RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

JINDŘICH BEČVÁŘ

Centers of Γ -isotypity in abelian groups

Rendiconti del Seminario Matematico della Università di Padova, tome 65 (1981), p. 271-276

http://www.numdam.org/item?id=RSMUP_1981__65__271_0

© Rendiconti del Seminario Matematico della Università di Padova, 1981, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Centers of Γ -Isotypity in Abelian Groups.

JINDŘICH BEČVÁŘ (*)

All groups in this paper are assumed to be abelian groups. We follow the terminology and notation of [1]. Let $\mathbb P$ be the set of all primes in the natural order; denote by $\mathcal K$ the class of all sequences $(\alpha_p)_{p\in\mathbb P}$, where each α_p is either an ordinal or the symbol ∞ which is considered to be larger than any ordinal. Let G be a group and $\Gamma = (\alpha_p)_{p\in\mathbb P} \in \mathcal K$. A subgroup H of G is said to be Γ -isotype in G if $p^{\beta}H = H \cap p^{\beta}G$ for every prime p and for every ordinal $\beta \leqslant \alpha_p$. If $\alpha_p = 0$, $\alpha_p = 1$, $\alpha_p = \omega$, $\alpha_p = \infty$ for every prime p then Γ -isotype subgroups are precisely subgroups, neat subgroups, pure subgroups, isotype subgroups respectively.

Let G be a group. If H is a subgroup of G, then each H-high subgroup of G is neat in G though not necessarily pure in G. The subgroup H is said to be a center of purity in G (J. D. Reid [5]) if every H-high subgroup of G is pure in G. The question of determining all centers of purity (J. M. Irwin [2]) was settled by R. S. Pierce [4] (see also J. D. Reid [5]). The class of all groups in which every subgroup is a center of purity (i.e. in which every neat subgroup is pure) was described by C. Megibben [3]. The results of R. S. Pierce and C. Megibben were generalized by V. S. Rochlina [6].

The purpose of this paper is to determine all centers of Γ -isotypity in G and describe the class of all groups in which every subgroup is a center of Γ -isotypity.

DEFINITION. Let G be a group and $\Gamma \in \mathcal{H}$. A subgroup H of G will be called a center of Γ -isotypity in G (a center of isotypity in G) if every H-high subgroup of G is Γ -isotype (isotype) in G.

(*) Indirizzo dell'A.: Matematicko-fyzikální fakulta, Sokolovská 83, 186 00 Praha 8 (Czechoslovakia).

The necessary and sufficient conditions for a subgroup H of G to be a center of Γ -isotypity in G are contained already in the following lemma (compare with Proposition 2.1 [5], Lemma [4] and Lemma 2 [6]).

LEMMA. Let G be a group, H a subgroup of G and $\Gamma = (\alpha_p)_{p \in \mathbb{P}} \in \mathcal{H}$. Then there is a H-high subgroup of G that is not Γ -isotype in G iff there are a prime p, an ordinal $\beta < \alpha_p$ and elements $m \in G$, $h \in H[p]$ with the following properties:

- (i) $O(m) = \infty$ or $O(m) = p^{j}$, where j > 1;
- (ii) $h_n^*(m) = h_n^*(h) < \beta \le h_n^*(h+m)$;
- (iii) $\langle m \rangle \cap H = 0$.

PROOF. Let M be an H-high subgroup of G that is not Γ -isotype in G. Then there is a prime p and an ordinal $\alpha \leqslant \alpha_p$ such that $p^{\alpha}M \neq M \cap p^{\alpha}G$; let α be the least ordinal with this property. Obviously, $\alpha = \beta + 1 > 1$. Let $x \in M \cap p^{\alpha}G \setminus p^{\alpha}M$; x = px', where $x' \in p^{\beta}G$. Since $px' \in M \cap pG = pM$, there is $m_1 \in M$ such that $px' = pm_1$. Hence $x' - m_1 \in G[p] = M[p] \oplus H[p]$, i.e. $x' = m_1 + m_2 + h$, where $m_2 \in M[p]$ and $h \in H[p]$. If $h \in p^{\beta}G$ then $n = m_1 + m_2 \in M \cap p^{\beta}G = p^{\beta}M$ and $x = px' = pn \in p^{\alpha}M$, a contradiction. Hence

$$h_p^*(n) = h_p^*(h) < \beta \leq h_p^*(h+n)$$
.

If n is of infinite order then write m=n and we are through. Otherwise denote by m the p-component of n. Now $h_p^*(m)=h_p^*(n)$ and $h_p^*(h+m)=h_p^*(h+n)$. If O(m)=p then $x=pn\in p^\alpha M$, a contradiction. Consequently $O(m)=p^j$, where j>1.

