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Bifurcation of Closed Orbits from a Limit Cycle in R2.

VINICIO MOAUBO (*)

1. Introduction. 
_

The theory of bifurcation for differential equations is motivated,
as is well known, by the problems which arise in Celestial Mechanics,
Fluidodynamics, Nonlinear Oscillations, Biomathematics and many
other fields. After Poincaré and Liapunov set the bases, many scien-
tists like Hopf, Andronov, Leontovich, Bogoliubov developed very
extensively such theory by giving results which found many impor-
tant uses in physics and engineering (for references see e.g. [1]).

In this paper we will be concerned with a particular bifurcation
problem considered by Andronov et al. in [2]. Precisely let

be a one parameter family of differential systems in E (- 91 ¡l),
p &#x3E; 0, P, Q E Ch[(- P, ¡l) X .R2, R2], h &#x3E; 4, and let us suppose that

(*) Indirizzo dell’A.: Dipartimento di Matematica, Libera Università di
Trento, 38050 Povo (Trento).
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has a closed orbit Lo which is not an equilibrium position. We want
to consider the problem of existence of closed orbits for (A,), which
tend, in a suitable sense, to Lo as u tends to 0. This is the so called

problem of bifurcation of periodic solutions from a periodic solution.
Such problem is not analogous to Hopf bifurcation (bifurcation of

periodic solutions from an equilibrium position) essentially because

1) The existence of a closed orbit of (Ao) does not imply, y in

general, the existence of a closed orbit of (art), in the neighborhood
of for lul small enough, whereas in Hopf bifurcation one can sup-
pose that the origin is an equilibrium position also for the perturbed
systems;

2) The orbit Lo could be semistable, that is attracting for inside
orbits and repulsing for outside orbits or viceversa.

Andronov et al. [2] consider the previous problem for two kinds
of analytical systems (A,~) and they look for the zeros of the so called
displacement function relative to Lo , by using Newton’s polygon.
For these two kinds of systems, different conditions, expressed by
means of the coefficients in Taylor development of the displacement
function, are satisfied. Such conditions lead them to obtain interesting
results expressed by means of Ths. 71, 72, 73. The first two theorems
are concerned with one kind of systems and are relative to the cases
in which .Lo is an attracting, repulsing or semistable limit cycle for
the umperturbed system. The third one is concerned with the other
kind of systems and only the case in which Lo is an attracting or
repulsing limit cycle is considered.

In [3] a general definition [III, Def. 1.1] of bifurcation for a family
of invariant sets is given, that is a bifurcation occurs at p = 0

when a new family of invariant sets {~} arises such that r1 M P-
is empty and M) tends, in a suitable sense, to JMo as It tends to 0.

Also in [3] a theorem [III, Th. 1.3] is given in which bifurcation
phenomenon is related to a drastic change of stability properties of
the family IN.1 0. This result was used in [4] to study the
attractivity properties of bifulcating periodic orbits in Hopf bifurca-
tion. There, the sets M, are taken coincident with the origin for
every p and the trasversality condition assures the change of stability
properties at p = 0.

The aim of this paper is to show how it is possible to approach
the problem of bifurcation of periodic orbits from a periodic orbit by
using the point of view adopted in [3, 4]. Therefore we prove that
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under suitable conditions (which are satisfied in the cases considered
in [2]) there exist families of invariant sets for which there is
a drastic change of stability properties atu = 0. Then, the mentioned
theorem, given in [3], ensures the existence of bifurcating sets 
which are, in our case, annular regions, close to Lo, which have as
boundary periodic orbits of (A~). Also the same theorem gives us
informations about attractivity properties of the sets X’. Such prop-
erties will coincide with the properties of bifurcating closed orbits
if the annular regions, which constitue .1~~ , shrink to just one closed
orbit. This happens when the hypotheses of Ths. 71, 72, 73 of [2]
are satisfied. Thus, the results given in [2] can be interpreted as par-
ticular bifurcations of families of invariant sets under drastic changes
of stability properties through p = 0. Our procedure seems, there-

fore, to replace fruitfully the computational methods used in [2];
further it allows us to complete the analysis made in [2]. In fact

we are able to solve also the bifurcation problem which arises when,
for the second kind of systems considered in [2], .Lo is supposed to
be a semistable limit cycle.

