RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

CHENG KAI-NAH DIETER HELD

Finite groups with a standard component of type $L_3(4)$, - I

Rendiconti del Seminario Matematico della Università di Padova, tome 65 (1981), p. 59-75

http://www.numdam.org/item?id=RSMUP 1981 65 59 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1981, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Finite Groups with a Standard Component of Type $L_3(4)$, - I

CHENG KAI-NAH - DIETER HELD (*)

1. Introduction.

Following Aschbacher, a quasi-simple subgroup A of a group G is called a standard subgroup of G, if $K = C_G(A)$ is tightly-embedded in G, $N_G(A) = N_G(K)$, and $[A, A^g] \neq 1$ for every $g \in G$. Here, K is tightly-embedded in G, if $|K| \equiv 0 \mod 2$ and $|K \cap K^g| \equiv 1 \mod 2$ hold for all $g \in G \setminus N_G(K)$. Assume that K is tightly-embedded in G and let x be an involution in K. If $y \in C_G(x)$, then $x = x^g \in K \cap K^g$, and so, $y \in N(K)$; it follows $C_G(x) \subseteq N_G(K)$ for every involution $x \in K$. If y is another involution of K and $x^g = y$ for some $g \in G$, then $x^g = y \in K^g \cap K$, and so, $g \in N(K)$, since K is tightly-embedded in G. This implies that the fusion of the 2-elements of K takes place only in N(K).

The objective of this series of papers is to prove the following result:

THEOREM. Let G be a nonabelian, finite, simple group which possesses a standard subgroup A such that $A/\mathbf{Z}(A) \cong L_3(4)$. Then the following two assertions hold:

- (1) If $|\mathbf{Z}(A)|_2 = 1$, then $2^{11}||G|$;
- (2) If $|\mathbf{Z}(A)|_2 > 1$, then G is isomorphic to He or O'N.

REMARK. From the work done by Cheng, Held, and Reifart it seems very likely that in case (1) we have $G \cong Sz$.

(*) Indirizzo degli AA.: University of Singapore, Kent Ridge, Singapore 0511. - Mainz University, 6500 Mainz, Germania Occ.

In this first paper we prove the following

THEOREM 1. Let G be a nonabelian, finite, simple group which possesses a standard subgroup A such that $A/\mathbb{Z}(A) \cong L_3(4)$ and that the 2-rank of $\mathbb{Z}(A)$ is greater than 1. Then G is isomorphic to the sporadic simple group He.

2. Some facts about $L_3(4)$.

We shall state here some facts about $L_3(4)$ which are required in later sections. Throughout this section we set $L = L_3(4)$.

(2.1) Denote by « \Rightarrow » the canonical homomorphism from $SL_3(4)$ onto L. Let $\alpha \neq 1$ be an element of $GF(4)^*$. Following the notation introduced by A. Reifart [10], we define the elements π , τ , μ , λ , ζ , ξ of L as follows:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \Rightarrow \pi, \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \alpha^2 \\ 0 & \alpha^2 & \alpha \end{bmatrix} \Rightarrow \tau, \qquad \begin{bmatrix} 1 & 0 & 0 \\ \alpha & 1 & 0 \\ \alpha & 0 & 1 \end{bmatrix} \Rightarrow \mu,$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \alpha^2 & 1 & 0 \\ \alpha^2 & 0 & 1 \end{bmatrix} \Rightarrow \lambda, \qquad \begin{bmatrix} 1 & \alpha^2 & \alpha^2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \zeta, \qquad \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \xi.$$

Then

$$[\pi, \, au] = [\mu, \, \lambda] = [\zeta, \, \xi] = [\mu, \, \pi] = [\mu, \, au] = [\lambda, \, \pi] = [\xi, \, \pi] = [\xi, \, \pi] = [\xi, \, \pi] = [\xi, \, \pi] = 1$$

 $\pi^2 = \tau^2 = \mu^2 = \lambda^2 = \zeta^2 = \xi^2 = 1$.

$$[\mu,\zeta]=\pi\,,\quad [\mu,\xi]=\pi au\,,\quad [\lambda,\zeta]=\pi au\,,\quad [\lambda,\xi]= au\,.$$

Set $P = \langle \pi, \tau, \mu, \lambda, \zeta, \xi \rangle$, $E_1 = \langle \pi, \tau, \mu, \lambda \rangle$, and $E_2 = \langle \pi, \tau, \zeta, \xi \rangle$. Then, $P \in \operatorname{Syl}_2(L)$, and E_1 and E_2 are the only elementary abelian subgroups of order 16 of P. We have $P = E_1 E_2$ and $\mathbf{Z}(P) = P' = \mathbf{D}(P) = \langle \pi, \tau \rangle$. Every involution of P is contained in E_1 or E_2 . The subgroup P possesses precisely three subgroups of type (4, 4), namely, $\langle \mu \lambda \xi, \lambda \zeta \rangle$, $\langle \mu \zeta, \lambda \xi \rangle$, and $\langle \mu \xi, \lambda \zeta \xi \rangle$; these subgroups are self-

centralizing in P. There are precisely 27 involutions in P. Thus, every element of order 4 lies in one of the subgroups of type (4, 4) of P.

The element g of L with

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 1 & \alpha^2 \end{bmatrix} \Rightarrow g$$

has order 3 and operates on P in the following way:

$$g: \pi \to \pi \tau \to \tau, \mu \to \mu \lambda \to \lambda, \zeta \to \zeta \xi \to \xi.$$

One has $N_L(P) = P\langle g \rangle$. The subgroups $E_i \dots$, $i \in \{1, 2\}, \dots$ are self-centralizing in L and $N_L(E_i)$ is a transitive splitting extension of E_i by a subgroup isomorphic to A_5 . The group L possesses precisely one class of involutions and we have $C_L(\pi) = P$.

(2.2) It is well known that

$$\operatorname{Aut}(L) = \operatorname{Inn}(L) \cdot \Sigma$$
 with $\Sigma \cap \operatorname{Inn}(L) = 1$ and $\Sigma \cong \Sigma_3 \times Z_2$.

As a complement Σ of L in Aut (L) we may choose $\langle \varphi, \varkappa, r \rangle$, where φ is induced by the field automorphism of GL(3,4), \varkappa is induced by the transpose-inverse automorphism of GL(3,4), and r is induced by the element

$$\begin{bmatrix} \alpha & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

of GL(3, 4).

Then, $\varphi^2 = \varkappa^2 = r^3 = 1$, $[\varphi, \varkappa] = 1$, $\langle r, \varphi \rangle \cong \Sigma_3$, and $[r, \varphi \varkappa] = 1$. Thus, $\Sigma = \langle r, \varphi \rangle \times \langle \varphi \varkappa \rangle \cong \Sigma_3 \times Z_2$.

The subgroup P of L as described in (2.1) is Σ -invariant. The operations of φ , \varkappa , and r on P are as follows:

$$\varphi$$
: $\pi \to \pi$, $\tau \to \pi \tau$, $\mu \to \lambda$, $\lambda \to \mu$, $\zeta \to \zeta \xi$, $\xi \to \xi$;

$$\alpha$$
: $\pi \to \pi$, $\tau \to \tau$, $\mu \to \zeta \xi$, $\lambda \to \zeta$, $\zeta \to \lambda$, $\xi \to \mu \lambda$;

$$r: \pi \to \pi, \tau \to \tau, \mu \to \lambda \to \mu \lambda, \zeta \to \zeta \xi \to \xi.$$

The subgroups E_1 and E_2 are normalized by $\langle r, \varphi \rangle$ and permuted by the action of \varkappa .

(2.3) Let U be a subgroup of Aut (L) with $U \supseteq Inn$ (L). Then, obviously, a S_2 -subgroup of U is isomorphic to P, $P\langle \varphi \rangle$, $P\langle \varphi \rangle$, $P\langle \varphi \varkappa \rangle$ or $P\langle \varphi, \varkappa \rangle$.

