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Linearly Compact Rings
and Strongly Quasi-Injective Modules.

C. MENINI (*)

Introduction.

Throughout this paper, all rings are associative with identity 1 ~ 0
and all modules are unitary.

Let .R be a ring. A left R-module BK is called strongly quasi-injec-
tive (for short s.q.i.) if given any submodule B of RK, a morphism
f : B - RK and an element x E K%B, f extends to an endomorphism f
Of RK such that (x) ~ ~ 0. _

The notion of s.q.i. module comes from the study of dualities,
induced by topological bimodules, between a category of abstract
modules and a category of topological modules, where it plays a cen-
tral role (cf. [2]).

Investigating on the concept of s.q.i. module, the following ques-
tion naturally arises. Let R..K be a s.q.i. module, A = End (Rg).
When is KA s.q.i.’ The study of this problem leads to the following
characterization of linearly compact rings.

THE MAIN THEOREM. left linearly topologized ring 
respect to a ring topology T, let Y be the filter of open left ideals of .R
and let l3 y be the hereditary pretorsion class of left associated

The following statements are equivalent.

(*) Indirizzo dell’A.: Istituto di Matematica dell’Universith di Ferrara,
Via Machiavelli 35, 44100 Ferrara (Italy).

Lavoro eseguito nell’ambito della attivith dei gruppi di ricerca matema-
tica del C.N.R.
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(a) .R is linearly compact in the topology í.

(b) I f RK is a cogenerator of ~~- and .A = End (RK), then RKA is
faithfully balanced and KA is quasi -injective.

(e) There exists a faithfully balanced module RKA such that RK is
a cogenerator of bjë and KA is quasi -injective.

(d) Let R U be a minimal cogenerator of T = End (R U). Then

R UT is faithfully balanced and both the modules R U and Up
are s.q.i.

lVloreover, if condition (d) is fulfilled, T is linearlil compact iki its U-adic
topology

(See below f or explained definitions.)

Some results obtained in [4] for discrete linearly compact rings
are here extended to the general case.

As an application of our results, we get a quick proof of Leptin’s
theorem which characterizes a linearly compact ring with zero Jacobson
radical as a cartesian product of endomorphism rings of vector spaces.

A structure theorem on faithfully balanced modules which
are s.q.i. both on .R and A, obtained as intermediate result, has an
intrinsic interest (cf. Theorem 10).

I would like to thank Prof. A. Orsatti for his helpful suggestions.

Some conventions and notations. Let R be a ring. R-Mod will
denote the category of left R-modules and Mod-R that of right
R-modules. The notation RlVl will be used to emphasize that M is a
left R-module. Morphisms between modules will be written on the

opposite side to that of the scalars and the composition of morphisms
will follow this convention. For E R-Mod, or simply
E( 1Vl ), will denote the injective envelope of 1V1 in .R-Mod and Soc 
or simply Soc (M), the socle of .M~. If L is a subset of RM E R-Mod,
we denote by An.nR (L) the annihilator of L in .R :

If L = we will simply write AnnR (x).
If J is a left ideal of ~, we define the annihilator of J in My

Ann.,, (J), by setting:
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The annihilator in R of AnnM (J) will be denoted by AnnR AnuM (J).
Analogous notations will be used for right modules.
N will denote the set of positive integers.

1. To begin with, let us recall some definitions.
Let R be a ring and let if c R-Mod. M is quasi-injective (for short

q.i.) if for every submodule and every morphism f : L - RlVl,
f extends to an endomorphism f of RlVl is a sel f -cogenerator if,
for every n E N, given a submodule L of and an element

x E if"BZy there exists a morphism f: RlVl such that (L) f = 0
and (x) f # 0. Clearly if RlVl is both quasi-injective and selfcogener-
ator, then is strongly quasi-injective. The converse is true as well
(cf. [2], Corollary 4.5).

Let be a bimodule. is faithfully balanced if A ~ End (R-1,C)
and End (KA) canonically.

Let .R be a ring and let M e R-Mod. The M-topology of R is

defined by taking as a basis of neighbourhoods of 0 in R the annihila-
tors in .R of the finite subsets of M. It is easy to check that this

topology is a left linear ring topology on R.
Finally recall that a linearly topologized left module if over a

discrete ring R is said to be linearly compact if if is Hausdorff and
if any finitely solvable system of congruences mod Xi, where
the Xi are closed submodules of is solvable.