2. Preliminaries.

Let

be the equations of the periodic solution of (Ao) corresponding to Lo
and T &#x3E; 0 the smallest positive period of (2.1). Let us introduce as
in [2] a system of curvilinear coordinates (n, s) in the neighborhood
of Lo by setting

with d&#x3E;0 sufnciently small. Under the condition (q/(S))2 +
+ (~’(s))2 &#x3E; 0 for every s E [0, 7:), the orbits of (A,), for small enough,
near to .Lo have equations n = n(s) with n(s) satisfying the equation
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where R(,u, n, s) E Ch is a function, periodic in s with period z, such
that 0, s) = 0. In particular the orbits of (Ao) near to Lo will
be given by the solutions of equation

Let n(,u, no, s) denote the solution of (2.2) satisfying the condition
If Inol are small enough, is defined

on [0, 1] and therefore one can introduce the displacement 
V(p, rco), relative to Lo, by putting

Then the orbit of (A,~) corresponding to no will be periodic if and

only if a, no satisfy the equation

As V E Ch, we can write

with 0 of order higher than h in (p, no).

DEFINITION 2.1 [2]. The closed orbit Lo of (Ao) is said to be a limit
cycle of multiplicity k E 11, ... , h} if the coefficients of the development
(2.5) satis f y the condition

If k = 1, .La is said to be a simple limit cycle.

It is easy to see that a limit cycle of odd multiplicity is attracting
or repulsing, whereas it is semistable if its multiplicity is even. To

evaluate the multiplicity of a limit cycle, let us develop the solution
s ) in terms of n0 :
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and substitute (2.6) in (2.3). Then the functions ul(s), 1 = 1, ... , h,
have to satisfy the system of differential equations

( U is the coefficient of no in the right hand side of (2.3) after substi-
tution of (2.6)) with the initial conditions

The multiplicity of Lo will be the index of the first function 
k = ly ... , which is not periodic of period try if it exists. In par-
ticular we have

and it will be periodic of period r if

that is, if the characteristic index of Lo is null. In such a case we

have

In the following we will suppose that (2.7) holds, that is Lo is not
a simple limit cycle. In fact if ~ 0, then equation (2.4) can be
solved with respect to no in the neighborhood of (0, 0) and, for IPI
small enough, has in the neighborhood of Lo just one closed orbit
which is a simple limit cycle with the same attractivity property of Lo .

In [2] some results (Ths. 71, 72, 73) are given about the existence
and attractivity properties of periodic orbits of when (Ap) coin-
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cides with one of the two following systems:

The functions P, Q are supposed to be analytic and in (2.9) the func-
tions p 1, q, are defined as follows:

where F(x, y) is an analytic function such that

Such results are obtained by using the Newton’s polygon in the
analysis of the zeros of the corresponding displacement function and
they hold because for system (2.8) we have

whereas for system (2.9) the condition

is satisfied.

REMARK 2.2. In Hopf bifurcation the displacement function rela-
tive to the origin satisfies condition (2.11) because of trasversality
condition.

We want now to recall the results given in [3] about bifurcation
from a family of invariant sets for systems (A,). Let us denote by

one of the two intervals [0, p), (- ,u, 0] and consider a family
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of compact sets C R2, such that

1) Vu E J(p), is Au-invariant ;

2) max ~O(x, Mo): x E ll,~~ --~ 0 as p - 0, where x = (x, y) and
e denotes the usual distance.

DEFINITION 2.3 [3, III, Def. 1.1]. fl == 0 is said to be a bifurca-
tion point for the family there exists fl* E (0, j1) ared a new
family of compact sets ~~’I~~~EJ(,~*)~~o~, c such that

THEOREM 2.4 [3, III, Th. 1.3]. Let be a family of com-
pact sets satis f ying conditions 1) and 2). Suppose that Mo is 
tically stable [resp. A,-completely unstable, that is A0-asymptotically stable
in the past] and Mu is Au-completely unstable [re8p. Au-asymptotically
stable] for every Il E Then p = 0 is a bifurcation point for
the family ~lll~,~~ and the family of Def. 2.3 can be determined such
that is Au-asymptotically stable [resp. A,-conzpletely unstable] for
every p E 

REMARK 2.5. Theorem 2.4 holds also if the sets are not com-

pact but their complements are compact for every p E J(17).
Let us suppose now that

(2.12) 
V p E J(/7) there exists a closed orbit L, for (A,) such that

(2.12 )

Then, denoting by C, the disk whose boundary is L, and by C,
its complement R2/Ctt, we can identify in Th. 2.4 the family 
with one of the families ~C,~~, (L,). In this way, it is possible
to prove the following corollaries.

