thus z(I*)islike given in the
lemma. By lemma 3 we have 7 -+ st (I)<m | 4 whenever .Z,(I*) = 0.
Observe that I;N ke & if st (k) > 1.

Assume there is a triangle of (m -+ 3)-lines. For every X € (SN
N1l)—(N1,) we have exactly m -+ 3 lines of © passing through X.
Exactly st (l) of these don’t belong to #(1*). This proves (i). The
proof of (ii) is analogous.

The proof of the theorem will consist of an examination of the
incidence structure (S, ¥ — %) and its embedding in (%, .#). The
interested reader is advised to illustrate most of our proofs with
diagrams.

LEMMA 5. Z# 2,V Z, ;.

Proor. Assume ¥ = #,U %,,,. Then (&, Z,,,) is a subplane
of (#, ¥) of order m 4 2. Thus |&| = (m + 2)*+m + 3 and n =
= (m + 2)2, a contradiction.

In the following, notation is chosen so that for example hypothesis
(1.1) is meant to include hypothesis 1. Consider first

HypoTHESIS 1. There is a triangle of (m 4 3)-lines.
Let {l:,1,1;} be a triangle of (m -+ 3)-lines and set

P,=1Nn1, for {G,j,k} = {1, 2, 3}.
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By lemma 5 there exists I € .¥; where 1 <t<<m + 3. From the
corollary of lemma 4 we get |I*[<|.Z(I*)|. Together with lemma 4
mi42—t<n+1—t<g(m+2)(m -+ 3—1t) =m?2+ (5 —t)m— 2t - 6.
It follows t — 4< (6 —¢)m and thus ¢{<4. So under Hyp. 1 we get

1) P = LU LU LU LU L

Let 1 € %, like before, so that {<4. We can choose P,¢l.
Then a (P,,ly)-argument yields m?+ m 4 4<|&|<3(m + 2) +
+2(m 4+ 1) 4+ (m —1)2 = Tm + 6, m(m — 6)<2 and thus

(2) m<6.

HyYpOTHESIS (1.1). There is a quadrangle of (m - 3)-lines.
Choose 1€ Loys, L {l, lay s}y LN {Py, Py, Py} = 0.
Set X;=1l,nl, i=1,2,3.

Obviously m>3. Further %,C {P,X,i=1, 2,3} and a,<3.
Assume m = 3. Firstletle .Z,. Bylemma 4 (i) we have | Z(I*)| = 10.
Further Z(I*) = Z,(1*) U Z,(1*) and

[ad it 20 = 2,0,
(%) | Z2(1*)| =
¥ -1 if 2*) = Z0%).

As |I*¥| = n — 3 we have n € {13, 12}, || € {19, 18}.

Especially a,= 4 as otherwise |&|>20.

Assume first n = 13, |&| = 19. There exists M € S — ([,VU LU ;U 1,).

Let (I,N &) — (LU L,V ;) = {M,, My, M;}. As MM;¢ %,,1=1,2,3,
we can choose notation so that P,e MM,;= ¢g;€ %, for i =1, 2, 3.

It follows from (%) that Z(g7) = Z.(g7). Thus ay(P,) = 0.

AS ay(P,) # 0, a (P, l,)-argument yields the contradiction |&|>20.

Let n =12, |&| =18. A (P,,l;)-argument gives a,(P;) 0 for
1=1,2,3 and thus a,(P;) = 0, a,(P;) = 1, a,= 3. Choose M, like
above. Then a,(M;)# 0. Let M,cge Z,. Then ¢gN {P,, P,, P,
X, X,, X;} = 0. Thus | %,(¢g*)| = 3, a contradiction.

We have shown a,= 0 in case m = 3.

Assume next m = 3, a,7% 0. We can choose P, X;€ %,. A (P,
l,)-argument shows |S| <19 and thus a; = 4. It is however immediate
that a,+ 0, a contradiction. Thus by (1) we have ¥ = Z,U Z;U
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U Znys and a;7 0 by lemma 5. Let 1€ Z,. A [*-argument gives an
immediate contradiction.

