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Centers of I'-Isotypity in Abelian Groups.

JINDRICH BECGVAR (*)

All groups in this paper are assumed to be abelian groups. We
follow the terminology and notation of [1]. Let P be the set of all
primes in the natural order; denote by J¢ the class of all sequences
(¢tp)peps Where each «, is either an ordinal or the symbol co which
is considered to be larger than any ordinal. Let G be a group and
I'= (a,)pep € . A subgroup H of ¢ is said to be [-isotype in G if
pfH = H N pf@ for every prime p and for every ordinal f<«,. If
o, =0, a,=1, o, = v, o, = co for every prime p then I[-isotype
subgroups are precisely subgroups, neat subgroups, pure subgroups,
isotype subgroups respectively.

Let @ be a group. If H is a subgroup of @, then each H-high
subgroup of G is neat in G though not necessarily pure in G. The
subgroup H is said to be a center of purity in ¢ (J. D. Reid [5]) if
every H-high subgroup of G is pure in ¢. The question of determining
all centers of purity (J. M. Irwin [2]) was settled by R. S. Pierce [4]
(see also J. D. Reid [5]). The class of all groups in which every sub-
group is a center of purity (i.e. in which every neat subgroup is pure)
was described by C. Megibben [3]. The results of R. S. Pierce and
C. Megibben were generalized by V. S. Rochlina [6].

The purpose of this paper is to determine all centers of I™-isotypity
in G and describe the class of all groups in which every subgroup is
a center of I-isotypity.

DEFINITION. Let G be a group and I'eJ. A subgroup H of G
will be called a center of [™-isotypity in G (a center of isotypity in G)
if every H-high subgroup of & is I-isotype (isotype) in G.

(*) Indirizzo dell’A.: Matematicko-fyzikalni fakulta, Sokolovsk4 83, 186 00
Praha 8 (Czechoslovakia).
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The necessary and sufficient conditions for a subgroup H of @
to be a center of I-isotypity in G are contained already in the fol-
lowing lemma (compare with Proposition 2.1 [5], Lemma [4] and Lem-
ma 2 [67).

LeMmA. Let ¢ be a group, H a subgroup of ¢ and ['= («,),ep € K.
Then there is a H-high subgroup of & that is not [-isotype in G iff
there are a prime p, an ordinal f << «, and elements m € &, h e H[p]
with the following properties:

(i) O(m) = oo or O(m) = p’, where j>1;
(ii) hy(m) = hy(h) < B<hyp(h + m);
(iii) <m> N H = 0.

ProoF. Let M be an H-high subgroup of G that is not I-isotype
in ¢. Then there is a prime p and an ordinal « <«, such that p* M 5=
# M N p*@; let « be the least ordinal with this property. Obviously,
a=p8-+1>1. Let ve MNp>*G\p*M; v = pa', where &'€ pfG. Since
pr'e M N pG = pM, there is m; € M such that pax’'= pm,. Hence
2’ —m,e@[p]l = M[p]® H[p], i.e. ©'= m,+ m,+ h, where m,€ M[p]
and he H[p]. If hepsG@ then n = m,+ mye M N pfG = p8 M and
r = px’' = pn e p*M, a contradiction. Hence

hy(n) = hy(h) < B<hy(h + n).

If »n is of infinite order then write m = » and we are through. Other-
wise denote by m the p-component of n. Now hj(m) = hy(n) and
hy(h + m) = hy(h + n). If O(m)=p then x = pnep*M, a contra-
diction. Consequently O(m) = p’, where j > 1.

Conversely, suppose that there are a prime p, an ordinal f < «,
and elements m € &, h € H[p] with the properties (i)-(iii). If m is of
infinite order then write » = 0. If O(m) = p’, where j > 1, then
write n = p’~'m; hence

n=p-i(m 4 h)epFG[p]\H .
In the both cases, there is a subgroup 8§ such that » e § and

pPG[p]= S D(pPGlp]N H) .
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Further, there is a subgroup M, containing § such that
Glpl = M, H[p].

Now, {(M,, m> " H = 0. For, if m,+ 2m = h', where moe My, '€ H
and z is an integer, then

pzm =ph'e{(m)N"NH=0.

If Om) =co then z2=0 and h'e M,N H[p]=0. If O(m)= p’,
where j > 1, then z = p/~'2’ and

Mo+ 2m=me+2'n=heMyNH[p]=0.

Let M be an H-high subgroup of G containing {M,, m)>. 1f pme
€ pft1 M then there is m’'epf M such that pm = pm’. Hence

m'—me MO G[p]=Mn (M,®H[p]) = M,,

h—m'+ mepsGp],
i.e.
h—m'+m=s+ua,

where s € 8 and € p#G[p]N H. Consequently,
h—x=8+m'—meM,NH[p]=0
and h =2 ephf@, a contradiction. Hence pm¢psti M. On the other

hand,
pm =p(m -+ h)eprr@nN M,

i.e. M is not I-isotype in G.