Conversely, suppose that there are a prime p, an ordinal $\beta < \alpha_p$ and elements $m \in G$, $h \in H[p]$ with the properties (i)-(iii). If m is of infinite order then write n = 0. If $O(m) = p^j$, where j > 1, then write $n = p^{j-1}m$; hence

$$n=p^{\mathfrak{s}-1}(m+h)\in p^{\mathfrak{g}}G[p]\diagdown H$$
 .

In the both cases, there is a subgroup S such that $n \in S$ and

$$p^{\scriptscriptstyle{\beta}}G[p] = S \oplus (p^{\scriptscriptstyle{\beta}}G[p] \cap H)$$
.

Further, there is a subgroup M_0 containing S such that

$$G[p] = M_0 \oplus H[p]$$
.

Now, $\langle M_0, m \rangle \cap H = 0$. For, if $m_0 + zm = h'$, where $m_0 \in M_0$, $h' \in H$ and z is an integer, then

$$pzm = ph' \in \langle m \rangle \cap H = 0$$
.

If $O(m) = \infty$ then z = 0 and $h' \in M_0 \cap H[p] = 0$. If $O(m) = p^j$, where j > 1, then $z = p^{j-1}z'$ and

$$m_0 + zm = m_0 + z'n = h' \in M_0 \cap H[p] = 0$$
.

Let M be an H-high subgroup of G containing $\langle M_0, m \rangle$. If $pm \in \mathcal{P}^{\beta+1}M$ then there is $m' \in \mathcal{P}^{\beta}M$ such that pm = pm'. Hence

$$m'-m\in M\cap G[p]=M\cap (M_0\oplus H[p])=M_0$$
, $h-m'+m\in p^{\rho}G[p]$.

i.e.

$$h-m'+m=s+x,$$

where $s \in S$ and $x \in p^{\beta}G[p] \cap H$. Consequently,

$$h-x = s + m' - m \in M_0 \cap H[p] = 0$$

and $h = x \in p^{\rho}G$, a contradiction. Hence $pm \notin p^{\rho+1}M$. On the other hand,

$$pm = p(m+h) \in p^{\beta+1}G \cap M$$

i.e. M is not Γ -isotype in G.

THEOREM. Let G be a group, H a subgroup of G and $\Gamma = (\alpha_p)_{p \in \mathbb{P}} \in \mathcal{H}$. Then H is a center of Γ -isotypity in G iff for every prime p one of the following two conditions is satisfied:

- (i) $H[p] \subset \bigcap_{\gamma < \alpha_p} p^{\gamma} G$.
- (ii) There is an ordinal $\gamma < \alpha_p$ such that $(p^pG + H)/H$ is a torsion group and $p^{p+2}G[p] \subset H[p] \subset p^pG$.

PROOF. Suppose that for a prime p neither (i) nor (ii) holds. Hence there is an ordinal $\beta < \alpha_p$ such that $H[p] \notin p^{\beta}G$; let β be the least ordinal with this property. Obviously, $\beta = \gamma + 1$ and $H[p] \in p^{\gamma}G$. Let $h \in H[p]$ such that $h_p^*(h) = \gamma$. By assumption, either $(p^{\gamma}G + H)/H$ is not torsion or $p^{\gamma+2}G[p] \notin H[p]$. In the first case there is an element $g \in p^{\gamma}G$ of infinite order such that $\langle g \rangle \cap H = 0$. In the second case there is an element $u \in p^{\gamma+2}G[p] \setminus H[p]$; write u = pv, where $v \in p^{\beta}G$. If we denote m = pg - h, resp. m = v - h, then m is of infinite order, resp. $O(m) = p^2$; in the both cases $\langle m \rangle \cap H = 0$. Further,

$$h_{p}^{*}(m) = h_{p}^{*}(h) = \gamma < \beta \leq h_{p}^{*}(h+m)$$

and by lemma, H is not a center of Γ -isotypity in G.

Conversely, suppose that for every prime p one of the two conditions (i), (ii) holds. If H is not a center of Γ -isotypity in G then by lemma, there are a prime p, an ordinal $\beta < \alpha_p$ and elements $m \in G$, $h \in H[p]$ such that

$$O(m)=\infty$$
 or $O(m)=p^{j},$ where $j>1$, $h_{p}^{*}(m)=h_{p}^{*}(h) , $\langle m
angle \cap H=0$.$

Since $h \notin p^{\beta}G$, for the prime p the condition (i) is not satisfied. Hence there is an ordinal $\gamma < \alpha_p$ such that $(p^{\gamma}G + H)/H$ is a torsion group and $p^{\gamma+2}G[p] \subset H[p] \subset p^{\gamma}G$. Consequently, $h \in p^{\gamma}G$, $\beta > \gamma$ and $m \in p^{\gamma}G$. Since the group $(p^{\gamma}G + H)/H$ is torsion, $O(m) = p^{j}$, where j > 1. Now,

$$0
eq p^{j-1}m = p^{j-1}(h+m) \in p^{\beta+1}G[p] \subset p^{\gamma+2}G[p] \subset H[p]$$
 ,

which contradicts with $\langle m \rangle \cap H = 0$. Hence H is a center of Γ -isotypity in G.