We have 4 <m <6 under Hyp. (1.1).

Agsume a,5= 0. Choose P, X, € .%,. A (P,,l,)-argument shows m?2 -
+m 4+ 4<|S|<3(m + 2) + (m +1)2 = bm + 8, m(m —4)<4. It fol-
lows m<4 and thus m = 4. Assume a,(P;) = 0. The same (P,,l,)-
argument gives then the contradiction |&|<18 + 5 = 23, n<16.

So let P,ele #,. By lemma 4 | Z(1*)| = (m 4 2)(m + 3 —4) = 18.

Further |I*| = n — 3. On the other hand | Z,(I*)| = | Z,(1*)| € {1, 2},
Z(I*) = Z(I*) U Zy(1*) U Zy(1%).

Case 1: Let | Z,(1*)| =1 = | Z,(1*)|. Then |.Z,(I*)| = 16, 18 =
= | Z(1*)| = |I*| + 1 =n—2. Thus n = 20, |S| = 27.

A (P;, 1;)-argument for j = 2, 3 shows a,= 1. A (P, l,)-argument
gshows ay(P;)# 0. Let P,ege %,. Then %,(g*) = @, thus Z(g*) =
= Z,(¢g*) and 17 = |g*| = | Z(g*)| = 18, a contradiction.

Case 2: Let | Zy(l*)| = 2 = | %:(1*)], | Zu(l*)] = 14. Then 18 =
=|ZM*)| =¥ +2=n—1 and n =19, |§| =26. For j=2,3 a
(P;, l;)-argument gives a,(P;) = 4 and a,(P;) = 0. Clearly a.,(X,) = 2,
2 =1,2,3 and thus a,(X,) = 4, a,(X,;) = 0. As every 3-line has to
pass through one of the points P; or X;, we have Z,= Z,(P,). Let
X =1Nn P, X,. Then a,(X)+ 0, a contradiction.

We have shown ¥ = £,U %,U %,V %, ; under Hyp. (1.1).

If m = 6, lemma 4 shows a,% 0 and for le ¥, we get 48 =
= | Z(1*)| >2|l*| = 2(»n — 2) and n<26, a contradiction.

If m =5, then a,5% 0 and for le ¥, we have 28 = | Z(I*)| =
= 2|l*| = 2(n — 3) and n = 17, a contradiction.

So m =4. Let le .¥,. Then 18 = | £(I*)| = |I*| =n—3 and
n = 21. The Bruck-Ryser theorem [3] gives a contradiction.

We have a,= 0. By lemma 5 then a;7= 0. Let le %,: Then 24 =
= | Z(I*)| = 2|l*| = 2(n —2) and n = 14. Again we get a contradic-
tion by [3]. We have proved.

LevmA 6. Under Hyp. 1 we have L = L o(P1) U Lo ps(Py) U
U Lol Py).

Assume a,,,> 3. We can choose P,€l,€ Ly, li¢ {ls, 15}

Assume further S cl,Ul,Ul;Ul,. Then m2+ m + 4<n + m +
+3=|8]=3m+2)+m+1=4m -+ 7. It follows m(m — 3) <3,
m<3 and n = 3m 4 4. If m = 2, then » = 10, a contradiction.

Thus m = 3, n = 13. It follows ¥, = Z,(P1), a,= 3. Let g€ .%,.
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For every X € ¢g* we have a,(X) = 1 and thus a,(X) = 2. It fol-
lows 20 = | Z(I*)| = 2|I*| = 24, a contradiction.

Hence there exists Me& — (,Ul, U, Ul,). Take Xel, NG,
X ¢ {P,, l, n1,} such that MX N {P,, P,, P;} = @. Then st (MX)>5
and thus MX e %, ,. This contradicts lemma 6. We have proved

LEMMA 7. @n,;= 3 under Hyp. 1.
A (P, l,)-argument shows now m2-+ m -+ 4/ S| <3(m 4+ 2) +
+ 2(m 4 1) = bm + 8, m(m — 4)<4 and thus

LeMmA 8. m <4 under Hyp. 1.