Set $U = \operatorname{Inn}(L) \cdot \Sigma_0$ with $\Sigma_0 = \Sigma \cap U$. We identify L with $\operatorname{Inn}(L)$. We have $P = E_1 E_2$, where $E_1 \cong E_{2^i} \cong E_2$, and $C_U(E_i) = E_i$, for $i \in \{1, 2\}$. Let $N = N_U(E_i)/E_i$. Then, depending on Σ_0 , one of the following cases arises:

- (1) $N \cong A_5$, if $\Sigma_0 \cap \langle \varphi, r \rangle = 1$;
- (2) $N \cong \Sigma_5$, if $r \notin \Sigma_0$ and $\varphi, \varphi r$, or $\varphi r^2 \in \Sigma_0$;
- (3) $N \cong A_5 \times Z_3$ if $r \in \Sigma_0$ and $\varphi \notin \Sigma_0$;
- (4) $N \cong (A_5 \times Z_3) Z_2$ with $A_5 Z_2 \cong \Sigma_5$ and $Z_3 Z_2 \cong \Sigma_3$ if $\langle r, \varphi \rangle \subseteq \Sigma_0$.
- (2.4) By direct computation one obtains

$$egin{align} oldsymbol{C_P(arphi)} &= \langle \pi, \, \mu \lambda, \, \xi
angle \cong D_8 \,, \ oldsymbol{C_P(arkappa)} &= \langle \pi, \, au
angle \cong E_{z^3} \,, \ oldsymbol{C_P(arphi arkappa)} &= \langle \pi, \, \mu \lambda \xi au, \, \mu \zeta au
angle \cong Q_8 \,. \end{array}$$

Furthermore, for each $y \in \{\varphi, \varkappa, \varphi\varkappa\}$, all the involutions from the coset Py are conjugate to y under the action of P.

(2.5) The rank of $P\langle \varphi, \varkappa \rangle$ is equal to 4. Further, E_1 and E_2 are the only elementary abelian subgroups of order 16 of $P\langle \varphi, \varkappa \rangle$.

3. Some notations.

Throughout this paper let G denote a fixed group which satisfies the assumptions of Theorem 1. Let $a, b \in G$. Then $a: b \to c$ means $a^{-1}ba = c$. We shall write N(A) and C(A) for $N_G(A)$ and $C_G(A)$, respectively.

Let A denote a fixed standard subgroup of G where $A/\mathbf{Z}(A) \cong \mathbf{Z}(A)$. Then, A is isomorphic to a homomorphic image of the rep-

resentation group of $L_3(4)$. Note that the representation group of a simple group is uniquely determined up to isomorphism.

Set $K = \mathbf{C}(A)$. Then $AK/K \cong L_3(4) \cong A/\mathbf{Z}(A)$. Note that $[x,A] \subseteq \mathbf{Z}(A)$ for some $x \in G$ implies $x \in K$. Let $Q \in \operatorname{Syl}_2(K)$. Since $\mathbf{Aut}(L)$ splits over L, and since $\mathbf{N}(A)/K$ is isomorphic to a subgroup of $\mathbf{Aut}(L)$, we obtain the existence of a subgroup C of $\mathbf{N}(A)$ such that $\mathbf{N}(A)/K = C/K \cdot AK/K$ with $C \cap AK = K$. By Frattini's argument, we get $\mathbf{N}_C(Q)K = C$. Clearly, $\mathbf{N}_C(Q)/\mathbf{N}_K(Q) \cong C/K$. We may choose a S_2 -subgroup S of A such that $\mathbf{N}_C(Q)/\mathbf{N}_K(Q)$ operates on $S/\mathbf{Z}(A)_2$ in the same way as S_0 on S_0 (in the former notation). Using the isomorphism $P \cong S/\mathbf{Z}(A)_2$, we may put $S = \mathbf{Z}(A)_2 \langle \pi, \tau, \mu, \lambda, \zeta, \xi \rangle$, where the generators are all 2-elements satisfying the relations modulo $\mathbf{Z}(A)_2$ which we had derived for S_0 above. We may «identify » S_0 (S_0) with $S_0 \subseteq S_0 \subseteq S_0$, S_0 , S_0 , and if S_0 is present, we have S_0 with S_0 get that a S_0 -subgroup of S_0 is one of the following types: S_0 , S_0 ,

In what follows, we denote by X a fixed S_2 -subgroup of N(A). Furthermore, X is of type QS, $QS\langle\varphi\rangle$, $QS\langle\varkappa\rangle$, $QS\langle\varphi\varkappa\rangle$, $QS\langle\varphi\varkappa\rangle$, $QS\langle\varphi\varkappa\rangle$, $QS\langle\varphi\varkappa\rangle$, $QS\langle\varphi\varkappa\rangle$, Hence, $X\cap A=S$ and $X\cap K=Q$. One notes that X/Q is isomorphic to P, $P\langle\varphi\rangle$, $P\langle\varkappa\rangle$, $P\langle\varphi\varkappa\rangle$, or $P\langle\varphi,\varkappa\rangle$, where $P\in \mathrm{Syl}_2\left(L_3(4)\right)$ as given in (2.1).

(3.1) LEMMA. Let $y \in X \setminus QS$ with $y \in \{\varphi, \varkappa, \varphi\varkappa\}$. Let z = uvy be an involution with $u \in Q$ and $v \in S$. Then $C_s(z) \simeq C_s(y)$.

PROOF. We put $z=uvy,\ u\in Q,\ v\in S.$ Note that $[Q,\,S]=1.$ We get

$$1 = z^2 = uvyuvy = uvyvyy^{-1}uy = u(vy)^2 u^y$$

and

$$u^{-1}u^{-y} = (vy)^2 = vy^2v^y = y^2(vv^y)$$
,

since $y^2 \in Q$. It follows

$$v(v^y) = y^{-2}u^{-1}u^{-y} \in Q \cap S$$
.

We look now at $S\langle z\rangle/Q\cap S=S\langle uvy\rangle/Q\cap S$. Since [u,S]=1, the element vy induces the same automorphism of S as z. Thus,

$$S\langle z \rangle/Q \cap S \cong S\langle vy \rangle/\langle Q \cap S, (vy)^2 \rangle = S\langle y \rangle/\langle Q \cap S, (vy)^2 \rangle$$

where $\langle (vy)^2, y^2 \rangle \subseteq \langle Q \cap S, (vy)^2 \rangle \subseteq Q$; note that we have $y^2(vv^y) = u^{-1}u^{-y} = (vy)^2$ with $vv^y \in Q \cap S$. We see that $S\langle z \rangle/Q \cap S$ is isomorphic to $P\langle \varphi \rangle$, $P\langle \varkappa \rangle$, or $P\langle \varphi \varkappa \rangle$. From (2.4) we get that $\langle Q \cap S, (vy)^2 \rangle y$ is conjugate to $\langle Q \cap S, (vy)^2 \rangle vy$ under the action of $S\langle (vy)^2 \rangle/\langle S \cap Q, (vy)^2 \rangle$; this means that there is $s \in S$ such that $(vy)^s = yx$, $x \in \langle Q \cap S, (vy)^2 \rangle$. Hence, $C_S((vy)^s) = C_S(yx) = C_S(y)$, since $x \in Q$, and so, $C_S(z) = C_S(uvy) = C_S(vy) \approx C_S(y)$.

4. The structure of N(A).

We follow the notation of the last section and look at $X \in \operatorname{Syl}_2(N(A))$ with $X \cap X = Q \in \operatorname{Syl}_2(X)$ and $X \cap A = S \in \operatorname{Syl}_2(A)$.

(4.1) Lemma. Q is elementary abelian and $Q \cap S$ is a four-group.

PROOF. By assumption we have $m(Q \cap S) \geqslant 2$. A result of Aschbacher [1] yields that Q is elementary abelian. This implies that $Q \cap S$ is a four-group, as the Schur-multiplier of $L_3(4)$ is isomorphic to $Z_4 \times Z_4 \times Z_3$.