2. PROPOSITION. Let R be a ring, RK E R-Mod a selfcogenerator,
A = End (R~i). I f linearly compact in the K-topology, then I~A
is quasi-injective.

PROOF. Cf. [4], Prop. 3.4 a).

Let R be a ring, T a left linear ring topology on the filter of

open left ideals of .R. The left exact preradical in .R-Mod associated
with F, 7 ty, is defined by setting, for every 

The hereditary pretorsion class of R-Mod associated with Y is defined
by setting

3. LEMMA. Let .R be a left linearly topologized ring with respect to
a ring topology T, let :F be the filter of open left ideals of R and let ?K
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be a cogenerator of b3ë. For every closed left ideal J of .R it is

PROOF. Let r E There is an open left ideal L of R such that

L ~ J and r 0 L. Since ~K is a cogenerator of bjf, there is a mor-
phism f : RJL -+ BK such that (r + L)f ~ 0. Hence there is an

x E RK such that Lx = 0 and rx 0 0. Thus Jx = 0 and therefore

r 0 AnnR Ann, (J) .

4. PROPOSITION. Let RK, be a faithfully balanced bimodule, let T
be a left linear Hausdorff ring topology on R and let .~ be the filter of
open left ideals of .R. Assume that R.K is a cogenerator of ’Gy and that
KA is quasi-injective. Then R is linearly compact in the topology T.

PROOF. The following technique is due to Müller (cf. [3], Lemma 4).
Let be a family of closed left ideals of R and let

be a finitely solvable system of congruences in R. Set L = zAnnK(Ji).
ic-I

L is a submodule of KA. Define a morphism g: by setting

g( .2 Xi) where F is a finite subset of I and, for every i 
;eF / 

Xi E (Ji). Since (1) is finitely solvable, g is well defined. Since

.K~ is quasi-injective, g extends to an endomorphism of Since
is faithfully balanced, this endomorphism is the left multiplica-

tion by an element r E .R so that we have, for every i E 1, r - ri E
E AnnR Ann,, ( Ji ) . By Lemma 3, Ann, Ann., = Ji for every i E I,
thus (1) is solvable.

Let R be a ring and let 7: be a left linear ring topology on .I~. The

Leptin topology 7:* of 7: is the ring topology on .R defined by taking
as a basis of neighbourhoods of 0 in R the cofinite open left ideals
of .I~. Recall that a left ideal of R is cofinite if it is a finite intersec-
tion of completely irreducible left ideals of 1~. A left ideal I of I-~ is

completely irreducible if is an, essential submodule of the injective
envelope of a left simple R-module S.

Let Y be the filter of open left ideals of R. In the following 8
will always denote a system of representatives of the isomorphism
classes of the simple left R-modules and 8 y the intersection S n %y.
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Let R U be the minimal cogenerator of i3 ,. It is well known that

and hence, in our notations, it is:

5. LEMMA. Let .R be a left linearly topologized ring with respect to
a ring topology i, let ,~ be the filter of open left ideals of .R and let R U
be the minimal cogenerator of Then the U-topology of .R coincides
with the Leptin topology 7:* of i.

PROOF. Let x E R U. Then Ann., (x) is open and cofinite in 1~.

Conversely, let J c- Y such that = E(S) where ~S E S. Since

J RjJ E so that RjJ = 

6. LEMMA. In the hypothesis of Lemma above, let RI~ be a cogen-
erator of 73y. Then the K-topology of .R is equivalent to i (i.e. they have
the same closed ideals).

PROOF. Let J be a left ideal of 1~ which is closed in the K-topology
of .R. Since ~K E J is closed in 7:. Conversely assume J closed

~ 

in 7:. ~I is an intersection of open completely irreducible ideals of Y.
Thus, by Lemma 5, J is closed in the U-topology of .R. Since BK is
a cogenerator of it contains the minimal cogenerator R U. Hence

the U-topology of R is contained in the K-topology and thus J is
closed in the K-topology of R.

