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Finite Groups with a Standard Component
of Type L3(4), - I

CHENG KAI-NAH - DIETER HELD (*)

1. Introduction.

Following Aschbacher, a quasi-simple subgroup A of a group G
is called a standard subgroup of G, if K = C(A) is tightly-embedded
in G, NG(A) = and [A, 1 for every g E G. Here, K is
tightly-embedded in G, if K ~ =0 mod 2 - 1 mod 2

hold for all g E GBNa(.g). Assume that .K is tightly-embedded in G
and let x be an involution in K. If y E CG(x), then x = x1l E K n Kv,
and so, y E N(K); it follows CG(x) ç; NG(K) for every involution x E K.
If y is another involution of 7T and xg = y for some g E G, then
xg = y E Kg 0 .K, and so, g E N(K), since I~ is tightly-embedded in G.
This implies that the fusion of the 2-elements of K takes place only
in N(K).

The objective of this series of papers is to prove the following
result:

THEOREM. Let G be a nonabelian, finite, simple group which pos-
sesses a standard subgroup A such that La(4). Then the

following two assertions hold:

(2) If ~Z(A ) ~2 &#x3E; 1, then G is isomorphic to He or 0’ N.

REMARK. From the work done by Cheng, Held, and Reifart it
seems very likely that in case (1) we have Sz.

(*) Indirizzo degli AA.: University of Singapore, Kent Ridge, Singa-
pore 0511. - Mainz University, 6500 Mainz, Germania 0 cc.
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In this first paper we prove the following

THEOREM 1. Let G be a nonabelian, finite, simple group which
possesses a standard subgroup A such that L3(4) and that
the 2-rank of Z(A ) is greater than 1. Then G is isomorphic to the
sporadic simple group He.

2. Some facts about Zg(4).

We shall state here some facts about Z3(4) which are required
in later sections. Throughout this section we set L = ~s(4).

(2.1) Denote by  ~ &#x3E;&#x3E; the canonical homomorphism from 
onto L. Let 1 be an element of 6~F(4)*. Following the notation
introduced by A. Reifart [10], we define the elements a, T, fl, ~7 ~9
of L as follows :

Set P:1--~ -71 T7 li7 ~7 C7 ~~~ El == T, p7 A&#x3E;7 and E2 = ~c, ~, ~’, y.
Then, P E Syl2 (L), and El and .E2 are the only elementary abelian
subgroups of order 16 of P. We have P = E1 E2 and Z(P) = P’ _
- D(P) = n, í). Every involution of P is contained in E1 or E2.
The subgroup P possesses precisely three subgroups of type (4, 4),
namely, ,u~,~, 11), 2~&#x3E;, and ,u~, 2~~&#x3E;; these subgroups are self-
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centralizing in P. There are precisely 27 involutions in P. Thus,
every element of order 4 lies in one of the subgroups of type (4, 4)
of P.

The element g of L with

has order 3 and operates on P in the following way:

One has P(g). The subgroups .Ei ... , i E fl, 2}, ... are self-

centralizing in L and NL(Ei) is a transitive splitting extension of E’i
by a subgroup isomorphic to As. The group .L possesses precisely
one class of involutions and we have C,(7t) = P.

(2.2) It is well known that

As a complement 27 of L in Aut (L) we may choose r~, where
~ is induced by the field automorphism of GL(3, 4), x is induced by
the transpose-inverse automorphism of GL(3, 4), and r is induced by
the element

of GL(3, 4).
Then, q2 = u2 = r3 == 1, ~9~~ %~~ = 1 ~ ~r~ 99) ~ ~gy and [r, == 1.

Thus, 27 == r~ q) x 9~x~ ’" ~3 X Z2 .
The subgroup P of L as described in (2.1) is E-invariant. The

operations of cp, u, and r on P are as f ollows :
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The subgroups El and E2 are normalized by r, g~~ and permuted
by the action of x.