Assume n = 8, |&| = 13. Letle #,. Then 4 = | Z(I*)| = [I*| = 5,
a contradiction.

Agsume next m = 3. First let P,ele ¥, and assume there is a
Me®—(Lul,Ul,Ul). Set INn& = {P,, P,N1, X,, X,}.

As as_ 0, a,= 3 we can choose P,e MX,, P,eMX,. Thus there
exists ge .%, with M eg and gN 1l ¢ S, a contradiction to lemma 3.
Thus @cllu L,V U L8 =17,n=11. Set P, X, Nl;=Y,,i=1, 2.
Then g = Y, X, Zy, a,( Y1) = ay(X) = 0, ax(g N 1) = a(gNly) = 1.

Obviously a,= 7. It follows | .Z,(g*)| = 7 —2 = 5. A g*-argument
yields a contradiction. We have a,(P;) =0, ¢ =1, 2, 3.

Assume 7 > 10. There are then two elements X, Ye& — (l,U
ULUL), X% Y. As a,(P;) =0 we get XY e %, a contradiction.

Thus » = 10, |S| = 16. Set {M} = @—(llu LUlL),l=P Me %,

Obviously ¥,= #,(M). Thus £(*) = (l*) U Z,(1*) and even
| Z,(1*)|>|1*| = 8. On the other hand 9”2(l*) = Z(P,) U Z(P,) and
| Za(1*)| <6, a contradiction.

Finally let m =4. Set 4/ =S —([,Ul,Ul;). For X, Y e,
X+ Y we have XY 5 P,, i€ {1,2,3} as otherwise st (XY)>5, thus

XY e &, by (1), a contradiction to lemma 7. It follows (I-/@ll)<

<3-5=15 and thus |.#|<6, |S|<18 4 6 =24, n<17. We have
n = 17, a,(P;) = b for every i€ {1,2,3}. A (P,,!l,)-argument shows
|#| = 10, a contradiction.

‘We have shown

LeMMA 9. n<T7 in case of Hyp. 1.
From now on consider

HYPOTHESIS 2. Gmys>1, Lpyg= Lns(Po), Where Pie S.
Set Uy be Py Po=1N 1y L0 S = {Py, Py ooy Pryo), LN S =
= {Py, Q1) ..., Quy2}. Consider first
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HYPOTHESIS (2.1). Puye7 Lmpa(Po).

Setl,€ Lomyo— FLmia(Po)y Pr=1LN1;,Q,=1,N1,. Obviously Z(I;) =
= Zy(I3)and | 21| = |lI;| = n—m —1. As |Z(l;, P;)| = 1 for every
i=2,3,..,m + 2, we have by lemma 4 (ii) | £(I;, P,)| = n —m —1 —
—(m -+ 1) =n—2m —2. On the other hand |& — (l,UL,UI;)| =
=mn—m —2. It follows

LeEMMA 10. Under Hyp. (2.1) we have ,S,”(P) °%(Po)u Lmys
Umys = 2, a3(Py) = n—m—2, 23, X) = Z,(1;, X), | 213, X)| = 1 for
every X € {Py, ..., Puyisy @2y ooey Quye}e

We set P.Q.e L, i = 2,3,...,m + 2.

Assume a,,5(@:) > 2. Let {Q.P;, Q. P,}C %, ,. Apply lemma 10
to these (m -+ 2)-lines. It follows {P,Q,, P,Q;}C %,. But {P,Q,, P,Q,}C
C Z((@.P,)*), a contradiction to lemma 10.

LEMMA 11. @, ,(X)<2 for every X € {Pi, ..., Pmys; @1, ..e) Qmia}-

ASSUMe Ay o(@y) = 2. Set l,= @, Pye £, ,, 50 that P,Q,e Z,.