Throughout this paper we set $|Q| = 2^n$ and $Q \cap S = \langle q_1, q_2 \rangle$.

(4.2) The structure of S.

It is well known that the sporadic simple group He contains a standard subgroup B, where $C(B) = \mathbf{Z}(B) \cong Z_2 \times Z_2$, and $B/\mathbf{Z}(B) \cong Z_3(4)$. Hence, the S_2 -subgroup S of A in our case is isomorphic to a S_2 -subgroup H of B. The subgroup H contains exactly two elementary abelian subgroups H_1 and H_2 of order 2^6 ; we have $H = H_1H_2$ and $H_1 \cap H_2 = \mathbf{Z}(H) = H' \cong E_2^4$.

Set $S = R_1 R_2$ with $R_1 \cong E_{2^6} \cong R_2$ and $Z(S) = R_1 \cap R_2 \cong E_{2^6} \cong S'$. Let \overline{R}_i for $i \in \{1, 2\}$ be the image of R_i under the homomorphism from S onto $S/\langle q_1, q_2 \rangle = \overline{S}$. The group \overline{S} is isomorphic to a S_2 -subgroup of $L_3(4)$. It is clear that R_1 and R_2 both contain $\langle q_1, q_2 \rangle = Q \cap S$. Thus, \overline{R}_1 and \overline{R}_2 are the only elementary abelian subgroups of order 2^4 of \overline{S} . We may put

$$R_1 = \langle q_1, q_2, \pi, \tau, \mu, \lambda \rangle$$
 and $R_2 = \langle q_1, q_2, \pi, \tau, \zeta, \xi \rangle$,

where the nontrivial commutator relations mod $\langle q_1, q_2 \rangle$ are given by $[\mu, \zeta] = \pi$, $[\mu, \xi] = \pi \tau$, $[\lambda, \zeta] = \pi \tau$, $[\lambda, \xi] = \tau$. Since A is the epimorphic image of the full covering group of $L_3(4)$ modulo a charac-

teristic subgroup of the full covering group, we see that A possesses automorphisms which are «lifted-induced» by the field-, transpose-inverse, and field times transpose-inverse automorphism of $L_3(4)$; we use here the fact that every automorphism of a perfect group can be lifted to an automorphism of the full covering group (see Griess [7]).

We want to determine the multiplication table of $S = R_1 R_2$. Since the cosets $\langle q_1, q_2 \rangle \pi$ and $\langle q_1, q_2 \rangle \tau$ consist of involutions only, we may put without loss of generality $[\mu, \xi] = \pi \tau$ and $[\lambda, \xi] = \tau$. Since $S' = \langle q_1, q_2, \pi, \tau \rangle$, we have $[\mu, \xi] = q\pi$ and $[\lambda, \xi] = p\pi\tau$, where $q, p \in \langle q_1, q_2 \rangle$. Note that $[\mu\lambda, \xi] = [\mu\lambda, \xi]^{\varphi} = \pi^{\varphi} = \pi$ where φ comes from the field automorphism of $L_3(4)$. If $[q, \varphi] = 1$, then we get

$$q\pi = [\mu, \zeta] \stackrel{\varphi}{\rightarrow} [\lambda, \zeta \xi] = q\pi = \lambda \xi \zeta \lambda \zeta \xi = \lambda \xi \lambda (\lambda \zeta \lambda \zeta) \xi = \tau p \pi \tau = p\pi;$$

thus p=q. Hence, in this case, $[\mu,\zeta]=q\pi$ and $[\lambda,\zeta]=q\pi\tau$ which implies |S'|=8 against |S'|=16. Hence, $[q,\varphi]\neq 1$. In particular, $q\neq 1$ and $\langle q,q^{\varphi}\rangle=\mathbf{Z}(A)_2$.

Computing $[\mu, \zeta] = q\pi \xrightarrow{\varphi} [\lambda, \zeta\xi] = q^{\varphi}\pi = \lambda\xi\lambda(\lambda\zeta\lambda\zeta)\xi = p\pi$, we get $p = q^{\varphi}$. Put $q_2 = q$ and $q_1q_2 = q^{\varphi}$. Then $[\mu, \zeta] = q_2\pi$ and $[\lambda, \zeta] = q_1q_2\pi\tau$. In this way we have obtained the multiplication table of S:

$$egin{aligned} R_1 = \langle q_1,\,q_2,\,\pi,\, au,\,\mu,\,\lambda
angle &\cong R_2 = \langle q_1,\,q_2,\,\pi,\, au,\,\zeta,\,\xi
angle &\cong E_{2^ullet}\,; \ R_1 \cap R_2 = \langle q_1,\,q_2,\,\pi,\, au
angle &= oldsymbol{Z}(R_1R_2) = S' = oldsymbol{D}(S)\;, \ [\mu,\,\xi] = \pi au\;, \quad [\lambda,\,\xi] = au\;, \quad [\mu,\,\zeta] = q_2\pi\;, \quad [\lambda,\,\zeta] = q_1q_2\pi\;. \end{aligned}$$

We know already that $[q_1, \varphi] = 1$, $q_2^{\varphi} = q_1q_2$, and $[\pi, \varphi] = 1$. Since $[\mu, \xi] = \pi \tau$ is mapped under φ onto $[\lambda, \xi] = \tau$, we get $\tau^{\varphi} = \pi \tau$. Hence, the action of φ on $\langle q_1, q_2, \pi, \tau \rangle$ is known.

We have $\pi^{\varphi\varkappa} = [\mu\lambda, \, \xi]^{\varphi\varkappa} = [\xi, \, \mu\lambda] = \pi; \quad \tau^{\varphi\varkappa} = [\lambda, \, \xi]^{\varphi\varkappa} = [\zeta\xi, \, \mu\lambda] = q_1\pi\tau; \quad [\mu\lambda, \, \zeta]^{\varphi\varkappa} = (q_1\tau)^{\varphi\varkappa} = [\xi, \, \mu] = \pi\tau \text{ and } q_1^{\varphi\varkappa} \tau^{\varphi\varkappa} = \pi\tau = q_1^{\varphi\varkappa} q_1\pi\tau$ which implies $q_1^{\varphi\varkappa} = q_1$. Further, $[\mu, \, \zeta]^{\varphi\varkappa} = (q_2\pi)^{\varphi\varkappa} = [\zeta, \, \mu] = q_2\pi$ which implies $q_2^{\varphi\varkappa} = q_2$. Hence, the action of $\varphi\varkappa$ on $\mathbf{Z}(R_1R_2)$ is known.

Acting with \varkappa on appropriate commutators we get $\pi^{\varkappa} = \pi$, $q_1^{\varkappa} = q_1$, $\tau^{\varkappa} = q_1 \tau$, $q_2^{\varkappa} = q_1 q_2$. Hence, the action of \varkappa on $\mathbf{Z}(R_1 R_2)$ is known.

We get $[\mu\lambda\xi, \lambda\zeta] = q_1 \neq 1$, $[\mu\zeta, \lambda\xi] = q_1q_2 \neq 1$ and $[\mu\xi, \lambda\zeta\xi] = q_2 \neq 1$. In particular, we note that S does not contain any subgroup of type (4, 4). Clearly

$$\langle q_1, q_2 \rangle \cap \mathbf{Z}(X) \supseteq \langle q_1 \rangle$$
.

(4.3) Lemma. We have—depending on X—

$$egin{array}{lll} arphi: & q_1
ightarrow q_1
ightarrow q_1, & q_2
ightarrow q_1 q_2, & \pi
ightarrow \pi \; , & au
ightarrow \pi au ; \ & arphi: & q_1
ightarrow q_1, & q_2
ightarrow q_1 q_2 \; , & \pi
ightarrow \pi \; , & au
ightarrow q_1 \pi au \; . \end{array}$$

If 3||N(A)/AK|, then there is an element $r \in N(A) \setminus AK$ which induces an outer automorphism of order 3 of $A/\mathbb{Z}(A) \cong L_3(4)$ and of A. The element r operates fixed-point-free on $\langle q_1, q_2 \rangle$ and $r : \pi \to q_2\pi \to q_1q_2\pi$.