(2.3) Let U be a subgroup of Aut (L) with U d Inn (L). Then,
obviously, a S2-subgroup of U is isomorphic to P, Px&#x3E;, 
or x~.

Set with We identify L with
Inn (L) . We have where and CU(Ei ) = Ei,
for i 2}. Let N = Then, depending on .Eo, one of
the following cases arises:

(2.4) By direct computation one obtains

Furthermore, for each y x, all the involutions from the
coset Py are conjugate to y under the action of P.

(2.5) The rank of x&#x3E; is equal to 4. Further, E, and E2 are
the only elementary abelian subgroups of order 16 of P~~p, x~.

3. Some notations.

Throughout this paper let G denote a fixed group which satisfies
the assumptions of Theorem 1. Let a, b E G. Then a : b - c means
a-xba = c. We shall write N(A) and C(A) for NG(A) and 
respectively.

Let A denote a fixed standard subgroup of G where 

~ L3(4). Then, A is isomorphic to a homomorphic image of the rep-
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resentation group of ~s(4). Note that the representation group of a
simple group is uniquely determined up to isomorphism.

Set H = C(A). Then .L3(4) ~ AIZ(A). Note that [x, 
for some x implies x E K. Let Q E Syl2 (.g). Since Aut (.L)

splits over L, and since N(A)IK is isomorphic to a subgroup of Aut (L),
we obtain the existence of a subgroup C of N(A) such that 
- with C K. By Frattini’s argument, we get

C. Clearly, CfK. We may choose a 8,-sub-
group S of A such that operates on SjZ(A)2 in the same
way as 27o on P (in the former notation). Using the isomorphism
P ~ SjZ(A)2’ we may put S = Z(~)2(~, r, P, I, i, ~&#x3E;, where the gen-
erators are all 2-elements satisfying the relations modulo Z(A)2 which
we had derived for P above. We may « identify » NC(Q)/NK(Q) with

thus a S2-subgroup of N,(Q) could be Q, 
Qx~, or u), and if r is present, we have r3 

We get that a S2-subgroup of N(A ) is one of the following types:
QS, x).

In what f ollow s, we denote by X a fixed S2-subgroup of N(A).
Furthermore, X is of type QS, x) .
Hence, X n A = S and X (-) K - Q. One notes that XfQ is iso-

morphic to P, Px~, or x), where P E Syl2 (.L3(4))
as given in (2.1).

(3.1) LEMMA. Let y c XBQS with y x, Let z = uvy be

an involution with and Then Cs(z) 

PROOF. We put z = uvy, u éo, v E S. Note that [Q, ~S] = 1.
We get

since y2 E Q. It follows

We look now at S(z)/Q n S = r1 S. Since [~c, S] = 1,
the element vy induces the same automorphism of ~’ as z. Thus,
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where (vy)2, y2~ ~ Q r1 S, (vy)2~ ç Q; note that we have =

= u-lu-1/ == (vy)2 with E Q r~ S. We see that n S is iso-

morphic to Px~, or From (2.4) we get that ~Q r1 S,
(vy)2)y is conjugate to (vy)2)vy under the action of S«vy)2)/

(vy)2~; this means that there is 8 E S such that (vy)8 = yx,
X E Q (vy)2). Hence, CS((vy)8) = Cs(yx) = Cs(y), since x E Q, and

4. The structure of 

We follow the notation of the last section and look at X ESyl2 (N(A))
with X r1.K = Q E Syl2 (.K) and X n A = S E Syl2 (A).

(4.1) LEMMA. Q is elementary abelian and Q r1 S is a four-group.

