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Comparison Results of Reaction-Diffusion Equations
with Delay in Abstract Cones.

SHAIR AHMAD (*) - A. S. VATSALA (**)

1. Introduction.

Differential equations and differential inequalities containing func-
tionals is of great importance in problems of biomathematical medi-
cine, chemistry, y heat flow and population growth. Many of these
applications lead to an equation, which is of parabolic structure, in
the sense that the equation would be parabolic if the function in it
were replaced by a known function. A special case of this, which is
known as reaction diffusion equation occurs in studies of population
genetics [2, 9], conduction of nerve impulses [2, 4], chemical reac-
tions [1, 3] and several other biological questions [1, 8].

In this paper we give comparison theorems related to parabolic
differential inequalities with delay and flow in variance results for
the parabolic differential equation with delay in a Banach space.
We have also included a generalization of the classical Miiller’s the-
orem. Our results are generalizations of the results in [5]. See also [7]
for different type of comparison theorems concerning parabolic dif-
ferential inequalities with delay in Rn.

2. Preliminary results.

Let Q be a bounded domain in Rn and let G = [to - T, to] X S~
and H = (to, Suppose the boundary aH of H is split
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into two parts 8Hi such that 8H = 8Ho LJ 2H1, 8Q c 
and 8Ho m 0.

Let .E be a real Banach space with 1/ .11. A one k is a proper sub-
set of .E such that if v, w E E R+, then v + w, lv E k. Throughout
this paper we will consider a closed cone k and its interior k0 and we
assume that k° is nonempty. The cone k induces a partial ordering
on E defined by uv iff v - u E k and uv 

Let k* be the set of all continuous linear functionals c on E such
that c(~) ~ 0 for all u and let k* be the set of all continuous linear
functionals c on E such that c(u) &#x3E; 0 for all u E T~°.

Let i &#x3E; 0 be a given real number and C = C ~[- T, 0], E] and
Cp = C C[- i, 7 0] x D, E] denote the Banach spaces of continuous func-
tions with the norm of T E C, g~( ’ , x) E Cp given by

respectively.
A vector v is said to be an outernormal at ( t, x) E if ( t, x - hv) E

E t for small h &#x3E; 0. The outernormal derivative is then given by

We shall always assume that an outernorinal exists on aHl and the
functions in question have outernormal derivatives on OH1.

If u E V H, E] and u(t -f- s, x) E ep for t E oo) and also if
8E[-T,O]

the partial derivatives ayat, ux(= ayax), a2UIaX2) exist and
are continuous in H, then we shall say that u(t, x ) belongs to class Z.

From now on we denote u(t + s, x) as ut(., x).

We state below Mazur’s theorem which is needed in our compar-
ison theorems.

THEOREM 2.1 (Mazur). Let k be a cone with nonempty in-

terior k°. Then

(i) ~c E k is equivalent to &#x3E; 0 for all c E k*.

(ii) u E ak implies that there exists a c E ko such that c(u) = 0.

A function is said to be

quasimonotone nondecreasing in u for figed t, x, q belonging to



21

[to, 00), Q, en respectively, if for any u, v E E, Uan vx E Uxan vxx E En’
such that u ~ v, c(u) = c(v), = c(vx) for i = I , ... , n, and

implies

For the case = Rn and k = R+, the quasimonotone condition
on f implies that f i (t, x, u, ux, ~( ’ , x)) = fi (t~ x~ ‘l’~, ?,~x 9 ‘uxx ~ q( . , z))
for each i, 

A function is said to be
monotone nondecreasing in g~( ~ , x) if for U E E, Ua; E En, En’,
g~( ~ , x) ~ ~( ~ , x) implies that for c E ko

REMARK 2.1. We give similar definitions of quasimonotonicity
and monotonicity of a function 

3. In this section we develop the theory of differential inequal-
ities related to parabolic differential equations with delay.