Let first n = 8, set 1,1 & = {P,Q,, Ry, R,}, 1,N & = {P,,Q;, 51, 8.}

Then SCl,ULUI,Ul,. We have P,8,€ &;, {S:R,, S, R,} C Z,.

So there is a 4-line, which doesn’t intersect P;§S; in &. This
contradiets lemma 3.

We have m>3. Assume Qlege L1y st Po=gNl,.

Then Z(g*) = La(g*)V Zs(g*), | Lalg*, Po)| =n—m—2—(m—1) =
=n—2m—1, | Lg% P;)| = 1 for j¢{0,3}. Thus |Zy(g*)| =mn—
—2m—1-+m+1=mn—m, |Z9g*)| =m—+ 1. A g*argument gives

2|g*| = | ZLa(g®)| + 2| Z5(9™)],  2(n—m) =n—m + 2(m + 1)
and so
(%) n=23m-+ 2.
Thus m?2 4 1 <n<3m + 2, m(m — 3) <1 and thus m = 3.
From (%) we get » = 11, |&| = 17. On the other hand |S|>11 +
+ 6 4+ 2 =19, a contradiction. We have a,,,(¢,) = 0.
Assume @Q,ege &,,. Use a (§,, l;)-argument. We know a,(Q,) = 2.
As§ ay(P,) =1 and P,Q;€ %,, we have an,,(@:) = 0 because of

lemma 10.
Further ay(Q.) + a4(@.)>1 as | Z(¢g*% Q)| = 3. It follows

(%) mi4m+ 4<|S|<2m + 5+ 2+ (m—1)(m—1) =m*+ 8
and m<4. Let first m = 3, set ¢N & = {@,, P;, M}.
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As {Q,P1,Q,P,} C Z,, we get @, M € £, which contradicts as(Q),) = 0.

So m = 4. We have equality in (xx%). Thus » = 17, |§| = 24.

Use a g*-argument: | L (g% P,)| =9, | La(g* P:)| =1, =1,2,4,
5, 6 and so |Z,(g*)| = 14. Further Z,(g*, P;) = 0 for i = 4, 5,6 and
thus | Z,(g%, P;)| = 2 for i = 4, 5, 6. Set v = | L, (g*, P,) U ZL,(g*, P,)|.

Then 0<v<4 and the g*-argument gives

3(18 — 4) = 2(g*) = 14 4 3-2-3 + 3v + 2(4 — ),

sov=2. Thus {P,N,P,N}C %,, whereQ,ehe Z,,hN\ S = {@,, Py, N}
(see fig. 3).

P,

Figure 3

Set gN & = {Q., Py, M,, M,}. Then k = NM,e % as kN {P,, P,} = 0.
We can assume P;ek. Then Q,¢ &k and because a,(Q;) = 1, P;Q;€
€ %,, we get Zy(k* Q;) = Z(k*,Q;) = 0, a contradiction.
We have @m1(@:1) = an(@:) = 0. A (@1, l;)-argument gives

(k%) m*+ m+ 4<|S|<2m + 5 4+ 2m 4+ m(m —3) =m2+ m 4+ 5.

It follows n € {m*+ 1, m®+ 2} and a._,(Q:) 5% 0. Thus ay(Q,) +
+ a4(@,) + a5(@:)>2 and our (@,,l,)-argument gives m* -+ m + 4<
<2m + 5+ 6 + (m — 2)(m — 1) = m*—m -+ 13 and thus m € {3, 4}.
Let m = 3. Then |&|>17, n>11 and so » = 11 because of (k).
Set 1,N & = {Py, @1, Bu, By, By}, 1,0 & = {P,, @y, 84, 8y, Sa}-
Then &, = {R,-S,-l’i, j=1,2, 3}7 ay =9, a,(Py) = a,(P,) = ay(P,) =
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= a,(@1) = 0, a4(Q,) <3, a,(Q;) <2, ay(P,;)<3 for j € {3, 4, 5}. It follows
ay(@s) = 3, a4(Q;) = 2, ay(P;) =3 for j = 3,4,5. Let ve L, Q.¢0.