THEOREM. Let G be a group, H a subgroup of G and I" = («,),ep € K.
Then H is a center of I-isotypity in G iff for every prime p one of the
following two conditions is satisfied:

(i) Hlpijc[1pv6.
y<op

(ii) There is an ordinal y < «, such that (p*G 4 H)/H is a tor-
sion group and pvt2@Q[p]c H[p]c p*@.
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Proor. Suppose that for a prime p neither (i) nor (ii) holds.
Hence there is an ordinal § < «, such that H[p] ¢ p8G; let § be the least
ordinal with this property. Obviously, f =y + 1 and H[p]c p7q.
Let h € H[p] such that hy(h) = y. By assumption, either (p?G ++ H)/H
is not torsion or p*+2G[p] ¢ H[p]. In the first case there is an ele-
ment g € p*G@ of infinite order such that {g> " H = 0. In the second
case there is an element w e p*t2Gp\H[p]; write 4 = pv, where
veph@. If we denote m = pg — h, resp. m = v —h, then m is of
infinite order, resp. O(m) = p2?; in the both cases {(m> N H = 0.
Further,

hy(m) = hy(h) =y < B <hy(h + m)

and by lemma, H is not a center of [™-isotypity in G.

Conversely, suppose that for every prime p one of the two con-
ditions (i), (ii) holds. If H is not a center of [™-isotypity in G then
by lemma, there are a prime p, an ordinal § < «, and elements m € @,
h € H[p] such that

O(m)=oc0 or O(m)=rp’, where j>1,
hy(m) = hy(h) < f<hy(k 4 m)
m>NH=0.

Since h ¢ pf@, for the prime p the condition (i) is not satisfied. Hence
there is an ordinal y < «, such that (p?G + H)/H is a torsion group
and p»*2G[p]c H[p]c p*G@. Consequently, h € p?@, f>y and meprq.
Since the group (pvG + H)/H is torsion, O(m)= p’, where j > 1.
Now,

0= pi-tm = pi~i(h + m) e pfH1G[plc pr+2G[plc H[p],

which contradicts with {(m) " H = 0. Hence H is a center of I-iso-
typity in G.

CoROLLARY 1. Let G be a group. A subgroup H of G is a center
of isotypity in G iff for every prime p one of the following two con-
ditions holds:

(i) Hp]cp=@.
(ii) There is an ordinal y such that (p*G + H)/H is torsion
and p*+:Gp]c H[p]c p?@.
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CorROLLARY 2 (R. S. Pierce [4]). Let G be a group. A subgroup
H of G is a center of purity in G iff for each prime p one of the fol-
lowing two conditions holds:

(i) H[plcpeG.

(ii) G/H is torsion and there is an integer #»>0 such that
pr+*@[plc H[p]cprG.

PropoSITION. Let G be a group and I'= («,),.p €. Then the
following are equivalent:

(i) Bach subgroup of G is a center of I-isotypity in G.
(ii) Bach neat subgroup of G is [-isotype in G.
(iii) For every prime p either
(@) Glplc(]p?@ or
y<&p

(b) @ is torsion and there is an integer n, 0<n < «,, such
that p=+:@G, = 0 and G[p]c p"@.

Proor. The equivalence of the assertions (i) and (ii) is trivial.
By theorem, (iii) implies (i). Suppose that the assertion (iii) is not
true, i.e. for a prime p neither (a) nor (b) holds. Thus @, is not divi-
sible, there is an integer m >0 such that G[p]c p™G and G[p] ¢ pmt1@;
hence m + 1 << a,. Let g€ G[p] be an element of p-height m, write
H = <g). Obviously H[p]¢()p*d, H[p]cp™G, H[p] ¢ pm*1G. Since

r<&p
either G is not torsion or pm+2G, = 0, H is not a center of I™-isotypity

in G by theorem.

Note that p»*G, = 0 and G[p]cp"@ iff @, is a direct sum of
cyclic groups of orders p»+! and pn»t2.

CorOLLARY 3. Let G be a group and I'= (¢,),epeX. If a,>0
for each prime p then the following are equivalent:

(i) Each subgroup of & is a center of I-isotypity in @.

(ii) For every prime p either G, is divisible or G is torsion and
there is an integer n>0 such that @, is a direct sum of
cyclic groups of orders p»*! and p»te.

(iii) BEach neat subgroup of G is pure in G.
(iv) Each neat subgroup of ¢ is isotype in G.
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Proor. By proposition, the assertions (i) and (ii), (ii) and (iii),
(ii) and (iv) are equivalent.

The equivalence of the assertions (ii) and (iii) from corollary 3
was in the first time proved by C. Megibben [3].
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