COROLLARY 2.6. (2.12) holds. Let Lo be [resp.
Ao-repulsing] for outside orbits and V fl E let L,~ be 
[resp. for outside orbits. Then fl = 0 is a bifurcation
point f or the family and the family can be determined
such that b’,u E M’u is Au-asymptotically stable [resp. 
pletely and M) is an annular region outside of Lu bounded
by two closed orbits of (A,).
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COROLLARY 2.7. Suppose (2.12) holds. Let Lo be A,,,-attracting [resp.
A0-repulsing] f or inside orbits and Vp E let L, be A,,-repulsing
[resp. A ,-attracting] f or inside orbits. Then fl = 0 is a bifurcation point
for the family and the f amily can be determined such that

d,u is A,-asymptotically stable [resp. A,-completely un-
stable] and is an annular region inside of L,~ bounded by two closed
orbits of (Ap,).

COROLLARY 2.8. Suppose (2.12) holds. Let Lo be A,,-attracting [resp.
Ao-repulsing] and V fl E J(j1)E(0) let LA be Au-repulsing [resp. Å",-atttract-
ing]. Then fl = 0 is a bi f urcation point f or the family and

the can be determined such that is

Au-asymptotically stable [resp. Au-completely unstable] and M’u is con-
stituted by two annular regions, one inside of Lu the other one outside
of each of them bounded by two closed orbits of 

The proof of Corollaries 2.6, 2.7, 2.8 can be obtained by using the
same arguments as in [3, III, Th. 2.2].

3. Results.

In this section we will consider families of systems (A~) for which
either condition (2.10) or condition (2.11) is satisfied. As we observed
in Remark 2.2, in Hopf bifurcation the displacement function relative
to the origin satisfies condition (2.11) because of trasversality con-
dition. Such condition implies an exchange of atti-activity proper-
ties of the origin at a critical value of the parameter and, by Hopf’s
theorem [5], the existence of periodic orbits bifurcating from the
origin. Hereafter we will show how ( 2 .10 ) and ( 2 .11 ) play in out
bifurcation problem the same rôle as Hopf’s trasversality condition.
Precisely (2.10) assures the existence of a bi f urcation f unction ,u(no)
which gives us the solutions of equation (2.4). On the other hand

( 2.11 ) assures, except a critical case, the existence of° a family of
closed oibits ~L,~~, L, - Lo as p - 0, whose attractivity properties
change ata = 0. The periodic orbits of (A,~), near to .Lo and different
from L,,, are given by a new bifurcation function, whose existence is
assured always by (2.11). The number of bifurcating orbits from Lo
and their attractivity properties will depend, as in Hopf bifurcation [4],
on the properties of the above bifurcation functions.
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3.1. Suppose first that (A,~ ) satisfies condition ( 2.10 ) . Then (2.4)
can be solved with respect to fl in the neighborhood of (0, 0) and we
have the following theorem which is analogous to Hopf’s theorem.

THEOREM 3.1. Suppose that (A,~) satis f ies (2.10). Then, there exist
y &#x3E; 0, ð &#x3E; 0 and a function fl(no) E Ch[(- y, y), (- 6. d)] with p(0) =
- a’(0) = 0 such that f or ,u E (- ð, ð) and no E (- y, y) the orbit of (A~)
corresponding to no is periodic if and only if p .= ,u(no).

It is easy now to give a more direct and easy proof of Ths. 71, 72
of [1]. Let us denote by UB(Lo), s &#x3E; 0, the 8-neighborhood of Lo.