PROOF. This follows immediately from the operations of φ , \varkappa , $\varphi \varkappa$, and r on $S/Q \cap S \cong P$.

(4.4) LEMMA. Set $S_i = QR_i$ for $i \in \{1, 2\}$. Then, S_1 and S_2 are the only elementary abelian subgroups of order 2^{n+4} of X.

PROOF. This follows from (4.1) and (4.2).

(4.5) LEMMA. The involutions in $\langle q_1, q_2 \rangle$ have no roots in S. If i is an involution of QS, then i lies in S_1 or S_2 . Further, i is conjugate to an involution in $Q\langle \pi \rangle$ under A.

PROOF. Let $s \in S^{\#}$ with $s^2 \in \langle q_1, q_2 \rangle$. Then Qs is an involution of QS/Q. Since QS/Q is of type $L_3(4)$, the involution Qs lies in QR_1/Q or QR_2/Q . Thus, s lies in QR_1 or QR_2 . But QR_i is elementary abelian. Hence $s^2 = 1$.

Let i=qs with $q \in Q$ and $s \in S$ be an involution of QS. Then, $1=i^2=q^2s^2$. Since Q is elementary abelian, we get $q^2=s^2=1$. It follows that $s \in R_1$ or $s \in R_2$, so that i=qs lies in QR_1 or QR_2 . Assume that i does not lie in Q. Then Qi is an involution of AQ/Q, and so, Qi is conjugate to $Q\pi$ under AQ/Q. The lemma is proved.

(4.6) LEMMA. Let $y \in X \setminus QS$ with $y \in \{\varphi, \varkappa, \varphi\varkappa\}$. We have $C_S(\varphi) \cong Z_2 \times D_8$ with $\mathfrak{V}^1(C_S(\varphi)) = \langle \pi \rangle$ and $C_S(\varphi) \subseteq \langle q_1, q_2, \pi, \mu\lambda, \xi \rangle$; $C_S(\varkappa) = C_{\mathbf{Z}(S)}(\varkappa) = \langle q_1, \pi, q_2\tau \rangle \cong E_{2^2}$; and $C_S(\varphi\varkappa) = C_{\mathbf{Z}(S)}(\varphi\varkappa) = \langle q_1, q_2, \pi \rangle \cong E_{2^3}$. Let z be an involution from QSy. Then $\mathfrak{V}^1(C_S(z)) = \langle \pi \rangle$, if $y = \varphi$; $C_S(z) = C_S(\varkappa)$, if $y = \varkappa$; and $C_S(z) = C_S(\varphi\varkappa)$, if $y = \varphi\varkappa$. For each $y \in \{\varphi, \varkappa, \varphi\varkappa\}$, all involutions from Sz are conjugate to z under the action of S.

PROOF. Since the field automorphism of $L_3(4)$ centralizes $L_3(2)$, we get $C_S(\varphi) \cong Z_2 \times D_8$, and, obviously, we must have $C_S(\varphi) \subseteq \langle q_1, q_2, \pi, \mu\lambda, \xi \rangle$. The latter group has exponent 4 and $(\mu\lambda\xi)^2 = \pi$. The assertion about $C_S(\varkappa)$ is clear as the contragradient automorphism of $L_3(4)$ centralizes A_5 . We have $C_S(\varphi\varkappa) \subseteq \langle q_1, q_2, \pi, \mu\lambda\xi\tau, \mu\zeta\tau\rangle$. Compute

$$(\mu \zeta \tau)^{\varphi \varkappa} = q \zeta q^{\varphi \varkappa} \mu q_1 \pi \tau = q q^{\varphi \varkappa} \mu \zeta [\zeta, \mu] q_1 \pi \tau = q_1 q_2 \mu \zeta \tau,$$

and also

$$(\mu\lambda\xi\tau)^{\rm ge}=\xi q\mu\lambda q^{\rm ge}\,q_1\pi\tau=qq^{\rm ge}\,q_1\mu\lambda\xi[\xi,\mu\lambda]\,\pi\tau=q_1\mu\lambda\xi\tau\;,$$

where $q \in \langle q_1, q_2 \rangle$; and similarly one sees that $\mu \lambda \xi \tau \mu \zeta \tau$ is not centralized by $\varphi \varkappa$. All other assertions follow from counting the involutions in Sz using our knowledge about the involutions of $P\varphi$, $P\varkappa$, $P\varphi \varkappa$ and the action of the outer automorphisms of A on $\langle q_1, q_2 \rangle$. The lemma is proved.

(4.7) LEMMA. The subgroup $N_A(R_i)$ for each $i \in \{1, 2\}$ is a splitting extension of $C_A(R_i)$ by a subgroup U_i isomorphic to A_5 . Furthermore, U_i operates transitively on $R_i/\langle q_1, q_2 \rangle$.

PROOF. This is a direct consequence of the structure of $L_3(4)$ and A.

5. The case $|X| = |G|_2$.

In this section all results will be proved under the title assumption.

(5.1) LEMMA. The group $\langle q_1, q_2 \rangle$ is strongly closed in QS with respect to G. If i is an involution of S and $i^x \in QS$, then $i^x \in S$ for any $x \in G$.

PROOF. We know that every involution of QS is conjugate to an involution of $Q\langle\pi\rangle$ under the action of N(A). Note that $Q\times\langle\pi,\tau\rangle=$ = $\mathbb{Z}(QS)=S_1\cap S_2$, where S_1 and S_2 are the only elementary abelian subgroups of order 2^{n+4} of X; elearly $S_1S_2=QS$.

We prove first that $\langle q_1, q_2 \rangle$ is strongly closed in QS with respect to G. Assume that this is not the case. Then, there is $u \in \langle q_1, q_2 \rangle^{\#}$ and $g \in G$ such that $u^g \in QS$ but $u^g \notin \langle q_1, q_2 \rangle$. Hence, $u^g = ws$, $w \in Q$,

 $s \in S$, $w^2 = s^2 = 1$. If $s \in Q$, then $u^{\sigma} = ws \in Q \cap Q^{\sigma} \neq 1$ implying $g \in N(A)$, against $\langle q_1, q_2 \rangle \triangleleft N(A)$. Thus, we must have $s \notin Q$. Under the action of A, we have that Qs is conjugate to $Q\pi$. Thus, we may put $u^{\sigma} = w\pi$, $w \in Q$. Obviously, $g \notin N(A)$. We have $\langle u, u^{\sigma} \rangle \subseteq Z(QS)$ char QS char X, and $QS \subseteq C(u) \cap C(u^{\sigma})$; note that QS is generated by the maximal elementary abelian subgroups of X. Clearly, $(QS)^{\sigma} \subseteq C(u^{\sigma})$. Hence, there is $x \in C(u^{\sigma})$ such that $QS = (QS)^{\sigma x}$ and, obviously, $u^{\sigma} = u^{\sigma x}$. Thus, we may assume $g \in N(QS)$. But $g \notin N(A) = N(K)$. Put $V = Z(QS) = Q \times \langle \pi, \tau \rangle$. We have $V^{\sigma} = V$ and $Q^{\sigma} \cap Q \subseteq K \cap K^{\sigma} = \langle 1 \rangle$. Thus $\langle 2^{2n} = |Q \times Q^{\sigma}| \leqslant |V| = 2^{n+2}$ implying |Q| = 4. Hence, $Q = \langle q_1, q_2 \rangle$, and so $S_i = R_i$ and $QS = R_1R_2 = S$.