Let REA be a bimodule over the rings Rand A. We say that R
separates points and (finitely generated) submodules of if for every

(finitely generated) submodule L of I~~ and for every x E there

is an r E .R such that r(L) = 0 and 0.

7. LEMMA. Let R be a ring, RK E R-Mod, A = End (R.K). If RI~ is
quasi-injective, then R separates points and finitely generated submod-
ules o f KA.

PROOF. Let L be a finitely generated submodule of .K~ and let
YEK. Assume that and let ~x~, ... , x~,~ be a finite
system of generators of LA. Consider the element x = (x1, ... , xn) E Kn
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and define a morphism f : Rz - Ry by setting (r E R).
n

f is well defined since rx = 0 means r E n AnnR (Xi) = AnnR (_L) c
i=i

AnnR (y) by assumption. Since R.K is q.i. and by Proposition 6.6 [2],
f egtends to a morphism f : RHn 2013~j8". Hence there are a,1, ... , an E A

_ 

n

such that (x) f = (x) f === ’2 xiai i E L.
i=1

8. be a left linearly topologized R-module over the
discrete ring R. Assume that M is linearly compact and let Y be an

open submodule of IN, (Xi)iEI a family of closed submodules of M.
I f finitely embedded Y, then there is a finite subset F
of I such that zEr

iEF

PROOF. is finitely embedded means that there is a finite
number Y1, ... , Yn of modules of M such that Y = ...n Yn
and, for each i, is the injective envelope of a simple left
R-module The same proof of Lemma 2 [3] shows that for every
~ = 1, ... , n there is a finite subset F, of I such that 

9. Let and A be rings and let RKA be a faithfully balanced
bimodule such that both RI~ and KA are strongly quasi-injective.
Let Y be the filter of left ideals of 1~ which are open in the K-topology
of .R and let R~’ be the set of maximal left ideals of 1~ belonging to 5~-.
Let P c- T. ..R/P is a left simple P-module belonging to i.e.

E 8 y. Let tll be the filter of right ideals of A which are open in
the K-topology of A. By statements d) and e) in 6.9 [2] it follows
that for every P E set S = and ~’* = Hom, (~’, .K) = Ann~ P,
~’* is a right simple submodule of ~~ and moreover each simple sub-
module of KA has this form. Since HA is strongly quasi-injective,
KA is a cogenerator of l3g (cf. [2], Theorem 6.7), thus XA contains
a copy of each right simple A-module in l3g. Therefore the right
simple A-modules of CG are precisely those of the f orm AnnK P where
P E S. Moreover, by Lemma 3, for each P E 5, P = Ann, Ann~ (P).

Let be a system of representatives of the isomorphisms
classes of the left simple R-modules of Note that if Â, p 
2 =,-,a then S~ ~ S~. Let ~, E ~l, be the isotypical component
of Soc (RH) with respect to and write == S(v-1) where vl is a
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suitable cardinal number and denotes the direct sum of VÂ copies
of SA. By Proposition 6.10 [2], Soc = Soc (KA), Soc (RK) is es-

sential in Rlf and Soc is essential in KA. Moreover it is 80c (KA) ==

== EB J(&#x3E;8§J) and = Finally, for every Â E ll, = 

AEA

where is a suitable cardinal number. The cardinal numbers vg

and f1Â (J, EA) are uniquely determined by ·

10. THEOREM. Let be a faithfully balanced bimodule over the
rings R and A such that RK is 8tro1lgly quasi-injective. The 
statements are equivalent:

(a) is strongly 

(b) R is linearly in- the and R separates points
and submodules of 

(c) R is a linearly compacct in the K-topology and 80c is

essential Z in K.

I f these conditions hold, then A is linearly compact in the K-topology
and moreover, using the notations of 9., it is

and

PROOF. (a) =&#x3E; (b) follows by Proposition 4, since, as we remarked
in 9., ~ K is a cogenerator of i3 y.

( b ) ~ ( c~ ) follows by Proposition 2.

(a) ~ (c). By (b) .R is linearly compact irx the K-topology and
since RXA is faithfully balanced with both RI~ and KA s.q.i., Soc (~K)
is essential in K, as we recalled in 9.