PROOF. By assumption we have m(Q r1 S) &#x3E; 2. A result of Asch-
bacher [1] yields that Q is elementary abelian. This implies that
Q m S is a four-group, as the Schur-multiplier of L3(4) is isomorphic
to 

Throughout this paper we set = 2n and Q r1 S = ql, ~2)’

(4.2) The structure of S.
It is well known that the sporadic simple group .~e contains a

standard subgroup B, where C(B) = and 
^~ ~g(4). Hence, the S2-subgroup S of A in our case is isomorphic
to a S2-subgroup H of B. The subgroup H contains exactly two ele-
mentary abelian subgroups 81 and H2 of order 26; we have H = 
and Hl r1 H2 = Z( H ) = 

Set S = with Ri  E26 ~ R2 and Z(~S’) = Rl r1 E2&#x26; gg ~S’~.
Let .~i for i E {1, 2} be the image of Ri under the homomorphisms
from S onto q2) = S. The group S is isomorphic to a S2-sub-
group of L3(4). It is clear that R1 and B2 both contain ql, q2&#x3E; =
- Q r1 S. Thus, R1 and .R2 are the only elementary abelian subgroups
of order 24 of ~S. We may put

where the nontrivial commutator relations mod q2) are given by
[,u, Cl = ~z, [,u, ~] == nr, [A, Cl == nr, [~,, ~] = r. Since A is the epi-
morphic image of the full covering group of L3(4) modulo a charac-
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teristic subgroup of the full covering group, we see that A possesses
automorphisms which are « lifted-induced » by the field-, transpose-
inverse, and field times transpose-inverse automorphism of ~(4); we
use here the fact that every automorphism of a perfect group can be
lifted to an automorphism of the full covering group (see Griess [7]).

We want to determine the multiplication table of ~’ = 

Since the cosets and g2)i consist of involutions only, we
may put without loss of generality [p, ~] _ nr and [A, ~] = z. Since
~’ - q2 , n, we have and [A, C] == where q, p E
E Note that [uk, E] == ;]9’ == n9’ == n where p comes

from the field automorphism of J~s(4). If [q, 99] = 1, then we get

thus p = c~. Hence, in this case, Lu, ~] == ~~z and [2, ~] = which

implies = 8 against IS’I ] - 16. Hence, [q, q&#x3E;] =1= 1. In particular,
~ ~ 1 and 

Computing ~] = qn --~ C~,~ i$] = ~~~~(~,~~,~) ~ _ we get
p = q9. Put q2 = ~ and qiqz = q9l. Then [,u, C] = q2n and [2, C] _

In this way we have obtained the multiplication table of ~S :

We know already that q] = 1, qf = and [n, ~] = 1. Since

Lu, E] _ ni is mapped under p onto [k, E] = í, we get r;fP _ ní.

Hence, the action of q on Q2, ~, z~ is known.
We have nCfJX == LUÀ, = [~, /il] = n; r;qJx = [~,, ~]~’~ = [’~, =

== == (qi = [~, p] _ nr and qix = ní = ql nr
which implies = ql. Fmther, [p, = = [’, p] = Q2n
which implies = q2. Hence, the action of cpu on Z(RlR2) is known.

Acting With x on appropriate commutators we get n" == = ql ,

Hence, the action of x on Z(RIR2) is known.
We get and [p$, 11$] =

- q2 # 1. In particular, we note that S does not contain any sub-
group of type ( 4, 4). Clearly
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(4.3) LEMMA. We have-depending on X-

If then there is an element which
induces an outer automorphism of order 3 of L3(4) and
of A. The element r operates fixed-point -free on q2) and r : 

ql q2 n.

PROOF. This follows immediately from the operations of cp, x, cpx,
and r on SfQ P.

(4.4) LEMMA. Set Si = QRi for i E {1, 2}. Then, ~’1 and ~2 are
the only elementary abelian subgroups of order 2n+4 of X.

PROOF. This follows from (4.1) and (4.2).

(4.5) LEMMA. The involutions in q2~ have no roots in S.
If i is an involution of QS, then i lies in Si or S2. Further, i is con-
jugate to an involution in under A.

PROOF. Let with Then Qs is an involution
of Since QSIQ is of type L3(4), the involution Qs lies in QR1/Q
or Q-R21Q. Thus, s lies in QR1 or Q.R2. But is elementary abelian.
Hence s2 = 1.