As by lemma 3 every 4-line has to intersect » in points of & we
get a,=1 4+ 1+ 2+ 24 2 =8, a contradiction.

We have m = 4, n € {17, 18}, |&| € {24, 25}.

Let Me@ — (LU L, UL, UL). As QM N {P,, Py} = @, as(Q,) = 0,
we get g =@, M € Z;. We have Z(g*) = ZLy(g*) U Z3(9*), ZL(9*, Po) =
= Zy(g*, Py), | L(g*, Py)| = 8 resp. 9if n = 17 resp. n = 18, | Z(g*)| =
= | Z(g* P,)| + 10 = 18 resp. 19 for n = 17 resp. n = 18.

A g*-argument shows

(+) 2|g*| = | Za(g)] + 2| Zu(9™)] -

Let first » = 17. Then |¢g*| = 13 and (+4) shows 26 = | Z,(9*)| +
+ 2(18 — | Z,(g*)|) and so | Z(g*)| = 10. If n = 18, we get | Z»(g*)| =
= 10 from (-+) again. However | %,(g*, P,)|>8 and |Z,.(g*, X)|>1 for
every Xe(&nl)—{Py, P, P,,gN 1} Thus |ZLy(g*)|>11, a con-
tradiction. We have

LEMMA 12. @,,(X)<1 for every X € {Pi, ..., Puys, @1y ey Qmye}+

We have an,,(@:) = 1. Assume an,,(@:)7# 0. Let @.€lje L.,
l,N1,= P,. Use alj-argument: | Ly(l;, Py)|=n +m + 3 —(3m -+ 4) =
=n—2m—1.

For i€ {3, ..., m 4 2} we have | Z,(l, P;)| = | Zs(l;, P:;)| = 1. Hence
2(n —m) = | L(l3)| + 2| L) = n—m —1 4 2m + ay(Py) + 2(2 —
— ay(P1)); ax(P1) <2.

It follows

() n = 3m + 3 — a,(P,) .

Thus m?*+ 1<3m + 3, m(m — 3)<2 and m<3.

First let n = 8, set L5(Q) = {la, ls}, la N & = {Q1, P, 8}, 1, N & =
= {Q., Py, T}. From (%) ay(P;) =1 and so ST ¢ P,. We get the
contradiction 87 € .Z;.

Let m = 3. (%) shows n = 12 — a,(P,), as(P1)<2. Set

lan@Z{PlyQuRnRz;Rs}, l4n@={P27Q19817'S’2}-
If n = 10, then L= {I,} U {S;R,}i =1,2;j=1,2,3}, a,= 7.

Let r € {2, 3, 4, 5}. Then a,(@,) # 0, hence a,(Q,) = 0 by a (., l,)-
argument. Let Q.€v = S;R;e .¥,. There exists v'= S,R,€ £, such
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that a4, b%j and vN L= v'Nl;. As vNv'eS, we have Q,ev'.
Thus a,(Q,)>2 for every r € {2, 3, 4, 5} and a,>9, a contradiction.
If n =11, set Q,€l;€ L, ;N & = {Q,, P;, T}. Then TS, P, as
as(Py) = 1. It follows {T8,, TS,} € &, and we can choose P,e T8,
P,e T8,. Thus {Q,P:, @sP:} C &, ay(P;) > 1, a contradiction. In case
n = 12 we get the same type of contradiction. We have

LEMMA 13. @mp1(@1) = Gpya(Py) = 0 under Hyp. (2.1). Further
m>3.

ProOF. The case n = 8 is clearly impossible under Hyp. (2.1).

HypoTHESIS (2.1.1). a,(Q,)+# 0.

Choose Q,€l,€ L, Prel,. Use a Ij-argument: | Ly}, Po)| = n —
— 2m. Further | Z,(l;, P;)| =1 for i = 3,4, ..., m + 2.

We get the inequality 3(n +1—m)<n —2m + m + 2m-3 + 9,
2n<8m -+ 6 or

(%) n<dm + 3.