THEOREM 3.1. Suppose that

( i ) f is quasi-
monotone nondecreasing in u relative to k and monotone nondecreasing
in gg(-, x) relative to 7~, and

where 1



22

Then v(t, x)  w(t, x) on [to, oo) X Q, if one of the inequalities in (i)
is strict.

PROOF. Assume that one of the inequalities in (i) is strict. Con-
sider m(t, x) = v(t, x) - w(t, x). It is enough to show that m(t, x)  0.
If it were not true, there would exist a (t, , x1 ) and c E 7~o such that
m(t, x)  0 on [to, tl) X Q, m(t1, x,)  0 and c(m(tl, x))  0. It is easy
to see that the function x)) has its maximum at x. which is
equal to zero. Clearly because of ( ii ) ( a ) and (b).
Also (tal, y for we would then have

This contradicts (ii) (c). Hence, (tl, x,) E H. Let c E k) be such that
m(t1, xl)  0, c(m(tl, x,)) = 0, xi)) = 0 and for i = 1, 2, ..., n,

and
i.

and m tl( ~ , x) ~ 0. This im-

plies that

and x) x). Thus, in view of (i), it follows that

using quasimonotonicity of f in u relative to k and monotonicity of f
in g~( ~ , x) relative to 1~. That is x,))  0. However

for h &#x3E; 0 sufficiently small. It there-
fore follows that c((omfot)(t1, 0153l))&#x3E;O, which leads to a contradiction.
This completes the proof.
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REMARK 3.1. The conclusion of the above theorem is not valid

if one of the inequalities in (i) is not strict. However, we can dispense
with the strict inequality needed in Theorem 3.1 of (i), (ii) if in ad-

ditio n f satisfies the following condition,

(Co) z &#x3E; 0 on GuÏl-oHl, on aH,
and for sufficiently small E &#x3E; 0, either

on where v, w E Z.

THEOREM 3.2. Let the assumptions (i) of Theorem 3.1 hold. Sup-
pose further that the condition Co is satisfied. Then the relations

imply v(t, x) x) on [to, oo) X ,52.

PROOF. Assume that the condition (a) of Co holds. Consider

v = v - 8z where E &#x3E; 0 is sufficiently small. We have

using Co(a). Also v(t, x)  w(t, x) on G u and
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Thus, the functions v, 2v satisfy the assumptions of Theorem 3.1,
hence v(t, x)  16(t, x) on H. Taking the limit as e - 0 yields the
desired result and the proof is complete.

REMARK 3.2. If 8Hi is empty so that aHo = aH, the assump-
tion ( Co) in Theorem 3.2 can be replaced by a weaker hypothesis,
namely a one-sided Lipschitz’s condition of the form

for u &#x3E; v and g~( ~, x) ~ y~( ~, x).
In this case, it is enough to set v = v - ee2Ltyo, yo E ko (where

8 &#x3E; 0 is sufficiently small) so that x )  w(t, x ) on aH and

vt,( ’ ~ x)  wto( ’ ~ x)

Even when dH1 is not empty, the condition (Ci) is enough prov-
ided (ii) (c) is strengthened to + Q (t, x, v) c 8wj8v + Q (t, x, w) on
aHl where Q E C[H X E, E] and is strictly increasing in u.
To see this, observe that 0  v and hence Q(t, x, 0)  Q(t, x, v) which
gives the desired strict inequality needed in the proof.

4. In this section we give some comparison theorems related to
the system

satisfying the initial boundary conditions
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0
A closed set is said to be flow invariant relative to the

system (4.1)-(4.2) if for every solution u(t, z) of (4.1)-(4.2) we have
po( . , z) and uo (t, x) c F implies u(t, .r) c- F on j7.

The function f(t, x, uy uxx, gg(*7 .r)) is said to be quasi-nonpositive
(quasinonnegative) if (u &#x3E; 0), = 0, =0, ~ = 1, 2, ..., n

and

I - -il I l I I --, -- 
-

for A E Rn and also for

(cp( ~ , x)) ~ 0, (9~(’?~)&#x3E;~) for some implies

THEOREM 4.1. Assume that f is quasinonpositive and that the
condition holds with v = it, where u = u (t, x ) is any solution
of (4.1)-(4.2). Then the closed set Q is flow invariant relative to the
system (4.1)-(4.2) where Q = [~c E E, u  0].