THEOREM 3.2 [2, Th. 71]. Suppose that (Au) satisfies (2.10) and
Lo is a limit cycle with even multiplicity k. Then there exist Fo &#x3E; 0,
It, &#x3E; 0 such that one of the two f ollowing situations occurs:

has exacctty two closed orbits in 
, (All) has no closed orb-its in Ueo(Lo);

b) &#x3E; 0, a  #0’ (All) has no closed orbits in Uso(Lo) and Vp  0,
 #0’ (All) has exactly two closed orbits in Uso(Lo).

Further, B;;f 8 E (0, 80) there exists (0, #0) such that E (-,u*, a*)
the above periodic orbits belong to Ue(Lo) and they are simple limit

cycles f or p =F 0.

PROOF. Let ,u(no) be the bifurcation function which exists because
of Th. 3.1. By deriving k times the identity V (,u(no), = 0 we get

Therefore the function p(no) has a minimum [resp. a maximum] at
no = 0 if ak,Olao,l  0 [resp. 0] and there exists so E (0, y)
such that a(no) is strictly increasing [resp. decreasing] in [0, so) and
strictly decreasing [resp. increasing] in (- eo, 0]. Thus situation a)
[resp. b)] occurs if  0 [resp. with flo E (0, fl(eo)).
Also the above monotonicity properties of fl(no) imply that for Ifll
small enough the periodic orbits of are as near as we want to Lo.
Finally, y let us prove that for Ifll I small enough, y 0, the periodic
orbits of (A,~) near to Lo are simple limit cycles. Suppose, for example,
that ak,,Iao,,  0 so that situation a) occurs (the case ak,o/ao,1 &#x3E; 0 can be
discussed in a similar way). Let p E (0, po) and let v &#x3E; 0 be the k-th
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positive root of p. We want to look for the zeros of no) of the
type no(fl) = vc. We have

with

The equation d(v, c) = 0 can be solved with respect to c in the neigh-
borhoods of (0, c) and (0, - c) with E positive k-th root of - 
Therefore there exist two functions c1(v), c2(v) defined in a neighbor-
hood of v = 0 such that cl(O) = c, c2(o) _ - E, d(v, Cl(v)) = 0, d(v,
C,(v)) - 0. Then, for a positive and small enough we have two zeros
of no), that is = n0(2)(u) = with v positive k-th
root of p. Such zeros have to correspond to the two bifurcating
closed orbits which exist when situation a) occurs. By evaluating
the derivative for no = = 1, 2, one easily proves that
it is non null for p &#x3E; 0 small enough. Therefore such orbits are simple
limit cycles and this completes the proof.

THEOREM 3.3 [2, Th. 72]. Suppose that (A,~) satis f2es (2.10) and Lo
is a limit cycle with odd multiplicity k. Then there exist So &#x3E; 0, ,uo &#x3E; 0

such that

(3.3) has exactly one closed orbit in Ue(Lo).

for every E E (0, so) there exists It* E (0, #0) such that V fl E
E (2013 ~*y the previous periodic orbits belong to Ue(Lo) and they are;

0, simple limit cycles.

PROOF. As k is odd and (3.2) holds, there exists so e (0, y) such
that the bifurcation function existing because of Th. 3.1, is

strictly increasing [resp. decreasing] in (- ~o, so) if ak,o/ao,l  0 [resp.
Therefore (3.3) holds for a suitable flo E (0, #(so)). The

rest of the proof is analogous to that of Th. 3.2 by taking here v equal
to the root of u for every p E (- flo, po).

Now we want to interpret these results by using Corollaries 2.6, 2.7
of Th. 2.4. Suppose that k is even and situation a) of Th. 3.2 occurs.
The two closed orbits which we have for JA &#x3E; 0 have to be one, say Ll,,
repulsing, the other one, L,, attracting. If Lo is attracting from
outside, [resp. from inside], we have from Corollary 2.6 [resp. Corol-
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lary 2.7] that there exists an attracting annular region outside [resp.
inside] of Zu bounded by two closed orbits of In our case, this
annular region has to shrink to just one closed orbit coinciding with Lu.