Let i = q8 with q E Q and s E S be an involution of QS. Then,
1 = i 2 = q 2 s 2. Since Q is elementary abelian, we get q2 = s 2 = 1.
It follows that s E R1 or 8 E R2 , so that i = qs lies in QR1 or 
Assume that i does not lie in Q. Then Qi is an involution of AQIQ,
and so, Qi is conjugate to Qn under AQ/Q. The lemma is proved.

(4.6) LEMMA. Let y E XEQS x, ggxl. We have 
ro..J Z2 X D8 with = 16’l) and ql, 91 S) Cs(x) _
= Cz(s)(x) = n, q2í) gz E23; and = = Q2’ n) 

Let z be an involution from QSy. Then = (n),
if y = 99; CS(z) = Cs(x), if y = x; and Cs(z) = C,(ggx), if y = cpx. For

each y E fgg, x, all involutions from Sz are conjugate to z under
the action of S.
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PROOF. Since the field automorphism of L3 (4 ) centralizes 
we get Z2xDs, and, obviously, we must have q2,

n, ~). The latter group has exponent 4 and (pl$)2 = ~. The

assertion about Cs(x) is clear as the contragradient automorphism
of La(4) centralizes As. We have Cs(gJx) ç (ql, Jl’7:). Com-
pute

and also

where q E q2~ ; and similarly one sees that is not central-

ized by ggx. All other assertions follow from counting the involutions
in Sz using our knowledge about the involutions of Pcp, Px, Pcpx and
the action of the outer automorphisms of A on q2~ . The lemma

i s proved.

(4.7) LEMMA. The subgroup NA(Ri) for each 2} is a split-
ting extension of CA(.Ri) by a subgroup Ui isomorphic to A5. Further-

more, Ui operates transitively on .Ril ql , q2).

PROOF. This is a direct consequence of the structure of L3(4)
and A.

5. The _ ~ IGI2.

In this section all results will be proved under the title assunlption.

(5.1) LEMMA. The group q2) is strongly closed in Q~S with
respect to G. If i is an involution of S and then for

any x E G.

PROOF. We know that every involution of QS is conjugate to an
involution of under the action of N(A ) . Note that í) =
= Z(QS) = Sl r1 82, y where ,S~ and S2 are the only elementary abelian
subgroups of order 2n+~ of .X; clearly = QS.

We prove first that c~2~ is strongly closed in QS with respect
to G. Assume that this is not the case. Then, there is u E q2~#
and g E G such that ug E QS but ug Eq1, q2). Hence, ug = W8, W E Q,
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s E ~S, w2 = s~ = 1. If s E Q, then = W8 E Q r1 Qg ~ 1 implying
g E N(A), against Thus, we must have s rf= Q. Under
the action of A, we have that Qs is conjugate to Qn. Thus, we may
put WtQ. Obviously, gtlN(A). We have 
char QS char .X, and QS C C(u) r1 note that QS is generated
by the maximal elementary abelian subgroups of X. Clearly, c

~ C(2cg). Hence, there is x E C(ug) such that QS = (QS)YX and, obvi-
ously, v.9 = uOX. Thus, we may assume g E N(QS). But N(A) =
= N(K). Put V = Z(QS) = Q x 7r, T&#x3E;. We have TT and Qo r1

Thus ,22n = IQ IVI = 2n+2 implying = 4.