(c) ~ (b). First of all, let us prove that Rh’ ~ EB 
Â.EA

Let x E K. Rx is linearly compact discrete and hence Soc is a
direct sum of a finite number of left simple R-modules ~~’1, ... , Sn.
By hypothesis, Soc (~~~) is essential in Hence Soc (Rx) is essen-
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tial in Rx. It follows that

and hence the claimed inclusion is proved.
Let us prove that separates points and submodules of K. Let

and let .reJL Assume that AnnR (L). Note that,
by (1), R"’AnnR (x) is finitely embedded. Hence, by Lemma 8,
there is a finite subset F C L such that AnnR (x) &#x3E; n AnnR (1). Thus,

lEF

by Lemma 7, x belongs to the submodule of K, spanned by .I’ and

hence x E L.
Let us assume that the equivalent conditions (c~), (b) and (c) hold.

We have already seen in the proof of ( c ) ~ ( b ) that

Obviously, y it is clear that for every A E ll,

Since -If is s.q.i., nK is an injective cogenerator of ’Gy (cf. [2], Theo-
rem 6.7). Thus it is straightforward to prove that 
Hence we get the following chain of inclusions: "I

and therefore the first chain of inclusions is proved.
In view of remarks in 9. and by symmetry, the analogous equali-

ties hold for KA -

11. COROLLARY. Let RKA be a faithfully balanced bimodule such
that both RK and KA are s.q.i. Let RT be the set of left maximal ideals
of R which are open in the K-topology of R and let J(R) be the Jacobson
radical of R. Then

In particular, J(R) is closed in the K-topology of R.
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PROOF. Let ZA denote the socle of KA. As we recalled in 9., it is
AnnR (ZA) = n (P : P E 

Let ac E AnnR (ZA) and, by way of contradiction, assume that

J(R). Thus there is a left maximal ideal Q of R such Q.
Hence Rac + Q = R and therefore 1 = ra + q, where r E Q.
Since a E Ann, ( ZA), for every x E ZA it is qx = ( 1- ra ) x = x. Thus,
since Z~ is essential in K, q, as endomorphism of K, is injective
and Im (q ) = KA. Let q’ : Im(q) - K be the left inverse of the cores-
triction of q to Im (q). Since KA is q.i. , q’ extends to an endomor-
phism of Thus 1 E Q. Contradiction.

12. REMARK. Let R be a linearly compact ring with respect to
a left linear topology T and Y be the filter of open left ideals of R.

be the minimal cogenerator of and denote
s E SF

by 5~-* the filter of left ideals which are open in the U-topology of R,
i.e. in the Leptin topology of Ty r* (cf. Lemma 5). Clearly, a left
simple R-module belongs to %y if and only if it belongs to 
Moreover for each simple left = t~ *(E(S)). In

fact, since On the other hand,

In also the minimal cogenerator of b:¡-*.

PROOF OF THE MAIN THEOREM. ( a ) ~ ( b ) . Let RH be a cogener-
ator of Gy and let A = End (RI~). By Lemma 6, the K-topology
of R is equivalent to T and hence R is linearly compact in the K-topo-
logy too. Thus, since RK is a selfcogenerator, by Corollary 7.4 [2],
R = End and therefore is faithfully balanced. By Proposi-
tion 2, is q.i.

(b) ~ (c) is trivial.

(c) - (a). Since RK is faithful, the K-topology of R is Haus-
dorff. By Lemma 6, T is equivalent to the K-topology of R and hence
T is Hausdorff too. Thus, by Proposition 4, R is linearly compact.

(d) ~ (c) is trivial.

( a ) =&#x3E; (d). Let us remark, first of all, that in view of Lemma 5,
.R is linearly compact in the U-topology. Let us now proceed by
steps.
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Set E = E Let us prove 
s E SF

From this the claim will follow for R U will be a fully invariant sub-
module of RE. it is clear 

Sc-Sg
Conversely, Then AnnR (x) eY and hence Rx =
~ B/Ann,, (x) is linearly compact discrete. Thus Soc (Rx) is a direct
sum of a finite number of (non-isomorphic) left simple .R-modules.
Since x EE, Soc (.Rx) is essential in .Rx. Thus x e t y(E(Soc (Rx))) 

2) RU is s.q.i. By Remark 12 and by Theorem 6.7 [2].