When k is odd, say L, the unique closed orbit which we have for
every p, jyj small enough, in the neighborhood of Zo . Such orbits
have to have the same attractivity properties of .Lo , otherwise other
closed orbits should arise because of Corollaries of Th. 2.4. There-

fore, in such case u = 0 is not a bifurcation point for the families
{Cu}, {Cu}, {Lu}.

3.2. Suppose now that for the family of systems (Au) condition
(2.11) is satisfied. As we pointed out, such a condition is verified in
Hopf bifurcation. Therefore one can think that it is possible to

proceed as in Negrini and Salvadori’s paper [4] to study the existence
and the attractivity properties of bifurcating orbits. Actually, this
can be done when Zo has a multiplicity bigger than 2. In fact, in such
a case we can prove the existence of a family of closed orbits for
which there is a drastic change of stability properties at p = 0.

THEOREM 3.4. Suppose that condition (2.11) holds and Lo has multi-
plicity bigger than 2. Then there exists fi E (0, il) such that for every
fl E (2013 /!, /~)B{0}? (A,~) has a simple limit cycle L, which tends to .Lo
as a tends to 0 acnd for which the attractivity properties change through
,u=0.

PROOF. Because of (2.11) and a2,o = 0, there exists It* E (0, il)
such that for every p E (- fl*, no) has a root of the type

= Indeed, wet have = p2d(p, c), with d(p, c) =
= a,,, c + aco,2 + c), and the equation d(p, c) = 0 can be solved
in the neighborhood of (0, - aO,2/al,1). Of course, no(p) tends to 0 as a
tends to 0 and it is easy to show that = a1,lfl + o(p).

REMARK 3.5. Under condition (2.11), if Lo has multiplicity equal
to 2, then the displacement function has the form

with no) of order higher than two in (,u, no) and ~ 0. Let

us consider the three cases aî,l- 4a,,,,a~,o 5 0. In the first case TT (,u, no)
is sign-definite in the neighborhood of (0, 0) and therefore has
no closed orbits for p # 0 and Lul small enough. In the second case
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by looking for the zeros of V(p, c) of the type we can prove
the existence of two closed orbits of (Ap) for ,u ~ 0 and lu I small

enough which tends to Lo as ,u -~- 0. As Lo has multiplicity two,
Theorems 42 and 43 of [2] imply that they are the only closed orbits
of (A,~) in the neighborhood of Lo and they are simple limit cycles.
Finally, the third case is critical and the existence of closed orbits
of (.A ~ ) for ,u ~ 0 will depend upon the 

REMARK 3.6. Under the hypotheses of Th. 3.4, condition (2.12)
holds with j1i replaced by IA’. Further, the attractivity properties of .L,~
change through a = 0. Therefore, if we suppose that Lo is attracting,
repulsing or semistable, we can use Corollaries 2.6, 2.7, 2.8 to state
the existence of periodic orbits of (A.), bifurcating from in

the neighborhood of .Lo .

Now under the hypotheses of Th. 3.4, we want to get results to
establish the exact number of closed orbits of (A&#x3E;) in the neighborhood
of Lo and their attractivity properties. For p E (- IA’, l’i), we have

where V E Ch-1 is such 0 for a # 0. Therefore the

periodic orbits of (A,) different from will correspond to the zeros
of 9(p, no)..As we have by (2.11)

the implicit function theorem yields the following extension to our
problem of Hopf’s theorem.

THEOREM 3.7. In the same hypotheses of Th. 3.4, there exist 6 &#x3E; 0,
8 &#x3E; 0 and a function p E 8), (- ~, b)] with í1(O) = í1’(O) = 0
such that for any p E (- 6, 6) and no E (- E, E), no =A the orbit

of (A,~) corresponding to no is closed if and only if fl = ,u(no).
The existence of closed orbits of in the neighborhood of Lo,

different from depends upon the properties of the 

fonction ¡l(no), given by Th. 3.7. If we suppose that Lo is a multiple
limit cycle with finite multiplicity bigger than two, then we are able
to say exactly how many closed orbits there are. Also the attrac-

tivity properties of such orbits can be settled.
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THEOREM 3.8. Let (2.11) hold and Lo be an attracting [resp. repulsing]
limit cycle with f inite (odd) multiplicity k E {3, ... , h -1~. Then there

exist 80 &#x3E; 0, /10 &#x3E; 0 such that one of the two following situations occurs :

a) for a &#x3E; 0, fl  ,uo, exactly two closed orbits of (.A~), different
from Ll,, exist in UEo(Lo), one inside the other one outside of L~ , whereas
for fl  0, ~ Iltl  we don’t have closed orbits of different from

in UEo(Lo);
b) f or fl &#x3E; 0, ,u  !lo, we doit’t have closed orbits of (Ap), different

f rom L,, in and for It  0,  exaetl y two closed orbits
of (A,~), different f rom exist In Ueo(Lo), one inside the other one
outside of 