Hence, Q = Q2)’ and so Si = l~i and QS = = S.
We know that V = (qi, q2l ~, z~ has order 16 and that uQ = wn

for some g We also know that N(QS) controls fusion
of the elements of V. Since ql E Z(X) and X C N(QS), we see that
ql has an odd number of conjugates under N(QS) and N( V ), and since

g 0 N(A), we see that this number is not 1. Clearly,
as otherwise g E N(A) because of 

and mod 2. In a similar way one sees that each ele-
ment of Q# is conjugate under N(QS) and N( V ) to an element of VBQ.
Note that no element of q2&#x3E;# has a root in QS, however, n, 
and qlq2n have the roots f-l’, and respectively, in QS; note
that qin has no root in because if then we
would get Z = z = 1 = m = x, but (,u~,~~)2 = Assume first that

q, has no conjugate other than itself in Q. By the above remarks,
we see that qi - qin holds in N(QS) and that ql is not conjugate to
another element of note that holds in A/Q. Thus,
ql would have precisely four G-conjugates in V which is not possible.
Hence, there is a conjugate of q, in Q other than As the number
of conjugates of ql under the action of N(A) is odd, we get that all
three elements of Q# are conjugate; note that fusion of the elements
of Q takes place precisely in N(K) = N{A). Thus, ql has precisely 6
G-conjugates in V as holds and 
under Since 6 ~ 1 mod 2, we have obtained a contradiction
which proves that q2~ is strongly closed in QS with respect to G.

Finally, let i be an involution of SEQ and assume that there is
x E G such that but Conjugating with elements of A,
we may and shall assume that i and ix lie in Z(QS) = TT. Since N(QS)
controls fusion of the involutions of V, there is such that
i = iaey. Thus, Q x QY C Z(QS) and = 1;
and so, we get IQI = 4. This means that Q = = Thus,

is a contradiction to our assumption. The lemma is proved.



69

(5.2) LEMMA. The assumption of this section is not possible.

PROOF. Assume false. We have X i = ~ IGI2, and q2) is strongly
closed in QS with respect to G. Application of a result of Gold-

schmidt [5] yields that there is a conjugate of some element of q2;
in in particular, we get X D Ql3. Glauberman’s Z*-theorem [4]
yields that q, has a conjugate in We want to show that ql is

conjugate to an element of that this is false. Then

q, is conjugate to an element of q2; different from Ql, say q. The

conjugation is performed in N(.~), and as q, is 2-central, we
see that all involutions of ql, Q2) are conjugate. Thus, ql must be

conjugate to an element of X%QS.
Let where Let X E Syl2 (C(z))

such that X d Cx(z). Denote by Ax the unique standard subgroup
in C(z) isomorphic to A. Put Q = X n C(Az) and 9 = X r’1 Since

we have Q - tl/, ~S’ ~ ~S, and Clearly, C(z) r1 N(A)
does not possess a subgroup isomorphic to QS, since such a subgroup
lies in KA, and so, z would centralize a S2-subgroup of A which is
not the case. If there were a such then 
and C(q) n which is against N(A), namely: If q E Q
would be conjugate to an element of Q7rBQ, then the conjugation
q - w E Q, would be performed in N(QS) C N(V); obviously, If ,
and so, N(QS)~N(A); this implies Q = q~, q2;; but q2) is strongly
closed in Q~’ with respect to G; hence q is not conjugate to an element
of We have shown that q 0 QS for each q 

Let z c QS92. Then, we have Because of 

_ ~1~, we get n E QS, and this yields n E ~’, since n E S and
S - ~. By an above remark, we have Consider the coset 

Obviously, is conjugate in G to QSy for some y E (q, x, (pxl; note
that contains as a subgroup of index 1 or 2. An earlier

result yields that all involutions of Sq, are conjugate to ql under the
action of S. Thus, ql s But (qi, q2) is strongly closed in QS
with respect to G, and we have obtained a contradiction.

Let ZEQSU. We have Cs(z) = ql, n, q2~~. Since we

get Cs(z) r1 (1). We know that q, 0 Hence, there exists 8
in n, such that s E Because of 8 E ~’ ~ ~S’~, we get
s As ql and are involutions of Sql, we get ql 8 q1 s. This is

a contradiction, since q1s E q2) and q2) is strongly closed
in Q~’ with respect to G.