PROOF. We set m(t, x) == x) where u(t, x) is any
solution of (4.1)-(4.2) such that x), x) E Q and 8 &#x3E; 0 is suf-

ficiently small and z E Z is as in CO(a). We wish to show m(t, x) ~ 0
on H. If not, there would exist a (tl, x1), ti &#x3E; to, I Xl c S2 and c E k:
such that

It is easy to see that the function has its maximum at Xl
which is equal to zero. Clearly, y or Let

(tl, E H and c E k: be such that x1) 0, c(m(t1,x1)) = 0,

== 0, i = 1, ... , n, .L kikjc(mxixj(t1, x1))0, k E Rn. Then
i,~ =1

by Co(a) and the fact f is quasinonpositive, we obtain
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but

This leads to a contradiction. Hence, (t1, x,) 0 H. Thus, m(t, x)  0

on H which implies, as e ~ 0, the flow invariance of Q, which com
pletes the proof.

REMARK 4.1. Theorem 3.2 can be obtained as a consequence of

Theorem 4.1. For this purpose we set d = so that

where

Clearly _dto( ~ , x) ~ 0, and d(t, x) c 0 on 8Ho showing 
on ago . It can easily be seen .~’ is quasinonpositive and

that .F satisfies condition Co(a) with f replaced by F and v replaced
by d. Hence, the conclusion follows.

COROLLARY 4.1. Assume that f is quasinonnegative and that the
condition Co(b) holds with w = u(t, x). Then the closed set Q is flow
invariant relative to (4.1)-(4.2) where Q = [~ E E, u &#x3E; 0 ] if ~c t a ( ~ , x )
and x) E Q. 

0

COROLLARY 4.2. Suppose that condition ( Co) holds with v = w = ~.
Assume also the following condition holds;
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ut( ~, z)) &#x3E; 0, then the closed set W, where w = [u E E, a  u  b, a,
is flow invariant relative to (4.1)-(4.2).

REMARK 4.2. If dH0 = afl, then the initial boundary con-
ditions can be written as for and (aulat)
( t, x) = 0 on 8Hi .

We shall next consider a comparison result which yields upper
and lower bounds for solutions of (4.1)-(4.2) in terms of solutions of
ordinary delay differential equations.

THEOREM 4.2. Assume that

(i) ~ _ u(t, x) is any solution of (4.1)-(4.2) and the condition
( Co ) holds with v = w = u ;

(ii) e, E’]~ u, g2(t, u, q) are quasimo-
notone nondecreasing in u relative to k and monotone decreasing
in cp relative to k and for if c(uxi)=0, i==1,2,...,n and

(iii) r(t), are solutions of

such that ro(to) = and

such that oo(to) = yo(0) respectively existing on [to, oo) such that

where is any solution of ( 4.1 ) - ( 4.2 ) , then
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PROOF. Setting we see that m satisfies

where

We shall show that (4.3)-(4.4) satisfies the assumptions of The-

orem 4.1. Let e(m) == 0, m,(-, ~)0, e(mx,) = 0, i == 1, 2, ...~ ~y
n

and for some This implies that
i.l=l

t and c(u) = c(r) and consequently the quasi-
monotonicity of gl in u and monotonicity of g, in T yield zc, Ut)) 

r, rt)). It now follows from (ii) and

proving 1~’ is quasinonpositive.
We have
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This proves .F’ satisfies the condition (Co) (a) yvith v = m. Thus, by
Theorem 4.1 it follows that m(t, x) ~ 0 on H which proves x) c r(t)
on H.

On similar lines we can show that e (t) x) by setting m = 
This proves the theorem.