Situation a) occurs when al,1 &#x3E; 0 [resp . a, ,1  0], whereas b) occurs
when al,l  0 [resp. a,,l &#x3E; 0]. Moreover, for every 8 E (0, 80) there exists

(0, /10) such that for every a E (---,c,c*, fl*) the above periodic orbits
different f rom L,~ belong to U,(LO) and they are simple attra,cting [resp.
repulsing] limit cycles.

PROOF. Suppose, for instance, that ai,1 &#x3E; 0 and Lo be attracting
(the other cases can be treated in the same way). Deriving k times
the identity TT (,u(no), no) = 0 we have

Therefore fi(11,o) has a proper minimum in no = 0 and situation a)
occurs. To prove that the closed orbits of (AA), for p &#x3E; 0, different
from L,, y are simple attracting limit cycles, let us set for u &#x3E; 0

,u = &#x3E; 0, and look for the zeros of V(,u, no) of the type n,o = vc.
We have

with c) = 0. By setting

we h ave
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Therefore the equation d(v, c) = 0 can be solved in the neighborhood
of

and we can determine, for p &#x3E; 0 and small enough, three zeros of
Y(,u, no) which correspond the first one to L,~ and the others to the
two closed orbits of (A~), different from L,, one inside the other one
outside of Finally, it is easy to prove that dV/dn0  0 corre-

sponding to the last two zeros and therefore the closed orbits of (Ap,)
different from L, are simple attracting limit cycles.

Theorem 3.8 is a reformulation of Th. 73 of [2]. However, as we
pointed out in See. 1, its proof comes out from a different approach
of the bifurcation problem. Such approach suggests a new interpre-
tation of the result and, moreover, allows us to analyze also the case
in which Lo has even multiplicity. In fact, by using always (3.2),
we can prove in an analogous way the following theorem.

THEOREM 3.9. Let (2.11) hold Lo be a semistable limit cycle with
f inite (even) multiplicity k E (3, ... , h -1 ) attracting for outside [resp.
inside] orbits. Then, there exist ~o &#x3E; 0, #0 &#x3E; 0 such that we have either

a’) for a &#x3E; 0, a  po , 7 exactly one closed orbit of (AJl), different
f rom LA, exists in Ueo(Lo) and it is outside of Lit’ whereas for ,u C 0,
 #0’ exactly one closed orbit of (AJl), different from Ll,, exists in

U eo (Lo) and it is inside of Lit;
or

b’) for a &#x3E; 0, ,u  po, exactly one closed orbit of (AJl), different
f rom exists in Ueo(Lo) and it is inside of Lit’ whereas for p  0,
Ipl  Po, exactly one closed orbit of (A,), different f rom LJl, exists in

Ueo(Lo) and it is outside of LJl.

Situation a’) occurs when a1,1 &#x3E; 0 [resp. al,1  0], whereas b’) holds
if al,l  0 [resp. for every E E (o, Eo) there exists

,u* E (0, #0) such that for every p E (- p*, p*) the above periodic orbits,
different f rom L,, belong to Ue(Lo) and they are simple limit cycles,
attracting [resp. repulsing] if they are outside of Lo, repulsing 
attracting] if they are inside of Lo.
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REMARK 3.10. As we pointed out in Remark 3.6, if Lo is attracting,
repulsing or semistable, then annular regions bounded by closed orbits
of (A,) bifurcate from the family ~L,~~. The further hypotheses that
Lo has finite multiplicity assures that such annular regions reduce
to just one orbit.

A short version of the results of this paper was presented in [6].
I wish to thank prof. L. Salvadori for many helpful discussions.
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