Let finally Then, = q2 , n&#x3E;. If = 2,
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then a four-subgroup of Cs(z) lies in QS, and so, yS’ would contain
an element of Q# which is not possible. Suppose that BX/QSB = 4.
Then, X = q2) and r1 q2) ~ ~6. Let qn be an element

of with q2&#x3E;- Since qn is an involution of S, we conclude
qn E ~S. Clearly, is conjugate to QSy for some y U, 

Thus, qlq7r under the action of ~S; note that qlqn E q2~.
This contradicts the strong closure of q2) in QS with respect to G.
The lemma is proved.

6. The identification of G with He.

From the result of section 5 we know that X is not a S2-subgroup
of G.

(6.1) LEMMA. We have Q = q2~.

PROOF. Let T be a subgroup of G containing X as a subgroup
of index 2. Let t E T’BX. Clearly, t 0 N(A) and t normalizes QS and
Z(QS) which is equal to Q X n, z~. This gives Q r1 Qt = 1&#x3E; and

Q xQt ç Z(Q~S), and so, IQI = 4. The lemma is proved.

(6.2) LEMMA. The case X = ,S~x~ does not arise.

PROOF. Assume that X = Sx~. One computes .X" _ ~,~]~ ==
= ql~. This implies This, however, is not the
case.

(6.3) LEMMA. The case X = does not arise.

PROOF. Assume X = Then Z(X) _ (qi , q2, n). Denote

by ~’ a subgroup of G which contains X as a subgroup of index 2.

Let t E TEX. Then, Q n Qt = (I) and Q x Q’ C Z(X) which is against
== 4 and IZ(X)B = 8.

(6.4) LEMMA. . In particular, q2 - qlQ2,
and for 2} we have

here 
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PROOF. By way of contradiction assume that Then,
N(A ) = AKX and Since K is tightly-embedded in G,
we ql q2 in G. Under the action of the set q, , q2,
~, z~# splits into 7 conjugate classes with representatives ql q2,

~, qln, q2n, We know that n, q2n, and qlq2n have roots in X,
whereas q2 , qlq2’ and Qln have no roots in S.

Let T be a subgroup of G containing X as a subgroup of index 2.
Let t E Then, t normalizes Z(S) and maps ql onto an element
of VBQl where TT = Z(S) _ q2, n, T). It follows q, - qln in G.

Also, one gets that q2 is mapped under t onto an element of TTBQ
which implies q2 ~ Hence, ql ~ q2 which is not possible. Thus,
we have that 3 divides the order of N(A)jKA.

From (2.3) and (4.3) we get and has

the stated structure.

(6.5) LEMMA. The S2-subgroup X of N(A ) splits over S.

PROOF. By ( 6.1 ), (6.2), and (6.3) we have ~~~:.
We may assume If X = then Q2’ 99&#x3E; Ds, I and

there is an involution in 
Let X = x~ . Clearly, K = where H = O (N(A ) ) . We

know that and that 

OMt(Zg(4)). We look at and determine the normalizer in C/H
of an element r of order 3 in CIH. We get IN«r») n CIHI - 3.4,
since r acts fixed-point-free on QH/H. Since r) E Syl, and

we get that a S2-subgroup of N«r») n G’/.H is a

four-group. This means that a S2-subgroup of C splits over Q. Thus,
splits over Q, and so, x) splits over Q. The lemma is

proved.

(6.6) LEMMA. The involution is not conjugate to q, in G.

PROOF. We know that X E Syl, (C(q1)), and we know that S is
the Thompson-subgroup of .X, is generated by the elementary
abelian subgroups of X of greatest possible order. Assume that qg1 = n
for some g E G. Then, S, C(qi) = C(~c), I and so there is x E C(~)
such that S = and qgx1 == n. It follows that ql and n are conjugate
in N(S). But q, has no root in S, whereas n has a root in S. Thus,

q1 ~ n.