We know that $V = \langle q_1, q_2, \pi, \tau \rangle$ has order 16 and that $u^g = w\pi$ for some $g \in N(QS) \setminus N(A)$. We also know that N(QS) controls fusion of the elements of V. Since $q_1 \in \mathbf{Z}(X)$ and $X \subseteq \mathbf{N}(QS)$, we see that q_1 has an odd number of conjugates under N(QS) and N(V), and since $C(q_1) \subseteq N(A)$, $g \notin N(A)$, we see that this number is not 1. Clearly, $q_1^g \notin Q = \langle q_1, q_2 \rangle$ as otherwise $g \in N(A)$ because of $q_1^g \in Q \cap Q^g \subseteq K \cap K^g$ and $|K \cap K^g| \equiv 1 \mod 2$. In a similar way one sees that each element of $Q^{\#}$ is conjugate under N(QS) and N(V) to an element of $V \setminus Q$. Note that no element of $\langle q_1, q_2 \rangle^{\#}$ has a root in QS, however, $\pi, q_2\pi$, and $q_1q_2\pi$ have the roots $\mu\lambda\xi$, $\mu\zeta$, and $\lambda\zeta\xi$ respectively, in QS; note that $q_1\pi$ has no root in QS, because if $(\mu^m \lambda^1 \zeta^2 \xi^x)^2 = q_1\pi$, then we would get l=z=1=m=x, but $(\mu\lambda\zeta\xi)^2=q_1\pi\tau$. Assume first that q_1 has no conjugate other than itself in Q. By the above remarks, we see that $q_1 \sim q_1 \pi$ holds in N(QS) and that q_1 is not conjugate to another element of $Q\pi$; note that $Q\pi \sim Q\tau \sim Q\pi\tau$ holds in A/Q. Thus, q_1 would have precisely four G-conjugates in V which is not possible. Hence, there is a conjugate of q_1 in Q other than q_1 . As the number of conjugates of q_1 under the action of N(A) is odd, we get that all three elements of $Q^{\#}$ are conjugate; note that fusion of the elements of Q takes place precisely in N(K) = N(A). Thus, q_1 has precisely 6 G-conjugates in V as $q_1 \sim q_2 \sim q_1 q_2 \sim q_1 \pi$ holds and $Q\pi \sim Q\tau \sim Q\pi\tau$ under A/Q. Since $6 \not\equiv 1 \mod 2$, we have obtained a contradiction which proves that $\langle q_1, q_2 \rangle$ is strongly closed in QS with respect to G.

Finally, let i be an involution of $S \setminus Q$ and assume that there is $x \in G$ such that $i^x \in QS$ but $i^x \notin S$. Conjugating with elements of A, we may and shall assume that i and i^x lie in $\mathbb{Z}(QS) = V$. Since N(QS) controls fusion of the involutions of V, there is $y \in N(V)$ such that $i = i^{xy}$. Clearly $y \in N(V) \setminus N(A)$. Thus, $Q \times Q^y \subseteq \mathbb{Z}(QS)$ and $Q \cap Q^y = 1$; and so, we get |Q| = 4. This means that $Q = \langle q_1, q_2 \rangle \subseteq S = QS$. Thus, $i^x \in S$ which is a contradiction to our assumption. The lemma is proved.

(5.2) LEMMA. The assumption of this section is not possible.

Proof. Assume false. We have $|X| = |G|_2$, and $\langle q_1, q_2 \rangle$ is strongly closed in QS with respect to G. Application of a result of Goldschmidt [5] yields that there is a conjugate of some element of $\langle q_1, q_2 \rangle$ in $X \setminus QS$; in particular, we get $X \supset QS$. Glauberman's Z^* -theorem [4] yields that q_1 has a conjugate in $X \setminus \langle q_1 \rangle$. We want to show that q_1 is conjugate to an element of $X \setminus QS$. Assume that this is false. Then q_1 is conjugate to an element of $\langle q_1, q_2 \rangle$ different from q_1 , say q. The conjugation $q_1 \sim q$ is performed in N(A), and as q_1 is 2-central, we see that all involutions of $\langle q_1, q_2 \rangle$ are conjugate. Thus, q_1 must be conjugate to an element of $X \setminus QS$.

Let $z \in QSy$, where $z \sim q_1$ and $y \in \{\varphi, \varkappa, \varphi \varkappa\}$. Let $\widetilde{X} \in \operatorname{Syl}_2(C(z))$ such that $\widetilde{X} \supseteq C_x(z)$. Denote by A_z the unique standard subgroup in C(z) isomorphic to A. Put $\widetilde{Q} = \widetilde{X} \cap C(A_z)$ and $\widetilde{S} = \widetilde{X} \cap A_z$. Since $z \sim q_1$, we have $Q \sim \widetilde{Q}$, $S \sim \widetilde{S}$, and $z \in \widetilde{Q} \cap \widetilde{S}$. Clearly, $C(z) \cap N(A)$ does not possess a subgroup isomorphic to QS, since such a subgroup lies in KA, and so, z would centralize a S_z -subgroup of A which is not the case. If there were a $q \in Q^\#$ such that $q \in \widetilde{QS}$, then $q \in \widetilde{Q}$ and $C(q) \cap C(z) \supseteq \widetilde{QS}$ which is against $C(q) \subseteq N(A)$, namely: If $q \in Q$ would be conjugate to an element of $Q\pi \setminus Q$, then the conjugation $q \sim w\pi$, $w \in Q$, would be performed in $N(QS) \subseteq N(V)$; obviously, $w\pi \notin K$, and so, $N(QS) \not\subseteq N(A)$; this implies $Q = \langle q_1, q_2 \rangle$; but $\langle q_1, q_2 \rangle$ is strongly closed in QS with respect to G; hence q is not conjugate to an element of $Q\pi \setminus Q$. We have shown that $q \notin \widetilde{QS}$ for each $q \in Q^\#$.

Let $z \in QS\varphi$. Then, we have $\mathfrak{F}^1(C_S(z)) = \langle \pi \rangle$. Because of $\mathfrak{F}^1(\widetilde{X}/\widetilde{QS}) = \langle 1 \rangle$, we get $\pi \in \widetilde{QS}$, and this yields $\pi \in \widetilde{S}$, since $\pi \in S$ and $S \sim \widetilde{S}$. By an above remark, we have $q_1 \notin \widetilde{QS}$. Consider the coset $\widetilde{QS}q_1$. Obviously, $\widetilde{QS}q_1$ is conjugate in G to QSy for some $y \in \{\varphi, \varkappa, \varphi\varkappa\}$; note that \widetilde{X} contains $\widetilde{QS}\langle q_1 \rangle$ as a subgroup of index 1 or 2. An earlier result yields that all involutions of $\widetilde{S}q_1$ are conjugate to q_1 under the action of \widetilde{S} . Thus, $q_1 \sim q_1 = q_1 = q_1 = q_1 = q_2 = q_1 = q_2 = q_1 = q_2 = q_2 = q_2 = q_1 = q_2 = q_2 = q_2 = q_1 = q_2 = q_2 = q_2 = q_2 = q_2 = q_1 = q_2 = q_1 = q_2 =$

Let $z \in QS\varkappa$. We have $C_S(z) = \langle q_1, \pi, q_2\tau \rangle$. Since $|\widetilde{X}/\widetilde{QS}| \leqslant 4$, we get $C_S(z) \cap \widetilde{QS} \neq \langle 1 \rangle$. We know that $q_1 \notin \widetilde{QS}$. Hence, there exists s in $\langle q_1, \pi, q_2\tau \rangle \setminus \langle q_1 \rangle$ such that $s \in \widetilde{QS}$. Because of $s \in S \sim \widetilde{S}$, we get $s \in \widetilde{S}$. As q_1 and q_1s are involutions of $\widetilde{S}q_1$, we get $q_1 \approx q_1s$. This is a contradiction, since $q_1s \in QS \setminus \langle q_1, q_2 \rangle$ and $\langle q_1, q_2 \rangle$ is strongly closed in QS with respect to G.