Thus m?+ 1<4m + 3, m(m — 4) <2 and m € {3, 4}.

Let m = 4 first. Then n <19 by (x). Obviously a,(Q,)>2.

Let l,= @,P,e &,, l;= Q,P,e &,.

Assume a,(@,) = 2. Because of |S|>24 then @, P, ¥, fori = 4,5, 6.

Set Q. P;N & = {@., P;;, M,}, i = 4,5,6. The points M,, M,, M,
cannot be collinear as a,= 2. So we can choose P,¢ M, M;. Then
M, M€ %s.

Let Q;= M, M;N1,. Then P;Q,€ ¥, by lemma 10, a contradic-
tion. So we have a,(Q;)>3. Let ;= @,P,e Z,, choose M €&, M ¢1,,
1<i<6, set 1,N S = {Q,, Piy, Ri,, Sis}, t =4, 5, 6.

Choose g = MR, 3 P,. Then g € %, and thus g N {P,, P;} = 0. We
can choose P,eg. Set gNly,= @;. Then P;Q,e %, by lemma 10. It
follows Q,P,€ &,, Qs g. Choose R, on Iy such that MR, $P,. Then
MR,e %, and like above we get Q. MR,, which is a contradiction.

So we have m = 3. As |&|>16, we have a;(Q,)>2. Set l,= @, P,
€ ,?3, ly= @, P;e gsy LNG = {Qly sz Ml}’ NG = {Qu Py, Mz}-

Assume 7 >10. Then we can choose lg= Q,P,e Z,,liN S =
= {Q., P,, M;}. The points M,, M,, M, are not collinear because
ag= 2, a;(P;) = 1.

Set g = M; My, go= M; M,. As a,(P) = a,(@:) = 0, we have g; N
N{P,Q.}=0,7i=1,2 and thus {g,, .} S &5. Set g;N1l,=@Q;. By
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lemma 10 then P;Q,c %,, thus j = 5. We have ¢,30Q,,¢=1,2, a
contradiction.

Finally » = 10, |$| = 16. Choose P,e M, M,. Clearly M;M;e Z;
and @,P,€ ¥, by lemma 10. Further @, M, M, and consequently
P,Q;e ¥,. This is case (iii) of the theorem. It is easy to see, that
(&, & — &) is uniquely determined. We have

LemMmA 14. Under Hyp. (2.1.1), case (i) or (iii) of the theorem
holds.

We can assume a,(@:) = @, 1(Q:) = 0. A (@Qy,,)-argument yields
the contradiction m? 4 m 4 4 <|S|<3m 4+ 5 + (m + 1)(m — 3) = m? 4
+ m 4+ 2.

Thus we can assume, that Hyp. (2.1) is not satisfied.

HypoTHESIS (2.2). Znipo= Lnia(Po)y L1 Lompa(Py).

Set l;= P1Q,€ %1, use a ly-argument: 2(l3) = 2(n —m), 2(ly, Py) <
<n+m-+3—@Bm-+4)=n—2m—1. For ie€{2,...,m+ 2} we
have | Z(l;, P;)| = 2, thus 2(I], P;)<4. It follows 2(n — m)<n — 2m —
— 1+ 4(m+ 1),

() n<dm -+ 3.

Thus m2 4 1<4m + 3, m(m — 4)<2 and m<4.

Let first » = 8. It is then immediate, that we are in case (ii) of
the theorem.

Let m = 3, set I, & = {P;,Q,, Ry, R,}. Assume first a,(Q:)>3,
so that n>11. Set l,= @,P,e %,, ;= @, P;€ &, l,N & = {Q,, P,
8y, 8}y 1sN & = {Qy, Py, T», T,}. For X, Ye & — (,UL,UL), X # Y,
have XY N {P,, P;,Q.}+ @ because of lemma 3 and Z5= Z;(P,).

So we can choose {P,, Ry, 81, T:} C ¢, {Po, Rs, 85, T2} C g

Then 2z(I;, P,) <11 and instead of (%) we get n<11, thus #» = 11.