COROLLARY 1. Let G be a group. A subgroup H of G is a center of isotypity in G iff for every prime p one of the following two conditions holds:

- (i) $H[p] \subset p^{\infty}G$.
- (ii) There is an ordinal γ such that $(p^{\gamma}G + H)/H$ is torsion and $p^{\gamma+2}G[p] \subset H[p] \subset p^{\gamma}G$.

COROLLARY 2 (R. S. Pierce [4]). Let G be a group. A subgroup H of G is a center of purity in G iff for each prime p one of the following two conditions holds:

- (i) $H[p] \subset p^{\omega}G$.
- (ii) G/H is torsion and there is an integer $n \ge 0$ such that $p^{n+2}G[p] \subset H[p] \subset p^nG$.

PROPOSITION. Let G be a group and $\Gamma = (\alpha_p)_{p \in \mathbb{P}} \in \mathcal{K}$. Then the following are equivalent:

- (i) Each subgroup of G is a center of Γ -isotypity in G.
- (ii) Each neat subgroup of G is Γ -isotype in G.
- (iii) For every prime p either
 - (a) $G[p] \subset \bigcap_{\gamma < \alpha_p} p^{\gamma} G$ or
 - (b) G is torsion and there is an integer n, $0 \le n < \alpha_p$, such that $p^{n+2}G_p = 0$ and $G[p] \subset p^nG$.

PROOF. The equivalence of the assertions (i) and (ii) is trivial. By theorem, (iii) implies (i). Suppose that the assertion (iii) is not true, i.e. for a prime p neither (a) nor (b) holds. Thus G_p is not divisible, there is an integer m > 0 such that $G[p] \subset p^m G$ and $G[p] \not\subset p^{m+1} G$; hence $m+1 < \alpha_p$. Let $g \in G[p]$ be an element of p-height m, write $H = \langle g \rangle$. Obviously $H[p] \not\subset p^p G$, $H[p] \subset p^m G$, $H[p] \not\subset p^{m+1} G$. Since either G is not torsion or $p^{m+2} G_p \neq 0$, H is not a center of Γ -isotypity in G by theorem.

Note that $p^{n+2}G_p = 0$ and $G[p] \subset p^nG$ iff G_p is a direct sum of cyclic groups of orders p^{n+1} and p^{n+2} .

COROLLARY 3. Let G be a group and $\Gamma = (\alpha_p)_{p \in \mathbb{P}} \in \mathcal{H}$. If $\alpha_p \geqslant \omega$ for each prime p then the following are equivalent:

- (i) Each subgroup of G is a center of Γ -isotypity in G.
- (ii) For every prime p either G_p is divisible or G is torsion and there is an integer n > 0 such that G_p is a direct sum of eyelic groups of orders p^{n+1} and p^{n+2} .
- (iii) Each neat subgroup of G is pure in G.
- (iv) Each neat subgroup of G is isotype in G.

PROOF. By proposition, the assertions (i) and (ii), (ii) and (iii), (ii) and (iv) are equivalent.

The equivalence of the assertions (ii) and (iii) from corollary 3 was in the first time proved by C. Megibben [3].

REFERENCES

- [1] L. Fuchs, Infinite abelian groups I, II, Acad. Press, 1970, 1973.
- [2] J. M. IRWIN, High subgroups of abelian torsion groups, Pacific J. Math., 11 (1961), pp. 1375-1384.
- [3] C. MEGIBBEN, Kernels of purity in abelian groups, Publ. Math. Debrecen, 11 (1964), pp. 160-164.
- [4] R. S. PIERCE, Centers of purity in abelian groups, Pacific J. Math., 13 (1963), pp. 215-219.
- [5] J. D. Reid, On subgroups of an abelian group maximal disjoint from a given subgroup, Pacific J. Math., 13 (1963), pp. 657-664.
- [6] V. S. ROCHLINA, ε-centry abelevych grupp, Vest. Moskov. Univ., 1971, pp. 64-68.

Manoscritto pervenuto in redazione il 19 dicembre 1980.