Let finally $z\in QSarphiarkappa.$ Then, $C_s(z)=\langle q_1,\,q_2,\,\pi
angle.$ If $| ilde{X}/ ilde{Q} ilde{S}|=2,$

then a four-subgroup of $C_s(z)$ lies in $\widetilde{Q}\widetilde{S}$, and so, $\widetilde{Q}\widetilde{S}$ would contain an element of $Q^\#$ which is not possible. Suppose that $|\widetilde{X}/\widetilde{Q}\widetilde{S}|=4$. Then, $\widetilde{X}=\widetilde{Q}\widetilde{S}\langle q_1,\,q_2\rangle$ and $\widetilde{Q}\widetilde{S}\cap\pi\langle q_1,\,q_2\rangle\neq\emptyset$. Let $q\pi$ be an element of $\widetilde{Q}\widetilde{S}$ with $q\in\langle q_1,\,q_2\rangle$. Since $q\pi$ is an involution of S, we conclude $q\pi\in\widetilde{S}$. Clearly, $\widetilde{Q}\widetilde{S}q_1$ is conjugate to QSy for some $y\in\{\varphi,\,\varkappa,\,\varphi\varkappa\}$. Thus, $q_1\sim q_1q\pi$ under the action of \widetilde{S} ; note that $q_1q\pi\in QS\backslash\langle q_1,\,q_2\rangle$. This contradicts the strong closure of $\langle q_1,\,q_2\rangle$ in QS with respect to G. The lemma is proved.

6. The identification of G with He.

From the result of section 5 we know that X is not a S_2 -subgroup of G.

(6.1) LEMMA. We have $Q = \langle q_1, q_2 \rangle$.

PROOF. Let T be a subgroup of G containing X as a subgroup of index 2. Let $t \in T \setminus X$. Clearly, $t \notin N(A)$ and t normalizes QS and Z(QS) which is equal to $Q \times \langle \pi, \tau \rangle$. This gives $Q \cap Q^t = \langle 1 \rangle$ and $Q \times Q^t \subseteq Z(QS)$, and so, |Q| = 4. The lemma is proved.

(6.2) Lemma. The case $X = S\langle \varkappa \rangle$ does not arise.

PROOF. Assume that $X = S(\varkappa)$. One computes $X'' = \langle [\mu \lambda \xi, \lambda \zeta] \rangle = \langle q_1 \rangle$. This implies $N(X) \subseteq C(q_1) \subseteq N(A)$. This, however, is not the case.

(6.3) Lemma. The case $X = S(\varphi x)$ does not arise.

PROOF. Assume $X = S\langle \varphi \varkappa \rangle$. Then $\mathbf{Z}(X) = \langle q_1, q_2, \pi \rangle$. Denote by T a subgroup of G which contains X as a subgroup of index 2. Let $t \in T \setminus X$. Then, $Q \cap Q^t = \langle 1 \rangle$ and $Q \times Q^t \subseteq \mathbf{Z}(X)$ which is against |Q| = 4 and $|\mathbf{Z}(X)| = 8$.

(6.4) Lemma. We have 3|N(A)/KA|. In particular, $q_1 \sim q_2 \sim q_1 q_2$, and for $i \in \{1, 2\}$ we have

$$egin{aligned} oldsymbol{N_{N(A)}}(R_i)/oldsymbol{C}(R_i) &\cong \left\{egin{aligned} A_5 imes Z_3 \,, & ext{if} \;\; X = S \ (A_5 imes Z_3) Z_2 \,, & ext{if} \;\; X \in \{S \langle arphi
angle, \, S \langle arphi, \, lpha
angle \} \,, \end{aligned}
ight.$$

here $A_5 \cdot Z_2 \cong \Sigma_5$ and $Z_3 \cdot Z_2 \cong \Sigma_3$.

PROOF. By way of contradiction assume that $3\not\mid |N(A)/KA|$. Then, N(A) = AKX and $q_1 \in \mathbf{Z}(N(A))$. Since K is tightly-embedded in G, we get $q_2 \sim q_1 \sim q_1 q_2$ in G. Under the action of $N_A(S)$ the set $\langle q_1, q_2, \pi, \tau \rangle^{\#}$ splits into 7 conjugate classes with representatives $q_1, q_2, q_1 q_2, \pi, q_1 \pi, q_2 \pi, q_1 q_2 \pi$. We know that $\pi, q_2 \pi$, and $q_1 q_2 \pi$ have roots in S, whereas $q_1, q_2, q_1 q_2$, and $q_1 \pi$ have no roots in S.

Let T be a subgroup of G containing X as a subgroup of index 2. Let $t \in T \setminus X$. Then, t normalizes Z(S) and maps q_1 onto an element of $V \setminus Q$, where $V = Z(S) = \langle q_1, q_2, \pi, \tau \rangle$. It follows $q_1 \sim q_1 \pi$ in G. Also, one gets that q_2 is mapped under t onto an element of $V \setminus Q$ which implies $q_2 \sim q_1 \pi$. Hence, $q_1 \sim q_2$ which is not possible. Thus, we have that 3 divides the order of N(A)/KA.

From (2.3) and (4.3) we get $q_1 \sim q_2 \sim q_1 q_2$ and $N_{N(A)}(R_i)/C(R_i)$ has the stated structure.

(6.5) LEMMA. The S_2 -subgroup X of N(A) splits over S.

PROOF. By (6.1), (6.2), and (6.3) we have $X \in \{S, S \langle \varphi \rangle, S \langle \varphi, \varkappa \rangle \}$. We may assume $X \supset S$. If $X = S \langle \varphi \rangle$, then $\langle q_1, q_2, \varphi \rangle \cong D_8$, and there is an involution in $X \setminus S$.

Let $X = S\langle \varphi, \varkappa \rangle$. Clearly, $K = H \times Q$, where $H = \mathbf{O}(\mathbf{N}(A))$. We know that $\mathbf{N}(A)/K = C/K \cdot KA/K \cong \mathbf{Aut} (L_3(4))$ and that $C/K \cong \mathbf{Out}(L_3(4))$. We look at C/H and determine the normalizer in C/H of an element r of order 3 in C/H. We get $|\mathbf{N}(\langle r \rangle) \cap C/H| = 3 \cdot 4$, since r acts fixed-point-free on QH/H. Since $\langle r \rangle \in \mathrm{Syl}_3(C/H)$ and $HQ\langle r \rangle/H \lhd C/H$, we get that a S_2 -subgroup of $\mathbf{N}(\langle r \rangle) \cap C/H$ is a four-group. This means that a S_2 -subgroup of C splits over C. Thus, C/C splits over C0, and so, C/C1, C/C2, C/C3 splits over C4. The lemma is proved.

(6.6) LEMMA. The involution π is not conjugate to q_1 in G.

PROOF. We know that $X \in \operatorname{Syl}_2(\boldsymbol{C}(q_1))$, and we know that S is the Thompson-subgroup of X, i.e., S is generated by the elementary abelian subgroups of X of greatest possible order. Assume that $q_1^g = \pi$ for some $g \in G$. Then, $\langle S, S^g \rangle \subseteq \boldsymbol{C}(q_1^g) = \boldsymbol{C}(\pi)$, and so there is $x \in \boldsymbol{C}(\pi)$ such that $S = S^{gx}$ and $q_1^{gx} = \pi$. It follows that q_1 and π are conjugate in $\boldsymbol{N}(S)$. But q_1 has no root in S, whereas π has a root in S. Thus, $q_1 \sim \pi$.

(6.7) Lemma. The case X = S does not arise.