We have P,e 8, T,=le &,, 2(I*) = 16, 2(1*, P,) = 0, 2(I*, P;) <3 for
i = 4, b, 2(I*, P;)<4 for j = 2, 3. The contradiction 16 = z(1*)<2-3 +
+ 2-4 = 14 follows.

Assume next a,(Q;) = 2. Define I, like above. As |&|>16, there
is Te&— (l,Ul,Ul;Ul). Like above we can choose ! such that
12{P,, T, 8;, R,}. As 8,X€eP, for every Xe(ln &) —{P,, 81, R}
we get le Z,, 8,T 3 P,.

Further S,R,> P, as otherwise Ssze L., but S, R,N1¢G.

Clearly now |&| = 16,7 = 10. We have z(I*) = 14, 2(I*, P,) =
= 2(1*, P,) = 2(I*, P;) = 0. But 2(1*, P,)<4 for i € {3, 4, 5} and so we
have the contradiction 14 = 2(I*)<3-4 = 12,
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Hence a4(Q:) = a,(P,) =1, n € {10,11}. Let first » = 11, so that
a,(@,) = 0. Like above we see, that all the points in & — ([,U [, U [,)
are collinear with P, and thus ag= 3, a,= 1.

We can choose P,R,e .#,. Further a;= 0, a,= 5, a;= 20 (see
fig. 4).

Q.

Figure 4

Let 1€ #;. Then |I*| = 9. There are at least four points X el*
with a,(X) = 0. But then a I*-argument shows a,(X)=* 0 and so
a,>4, a contradiction.

Let n = 10. Like above we see a;(P,) = 1, ay(P,) = 1, Py R, Z,.

Let Pyele &,. Then |I* = |%,(1*)|=6. On the other hand
| #(@1*, P,)| = 1 for 1<i<b and thus |£(I*)] = b, a contradiction.

Let now m = 4. By (%) 1T<n<19. Set #/ =& — (l,UL,UI,),
let A" consist of the pairs of different elements of .# and for X € &
set n,= |{{4, B}e #|AB > X}|. Clearly 8<|#|<10.

Let f = |A'| — (np,+ np,+ ng). Then f=|{l|le &, 1N {Py, Py,
Q.} = 0}| and we have ny<3 for X € {P,, P, ..., Pg}.

Assume Pyel, 1 ¢{l;, 1}, st (I)>5. Then!Nl;e S by lemma 3 and
instead of (%) we get » <16, which is 1mp0s31ble If st (1) = 4, again
INl,e&. So we have n, <} |./#|. 10

Let » = 19. We have equality in (%), |.#| = 10, |A4"| = (2 ) = 45

Np, <By Np <9, Np,<9, f>45— 23 = 22. So thereisie{2,3,..., 6} with
np,>5, a contradiction.

Let n = 18, so |#| =9, |#'| = 36. We have n, <4.

Assume a5(Q,) = 4. Then clearly a;(P,)>1. Let Pyeke &Z;, k+#1,.
As ay(Q,) = 2, a k*-argument analagous to the I;-argument at the
beginning of the paragraph leads to a contradiction.
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Thus as(Q1) <3, a5(P1) <3, np, <7, me <Tand f>36— (44 7+ 7)=18.
There exists then a X € {P,, ..., P;} with n;>4, which is impossible.
Finally n = 17. Assume first a;(Q,) <2>a,(P,). Then n, <5>n,,
and f>28 — (4 + b -+ 5) = 14. So there are at least four points
Pe{P,, ..., P} with n,= 3. For these points a,(P) % 0. As a,(@,)<1