(6.7) LEMMA. The case X = S does not arise.
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PROOF. Assume X = S. We have Z(X ) = Z(S) = q2 , n, TB *
We know that under the action of n N(A) the set Z( ~’ ) ~ splits
into conjugate classes in the following way: 3ql, 3qln, 9n; q, and 
have no roots in S and a 3-element acts non-trivially on the coset

~2)~’ Clearly, as IXI  IGI2. Since n in G,
we get in N(X), as q2 takes place only in N(A).
Thus, q, has precisely 6 conjugates under the action of N(X). Thus,

N(X) m C(ql) = 3 and NN(A) (X) = 2.
Recall that Rl and I~2 are the only elementary abelian subgroups

of order 26 of X. We shall determine for i e (1, 21. WTe have

where As operates transi-
tively on From (4.3) and (6.4) we get that under NN(A)(Ri) the
involutions of .Ri split into exactly three classes: 15qln, 45n.

We have shown earlier that in N(X) ql . Since

I there is a 2-elem.ent t in N(.X )B.X. Since N(A), we
get ~2 ~ ~‘~‘. If = I-~2 and qi - «in in N(Ri), a
class of three elements would be mapped onto a class of 15 elements
by t which is not possible. Hence, in in any case for

i 2}. Thus, q, has precisely 18 conjugates and n precisely 45 con-
jugates in N(R,) , i E {1, 21, and so, N(Ri) r) N(A). Since

we get = 6. Since N(Ri), ~Te get from an abov e
result that 21XI = 

Set No = N = C = and 0 = O(N(R1)).
Then, 0 C C. Hence, C = 0 X ..R1 ~ C(qi) ~ .N(A_ ) and j5; == 0 X Q. We
recall that Denote by x, H the images of x E N,
H C N, respectively, under the epimorphism. N - NIO. Let w be an

element of order 5 of A r1 Then, lo = 5. Note that

~ ~/~ ~= ~3.33.5. We have 

Since C( ~,v ) r1 C( q1 ) ~ 2 = 4, and since the fusion of involutions of ~q~ j ~~~
is controlled by N(A), we see that Q E Syl2 (C,(w)). We want to show
that n NI2 = 4. Note that O a N(R~ ) . Assume that there is a

subgroup Ql of N(R1) which contains Q as a subgroup of index 2 such
that [w, Ql] C 0. As )Qi : Q ~ == 2, we get 0Qi(w) C N(A). But in N(A),
an element of order 5 of A does not centralize a subgroup of order 8.
Thus, From the_ structure of N(A ) and Nojc we
get CnJm) ro.J A4 X Z5 . Obviously, Qa CN(w), and so,
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since N( Q ) C N(A). Hence,

which implies = 22.3.5.
Let X be a minimal normal subgroup of ? = N/C; note that

9Z I - 23.33.5. If 3i is not solvable, The
fact that 32 does not divide I yields N "’-JA6. Thus, * is cen-
tralized by a group of order 3. This gives 1~. If 3i is solv-

able, then * is not a 2-group because of )C,(10))~ = 4. So, in any
case, we must have 0(9Z) =,- 1&#x3E;. The structure of CN(w) yields

= 3. In particular, ? contains a chief factor isomorphic to Ag.
Let with We have ~T : X ~ - 2 and by

assumption = S = X.

Hence, T = for any t E 7’GS. Since contains a

chief factor isomorphic to A6 and = 23, we get that
TIR, is isomorphic to a dihedral group of order 8. We may there-
fore choose the element t so that Consider now the action

We have ~(~= 2 4 !C~(~, where Since

A6 has only one class of involutions, we have IGRl(t)1 = 24. Since
K is tightly-embedded in G, we have as 

But t acts on Z(S) == Q, ~c, T) as an involution, and so, by the
Jordan-canonical-form, we must have I Cz(s)(t) I == 22. Since t E N(R1),
we have note that It follows

Thus, TjR2 is abelian of order 8. Working with in the same

way as we did with N(Ri), we get This is a contradic-
tion proving the lemma.

(6.8) LEMMA. The case X --- x; is not possible.