Proof. Assume X=S. We have $\mathbf{Z}(X)=\mathbf{Z}(S)=\langle q_1,q_2,\pi,\tau\rangle$. We know that under the action of $\mathbf{N}(S)\cap\mathbf{N}(A)$ the set $\mathbf{Z}(S)^{\#}$ splits into conjugate classes in the following way: $3q_1$, $3q_1\pi$, 9π ; q_1 and $q_1\pi$ have no roots in S and a 3-element acts non-trivially on the coset $\langle q_1,q_2\rangle\pi$. Clearly, $\mathbf{N}(X)\supset\mathbf{N}_{\mathbf{N}(A)}(X)$, as $|X|<|G|_2$. Since $q_1\sim\pi$ in G, we get $q_1\sim q_1\pi$ in $\mathbf{N}(X)$, as $q_1\sim q_1q_2\sim q_2$ takes place only in $\mathbf{N}(A)$. Thus, q_1 has precisely 6 conjugates under the action of $\mathbf{N}(X)$. Thus, $|\mathbf{N}_{\mathbf{N}(A)}(X):\mathbf{N}(X)\cap\mathbf{C}(q_1)|=3$ and $|\mathbf{N}(X):\mathbf{N}_{\mathbf{N}(A)}(X)|=2$.

Recall that R_1 and R_2 are the only elementary abelian subgroups of order 2^6 of X. We shall determine $N_o(R_i)$ for $i \in \{1, 2\}$. We have $N_{N(A)}(R_i)/C(R_i) \cong A_5 \times Z_3$, where $N_A(R_i)/C_A(R_i) \cong A_5$ operates transitively on R_i/Q . From (4.3) and (6.4) we get that under $N_{N(A)}(R_i)$ the involutions of R_i split into exactly three classes: $3q_1$, $15q_1\pi$, 45π .

We have shown earlier that $q_1 \sim q_1 \pi$ in N(X) and $\pi \curvearrowright q_1$. Since $X \notin \operatorname{Syl}_2(G)$, there is a 2-element t in $N(X) \searrow X$. Since $t \notin N(A)$, we get $q_1^t \in \langle q_1, q_2, \pi, \tau \rangle \searrow \langle q_1, q_2 \rangle$. If $R_1^t = R_2$ and $q_1 \sim q_1 \pi$ in $N(R_i)$, a class of three elements would be mapped onto a class of 15 elements by t which is not possible. Hence, $q_1 \sim q_1 \pi$ in $N(R_i)$ in any case for $i \in \{1, 2\}$. Thus, q_1 has precisely 18 conjugates and π precisely 45 conjugates in $N(R_i)$, $i \in \{1, 2\}$, and so, $N(R_i) \supset N(R_i) \cap N(A)$. Since

$$|N_{N(A)}(R_i): C_{N(R_i)}(q_1)| = 3$$
 and $|N(R_i): C_{N(R_i)}(q_1)| = 18$,

we get $|N(R_i): N_{N(A)}(R_i)| = 6$. Since $X \subseteq N(R_i)$, we get from an above result that $|N(X)|_2 = 2|X| = |N(R_i)|_2$.

Set $N_0 = N_{N(A)}(R_1)$, $N = N(R_1)$, $C = C(R_1)$ and $O = O(N(R_1))$. Then, $O \subseteq C$. Hence, $C = O \times R_1 \subseteq C(q_1) \subseteq N(A)$ and $K = O \times Q$. We recall that $N_0/C \cong A_5 \times Z_3$. Denote by \overline{x} , \overline{H} the images of $x \in N$, $H \subseteq N$, respectively, under the epimorphism $N \to N/O$. Let w be an element of order 5 of $A \cap N(R_1)$. Then, $\overline{w} \in \overline{N}_0$, $o(\overline{w}) = 5$. Note that $|\overline{N}/\overline{R}_1| = 2^3 \cdot 3^3 \cdot 5$. We have $C_{\overline{R}_1}(\overline{w}) = \overline{Q}$ and $\overline{Q} \in \operatorname{Syl}_2(C(\overline{w}) \cap \overline{N}_0)$. Since $|C(w) \cap C(q_1)|_2 = 4$, and since the fusion of involutions of $\langle q_1, q_2 \rangle$ is controlled by N(A), we see that $Q \in \operatorname{Syl}_2(C_o(w))$. We want to show that $|C(\overline{w}) \cap \overline{N}|_2 = 4$. Note that $O \subset N(R_1)$. Assume that there is a subgroup Q_1 of $N(R_1)$ which contains Q as a subgroup of index 2 such that $[w, Q_1] \subseteq O$. As $|Q_1: Q| = 2$, we get $OQ_1\langle w \rangle \subseteq N(A)$. But in N(A), an element of order 5 of A does not centralize a subgroup of order 8. Thus, $|C(\overline{w}) \cap \overline{N}|_2 = 4$. From the structure of N(A) and $\overline{N}_0/\overline{C}$ we get $C_{\overline{N}_0}(\overline{w}) \cong A_4 \times Z_5$. Obviously, $\overline{Q} \subset C_{\overline{N}}(\overline{w})$, and so,

$$0 \times Q \triangleleft C_{N}(w \mod O) \subseteq N(A)$$
,

since $N(Q) \subseteq N(A)$. Hence,

$$C_{\overline{w}}(\overline{w}) \subseteq \overline{N(A)} \cap C(\overline{w})$$

which implies $|C_{\overline{w}}(\overline{w})| = 2^2 \cdot 3 \cdot 5$.

Let \mathfrak{X} be a minimal normal subgroup of $\mathfrak{N} = N/C$; note that $|\mathfrak{N}|=2^3\cdot 3^3\cdot 5$. If \mathfrak{X} is not solvable, then $\mathfrak{X}\cong A_5$ or $\mathfrak{X}\cong A_6$. The fact that 3^2 does not divide $|C_{\overline{w}}(\overline{w})|$ yields $\mathfrak{X} \cong A_6$. Thus, \mathfrak{X} is centralized by a group of order 3. This gives $O(\mathfrak{R}) \neq \langle 1 \rangle$. If \mathfrak{X} is solvable, then $\mathfrak X$ is not a 2-group because of $|C_{\overline{\nu}}(\overline{w})|_2 = 4$. So, in any case, we must have $O(\mathfrak{N}) \neq \langle 1 \rangle$. The structure of $C_{\overline{w}}(\overline{w})$ yields $|O(\mathfrak{N})|=3$. In particular, \mathfrak{N} contains a chief factor isomorphic to $A_{\mathfrak{s}}$. Let $T \in \text{Syl}_2(N(R_1))$ with $T \supset X$. We have |T:X| = 2 and by

assumption $R_1R_2 = S = X$.

Hence, T = S(t) for any $t \in T \setminus S$. Since $N(R_1)/C(R_1)$ contains a chief factor isomorphic to A_6 and $|N(R_1)/C(R_1)|_2 = 2^3$, we get that T/R_1 is isomorphic to a dihedral group of order 8. We may therefore choose the element t so that $t^2 \in R_1$. Consider now the action of t on R_1 . We have $|C_{R_1}(\zeta)| = 2^4 = |C_{R_1}(\xi)|$, where $\zeta, \xi \in T \setminus R_1$. Since A_6 has only one class of involutions, we have $|C_{R_1}(t)|=2^4$. Since K is tightly-embedded in G, we have $C(t) \cap Q = \langle 1 \rangle$ as $t \notin N(A)$. But t acts on $\mathbf{Z}(S) = \langle Q, \pi, \tau \rangle$ as an involution, and so, by the Jordan-canonical-form, we must have $|C_{\mathbf{Z}(S)}(t)| = 2^2$. Since $t \in \mathbf{N}(R_1)$, we have $t \in N(R_2)$; note that $Z(S) = R_1 \cap R_2$. It follows

$$R_1=Q imes m{C}_{R_1}\!(t)\;,\; R_1R_2=R_2m{C}_{R_1}\!(t)\;\; ext{and}\;\; T=R_1R_2\!\langle t
angle=R_2m{C}_{R_1}\!(t)\!\langle t
angle\;.$$

Thus, T/R_2 is abelian of order 8. Working with $N(R_2)$ in the same way as we did with $N(R_1)$, we get $T/R_2 \cong D_8$. This is a contradiction proving the lemma.

(6.8) Lemma. The case $X = S(\varphi, \varkappa)$ is not possible.