3) R UT is faithfully balanced. Since .R is linearly compact in
the U-topology, it is complete. Thus, since is a self cogenerator,
by Corollary 7.4 [2], 

4) Up is s.q.i. Note that Soc (RU) is essential in Then
the claim follows by Theorem 10.

13. COROLLARY. Let R be a left linearly compact ring with 

to a ring topology T, let ~J be the set of open left maximal ideals of R
and let J(R) be the Jacobson radical of .R. Then

hz particular, J(R) is closed in R.

PROOF. Follows by THE AIAIN THEOREM, by Corollary 11 and by
Remark 12.

The idea of the following application is due to Prof. A. Orsatti.

14. THEOREM (Leptin [11). Let R be a left linearly topologized 
with respect to a ring topology T. Assume that R is linearly compact
and that the Jacobson radical of R, J(.R), is zero. Then R, endowed
with the Leptin topology of T, is topologically isomorphic to a topological
product IT End,,,, where, for every ~, E ll, is a vector space over

k E A

the division ring D~, and End,, (Vz) is endowed with the finite topology.

(Zelinsky if T has two-sided ideals as a basis of
neighbourhoods of zero, each Vi has finite dimension over Dz.

PROOF. Let F be the filter of open left ideals of r and let R U be
the minimal cogellerator of Set A = End (R U). By THE lBlAIN
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is faithfully balanced and both the modules R U and
U~ are s.q.i. Suppose that Soc is strictly contained in UA. Then,
since U~ is s.q.i. and there is a non zero element

such that r(Soc ( UA)) = 0. Thus, by 9., by Remark 12 and
by Corollary 13, r belongs to the Jacobson radical of I~. Hence
Soc (UA) = UA. Since Soc = Soc (R U) (cf. 9)., we get , U = ~ ~5~,,

k E A

where is a system of representatives of the isomorphism classes
of the left simple R-modules of i3 y. Thus each Si is fully invariant
in R U and hence A is canonically isomorphic to the ring product
fl J9~ where, for each J, eA, Di = End, is a division ring.
ÂEA

Of course such a product acts componentwise over U so that the
action of A over each Si naturally identifies with that of DA. Recall

that, by 9. , ~(S~). Moreover, since R = End ( UA), each is

fully invariant submodule of U~ . Therefore we get the natural alge-
braic isomorphisms

Now, since R U is a selfcogenerator, by Corollary 7.4 [2], End (UA),
endowed with the finite topology, y is isomorphic to the completion
of .R in the U-topology. Since I-~ is linearly compact in i, the first

statement f ollows easily by Lemma 5, as soon as we note that the

finite topology of End ( UA) corresponds, through the isomorphisms (1),
to the product topology of the finite topologies on the End,, (~’~,), ~, e/L

Assume now that has two-sided ideals as a basis of neighbour-
hoods of 0. Fix and let P E RJ such that SA. Since

P contains an open two-sided ideal. Since AnnR (8;.) is the

largest two-sided ideal contained in P, it follows that AnnR ,~ .

Let be a basis of Sz as a vector space over Di. Then AnnR (8;.) =
- n AnnR ( e i ) . Since (AnnR is a family of open copriniary left

t6l

ideals of R and I~ is linearly compact, it is easy to check that the

diagonal map R/AnnR (8;.) - 11 RjAnnR (ei) of the canonical maps
Til

R/AnnR (Sk) - R/AnnR (ei) (i E I), is an isomorphism. Since RjAnnR (8,,)
is linearly compact discrete, I must be finite.

15. REMARKS. 1) In the hypothesis of Theorem above, if r is
the discrete topology, then I-~ is semisimple artinian ([5J). In fact,
since R U is linearly compact discrete (cf. [3], Th. 1), l1. is finite.
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2) In the hypothesis of Theorem above, if i has two-sided ideals
as a basis of neighbourhoods of zero, then 7: = z*. In fact let L be
an open two-sided ideal of 1~. Then .R/L is a discrete linearly com-
pact ring with zero Jacobson radical. By 1 ) above, .R/L is artinian.
Thus L is cofinite.
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