PROOF. Assume x; . From (6.5) we get that X
splits over ~’. Hence, there are elements gg’c and x’ E ~’x such

that g~’, ~’) is a four-group. Note that S = RIR2 char X, Z(X) _
z; and We know that under the

set Z(S)# splits into exactly three conjugate classes with three con-
jugates of q, and each, and nine conjugates of n; here is the

only involution from q2)n which has no roots in Since n

in G, we get qui - in N(X) ; since N(X) normalizes S, we get ql ~
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- qln in N(S). It follows N(X ) : NN~A~(.X ) I = 2 ; note that 
ÇC«ql’ n»). Also, we get I N(S): NN(A)(S)I = 2. As in the proof of
(6.7) and by the presence of x, we get I N(Ri): = 6 for

i c- 11, 21. We remark that E Syl, and

Let Then, and obviously, X c T
with T : X) = 2. Since = .R2 , we have == 2. Hence,
IXI == INp(Ri)B I = 2~0 - and E SY’2 (N(Ri)).

Consider Set 91 = As in the proof of (6.7),
we can show that 91 possesses a chief factor isomorphic to As and
that = 3. It follows from the structure of N(A ) that a gen-
erator for O( R) acts fixed-point-free on .Rl, and that O( 91) acts on Q.
It is now possible to show that %’ is isomorphic to the tripple cover
of A6 and that };6. Further, we get that a S2-subgroup
of is of type 11/24. Let Y E Syl2 with Y D There
is an involution t E Y such that Y = t~, since Y is generated
by involutions. We have X = u) and we may put T = x, t).
We show that T E Syl2 ( G ) . Let R be an elementary abelian subgroup
of T of order 26 such that T = XR. Then, = 25. From the

action of cp and x on S we get that |S n R) = 24 is not possible. From
the structure of X we get that there is no four-group in X intersect-
ing S in 1&#x3E; which centralizes an elementary abelian subgroup of

order 8 of ~S. It follows = RIR2 char T, and since T E SY12 (N(S)),
we get that Reinember that and

so, We know that mod .H, H = O(N(A)), the group
N(S) r1 N(A) is an extension of S by a group of type (3,3) and by a
four-group. Thus, N(S) = U2~,2,3,2(N(~)) and N(~’)~O2-,2,3(N(~)) is a

group of order 8 containing a four-subgroup. Clearly, 
is faithful extension of an elementary abelian group of order 9 by
a dihedral group of order 8, as otherwise we would get T C N(A)
which is not the case. By the fixed-point-free action of the 3-layer
on 0Sf0, we see that T splits over S. Thus, there is a dihedral sub-
group 99’, t’)(x’) of order 8 in T such that t’)(x’) = T; cp’E 

the elements T, t’, x’ are involutions, S~~’, t’) E Syl2
(N(.Rl ) ), and t’, u’») = q?’&#x3E;; note that cp acts invertingly on
V2’,2,3 (N(~’)) ~02’,2 (N(~’)) · Obviously, x’ ~ ~’ x’ by t’. VVe have that

CT(99’X’) = q2 , n, cp’) = W by (4.6). Now, W’ = and this

implies that W is a S2-subgroup of However, by a transfer
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lemma of J. Thompson, we get that in G the involution g’x’ must be
conjugate to an involution of $%’t’&#x3E;, and so, gg’x’ must be conjugate
to an element of == Representatives for the G-classes of
involutions of are ~, q,, and g. But the centralizers of these

elements have larger S2-subgroups. This contradiction proves the

lemma.

(6.9) LEMMA. The group G is isomorphic to He.

PROOF. From the preceding results, we have to consider finally
the case in which X = ~Sg~~, g2 = 1 and CG(ql) = AKX. Clearly,
H = O(C(ql)). Set 0152 == Then, G is isomorphic to the cen-
tralizer of a non-central involution of He. A characterization of

Deckers and Held leads to G ~ He.
The theorem is proved.
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