PROOF. Assume that $X = S(\varphi, \varkappa)$. From (6.5) we get that X splits over S. Hence, there are elements $\varphi' \in S\varphi$ and $\varkappa' \in S\varkappa$ such that $\langle \varphi', \varkappa' \rangle$ is a four-group. Note that $S = R_1 R_2$ char X, Z(X) = $=\langle q_1, \pi \rangle$ and $N(X) \supset N_{N(A)}(X)$. We know that under $N_{N(A)}(S)$ the set $Z(S)^{\#}$ splits into exactly three conjugate classes with three conjugates of q_1 and $q_1\pi$, each, and nine conjugates of π ; here $q_1\pi$ is the only involution from $\langle q_1, q_2 \rangle \pi$ which has no roots in S. Since $q_1 \sim \pi$ in G, we get $q_1 \sim q_1 \pi$ in N(X); since N(X) normalizes S, we get $q_1 \sim$ $\sim q_1\pi$ in N(S). It follows $|N(X):N_{N(A)}(X)|=2$; note that $N_{N(A)}(X)\subseteq\subseteq C(\langle q_1,\pi\rangle)$. Also, we get $|N(S):N_{N(A)}(S)|=2$. As in the proof of (6.7) and by the presence of \varkappa , we get $|N(R_i):N_{N(A)}(R_i)|=6$ for $i\in\{1,2\}$. We remark that $S\langle\varphi\rangle\in\operatorname{Syl}_2(N_{N(A)}(R_i))$ and

$$N_{N(A)}(R_i)/C(R_i) \simeq (A_5 \times Z_3) \cdot Z_2$$
.

Let $T \in \operatorname{Syl}_2(N(X))$. Then, $T \in \operatorname{Syl}_2(N(S))$, and obviously, $X \subset T$ with |T: X| = 2. Since $R_1^{\varkappa} = R_2$, we have $|T: N_T(R_i)| = 2$. Hence, $|X| = |N_T(R_i)| = 2^{10} = |N(R_i)|_2$ and $N_T(R_i) \in \operatorname{Syl}_2(N(R_i))$.

Consider $N(R_1)$. Set $\mathfrak{R} = N(R_1)/C(R_1)$. As in the proof of (6.7), we can show that \mathfrak{R} possesses a chief factor isomorphic to A_6 and that $|O(\mathfrak{R})| = 3$. It follows from the structure of N(A) that a generator for $O(\mathfrak{N})$ acts fixed-point-free on R_1 , and that $O(\mathfrak{N})$ acts on Q. It is now possible to show that \Re' is isomorphic to the tripple cover of A_6 and that $\mathfrak{R}/\mathbf{O}(\mathfrak{R}) \cong \Sigma_6$. Further, we get that a S_2 -subgroup of $N(R_1)$ is of type M_{24} . Let $Y \in Syl_2(N(R_1))$ with $Y \supset S\langle \varphi \rangle$. There is an involution $t \in Y$ such that $Y = S(\varphi, t)$, since Y is generated by involutions. We have $X = S\langle \varphi, \varkappa \rangle$ and we may put $T = S\langle \varphi, \varkappa, t \rangle$. We show that $T \in Syl_2(G)$. Let R be an elementary abelian subgroup of T of order 26 such that T = XR. Then, $|X \cap R| = 2^5$. From the action of φ and \varkappa on S we get that $|S \cap R| = 2^4$ is not possible. From the structure of X we get that there is no four-group in X intersecting S in $\langle 1 \rangle$ which centralizes an elementary abelian subgroup of order 8 of S. It follows $S = R_1 R_2$ char T, and since $T \in Syl_2(N(S))$, we get that $T \in \text{Syl}_2(G)$. Remember that $|N(S): N_{N(A)}(S)| = 2$, and so, $N_{N(A)}(S) \triangleleft N(S)$. We know that mod H, H = O(N(A)), the group $N(S) \cap N(A)$ is an extension of S by a group of type (3,3) and by a four-group. Thus, $N(S) = O_{2',2,3,2}(N(S))$ and $N(S)/O_{2',2,3}(N(S))$ is a group of order 8 containing a four-subgroup. Clearly, $N(S)/O_{2',2}(N(S))$ is faithful extension of an elementary abelian group of order 9 by a dihedral group of order 8, as otherwise we would get $T \subseteq N(A)$ which is not the case. By the fixed-point-free action of the 3-layer on OS/O, we see that T splits over S. Thus, there is a dihedral subgroup $\langle \varphi', t' \rangle \langle \varkappa' \rangle$ of order 8 in T such that $S \langle \varphi', t' \rangle \langle \varkappa' \rangle = T$; $\varphi' \in S \varphi$, $\varkappa' \in S\varkappa$, $t' \in St$; the elements φ' , t', \varkappa' are involutions, $S\langle \varphi', t' \rangle \in Syl_2$ $(N(R_1))$, and $Z(\langle \varphi', t', \varkappa' \rangle) = \langle \varphi' \rangle$; note that φ acts invertingly on $O_{2',2,3}(N(S))/O_{2',2}(N(S))$. Obviously, $\varkappa' \sim \varphi' \varkappa'$ by t'. We have that $C_r(\varphi'\varkappa')=\langle q_1,q_2,\pi,\varphi'arket ',arphi'
angle=W$ by (4.6). Now, $W'=\langle q_1
angle$ and this implies that W is a S_2 -subgroup of $C_q(\varphi' \varkappa')$. However, by a transfer

lemma of J. Thompson, we get that in G the involution $\varphi'\varkappa'$ must be conjugate to an involution of $S\langle \varkappa't' \rangle$, and so, $\varphi'\varkappa'$ must be conjugate to an element of $S\langle \varphi' \rangle = S\langle \varphi \rangle$. Representatives for the G-classes of involutions of $S\langle \varphi \rangle$ are π , q_1 , and φ . But the centralizers of these elements have larger S_2 -subgroups. This contradiction proves the lemma.

(6.9) LEMMA. The group G is isomorphic to He.

PROOF. From the preceding results, we have to consider finally the case in which $X = S\langle \varphi \rangle$, $\varphi^2 = 1$ and $C_G(q_1) = AKX$. Clearly, $H = O(C(q_1))$. Set $\mathfrak{C} = C(q_1)/H$. Then, \mathfrak{C} is isomorphic to the centralizer of a non-central involution of He. A characterization of Deckers and Held leads to $G \simeq He$.

The theorem is proved.

REFERENCES

- [1] M. ASCHBACHER, On finite groups of component type, Ill. J. M., 19 (1975), pp. 87-116.
- [2] B. Beisiegel, Über einfache, endliche Gruppen mit Sylow-2-Gruppen der Ordung höchstens 2¹⁰, Dissertation, Mainz University, 1975.
- [3] M. DECKERS, On groups related to Held's simple group, Arch. der Math., 25 (1974), pp. 23-28.
- [4] G. GLAUBERMAN, Central elements in core-free groups, J. Alg., 4 (1966), pp. 403-420.
- [5] D. M. GOLDSCHMIDT, 2-Fusion in finite groups, Ann. of Math., 99 (1974), pp. 70-117.
- [6] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
- [7] R. Griess, Schur multipliers of finite simple groups of Lie type, Trans.
 A.M.S., 183 (1973), pp. 355-421.
- [8] D. Held, The simple groups related to M₂₄, J. Alg., 13 (1969), pp. 253-296.
- [9] B. HUPPERT, Endliche Gruppen, I, Springer, Berlin, New York, 1967.
- [10] A. Reifart, A characterization of the sporadic simple group of Suzuki, J. Alg., 33 (1975), pp. 288-305.
- [11] I. Schur, Untersuchung über die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionem, J. Math., 132 (1907), pp. 85-137.
- [12] R. Steinberg, Automorphisms of finite linear groups, Can. J. Math., 12 (1960), pp. 606-615.

Manoscritto pervenuto in redazione il 9 luglio 1980.