6
we get > | Zy(l;, P;)|>3 and the I;-argument leads to a contradic-
1=2

tion. So we can choose a;(Q:) = 3. Set Z4(Q:) = {ls, ls, s}, LNl =
=P, ,,i=234,5 Set {X, Y} =6—(1,U..Ul).
Choose M €l;N A such that XM N {P,, P,} = @. Then XM € &,
and thus P,e XM. It follows {P,X, P,Y}C Z; and so a(P,) = 3.
We have shown a4(X) € {0, 3} for every X € {Py, ..., Pg, @1, ..., Q¢}.
Let P e {P,, P;, Ps}. A (P,l,)-argument and lemma 3 show, that
as(P)== 0. For every ie€{l1,2,...,6} we have a,(P;) =3 and thus
6

as(P;) # 0. As ay(Q,) <2, we get > | Zy(l;, P;)|>3 again and the I;-
=2
argument provides us with a contradiction.
From now on we can assume, that Hyp. (2.2) doesn’t hold, so
that L= Luna(Po)y Lmi1= Lmyi(Po). Clearly m>3.
Assume Z,= Fo(P,), choose Pel,N &, P+# Py, a,(P)+# 0.
A (P, ly)-argument yields the contradiction

m2+m + 4<|S|<2m + 54+ (m + 1)(m —2) =m?4 m 4 3.

Thus Z,= Z,(P,).
Assume Z % Zy(P,), let Po¢l,e Ly, {P1, @1} Cl;. A (@1, ly)-argu-
ment like above leads to equality and we get one of the following:

(i) m =3, a;(@1) = m + 2. (ii) m>4, a3(¢y) = 1, am(@1) = m + 1.

Let first m = 3, n = 10. As Zy= L(Py), L1= Z.i(P,), We get
ag=3, a,=a,= 0. Let le ¥,. A I*-argument leads to a contradic-
tion. So m>4. Clearly a,(P,) = m -+ 1. Assume P,el1;, st (1)>5.
Because of (ii) and lemma 3 then ! € %, ,, which is impossible.

Thus m = 4, n = 17. Let Q,ele %,, 1, & = {P;, @, 8}. Then
there is MelN S, M ¢ {Q,,l N1} such that SM $ P,. It follows
SM e Z,. In this way we get the five lines of & through S, which
don’t contain @, or P,. Necessarily then lo= P,8€ %,. As Fs=
= Z5(P,), the points in & — ({,U [, Ul,) are collinear and so P,e
eke L. A k*-argument yields the contradiction Z,+% Lo(P,).
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Hence we can assume %, = Z,(P,). Assume Z,,% L.(P,), choose
Py ly€ Loy {P1,Q1}C 1. A8 Zy= Z4(P,), we have m>4. Use a
l;-argument. We get

3n+1—m)<n+m+ 3—@Bm + 3) 4 9(m + 1),
2n<10m + 6, n<dbm 4 3.

Thus m2 -+ 1<5m + 3, m(m — 5)<2 and m e {4,5}. We have (i3,
P)= 2,15, P),i=2,3,...,m + 2 because Ly= Ly(P,), Ly= ZLs(Py).
It follows 2(l;) = 3(n + 1 —m)>9(m + 1) and

() n>4m + 2.

First let m = 5, i € {2, 3, ..., 7}. Then a l;-argument together with
lemma 3 shows a,(P;)>3. A (P;,l,)-argument shows |&|<15 + 3-
-2 + 4-3 = 33, n<2b, which is impossible.

Finally let m = 4, so that n>18 by (*). A (@, !;)-argument shows
n <18, so that » =18, |&| =25. Let X €& — (l,Ul,). Then XP;e %,
for i =1,2,...,6. Thus P,X € &,. It follows a,= 4. Set &, = {l,,
Ly lay Ish LrN & = {P}U {R,i =1,2,...,6}, ;N & = {P} U {8i]i =
=1,2,..,6} (see fig. 5).

P,

Figure 5

Consider the 6 X 6-matrix with entry (R, §;) in the ¢-th row and
j-th column whenever P,, Q,, R;, S, are collinear, It is immediate,
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that this has to be a pair of orthogonal 6 X 6-latin squares. However,
such a pair doesn’t exist (see [1], Chap. 5). Thus the proof of our
theorem is complete.
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