COROLLARY 4.3. If H is flow invariant relative to the system (4.1)-
(4.2), y there exists functions gl, g2 satisfying the assumptions of The-
orem 4.2 provided E = Rn and K = 

PROOF. We construct g2 as follows: for each i, 

and f is elliptic for each i.

Next we give a comparison theorem which is an extension of the
classical result of Miiller [6] which is valid when .E and k = 1~+ .

THEOREM 4.5. Assume that

(i) for each i, 1 (1, vx, vxx, q) for

whenever .~i is
quasimonotone nondecreasing in u and monotone nondecreasing in ga
and there exists a such that z &#x3E; 0 on [to, co) X Q, 0 for

x E S2, ~ x) ~ y &#x3E; 0 on 8Hi , and for all sufficiently small s &#x3E; 0,

(iii) u (t, x) is any solution of (4.1)-(4.2) such that 9

and on 8Hi , then 
on (W.J H.
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PROOF. We shall first assume that v, w satisfy strict inequalities
and prove the conclusion for strict inequalities. We let m = ~ - w
and n = ~ - v on [to, oo) X Q. We show m  0  n. If not, there
would exist a (tl, Xl) and a j such that either c 0, = 0, 7

n 

’ ’

Suppose the first alternative holds. Certainly t1 &#x3E; to by (iii). Hence, at

which leads to a contradiction. A similar proof holds when the second
alternative is true. Thus, we get m(t, x)  0  n(t, x) on G U j7 and
this proves the claim for strict inequalities. 

_

Consider now w = w + = v - Ez on G u H. Let Pi(t, x, o) =
= max wi(t, x), min wt( ’ , x)}]. Then it is clear that if i and 9-9 is
such that replace by and wi , it follows that

a = P(t, z, W) , q = Pi( . , z, §5 ) satisfy i and Gi = wi .

Hence, using (i) and (ii) we get
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Here we have used that Li is quasimonotone nondecreasing in u and
monotone decreasing in q and - c Ezt for all j .
Since  Uto  also v on 8Ho , and 81Yf 8v   

on 8Hi . We get immediately v(t, x) - sz(t, x)  u(t, x)  w(t, x) +
+ x ) on G U H for arbitrary e &#x3E; 0. Letting 8 - 0, we obtain
the stated result, completing the proof.

COROLLARY 4.4. Let the assumptions (i), (ii) of Theorem 4.2 hold
without gl , g2 being quasimonotone nondecreasing in it and without
being monotone decreasing in cpo Suppose that the conditions (ii), (iii)
of Theorem 4.5 are satisfied. Assume further that for each i,

and

Then on (7uR. Note that the f unctions v, w do
not depend on the space variable x in the foregoing corollary.

5. Consider the reaction-diffusion equation of the special form

in with the initial function

and the Neumann boundary condition

In (5.1) L1 denotes the Laplace operator in 
and A is a diagonal matrix.
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Consider the standard cone in ..RN, namely

Clearly the set

generates the cone k. Let us note that weak coupling of the system (5.1)
suggests the choice of this special cone. Thus, the inequality 
implies the componentwise inequalities == 1, 2, ... , N.

THEOREM 5.1. Assume that

(i)_A ~ 0 and u(t, x) is any solution of (5.1) to (5.3) existing
on B+ x D9

(ii) xt) satisfies a Lipschitz condition for a constant L ~ 0;

(iii) The boundary 8Q is regular, i.e. , y there exists h E Z such
that on D, on oil and hae, hxx are bounded.

Then the following conclusions are valid.

(b) If F(t, u, g~) is quasimonotone nondecreasing in u and mono-
tone nondecreasing in p relative to that is for each i, 
-Fi(t9 u, is nondecreasing in and nondecreasing in x)
and if the solutions r(t), of y’ - F(t, y, y,) with ro(.) = 

~o( ~ ) = q~o(s) exist on R+, then 
’

provided that on D.

(e) If ~c, q) is quasimonotone nondecreasing in it and mono-
tone decreasing in (f, F(t, 0, 0) = 0, then
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implies that u(t, x) ~ 0 on ~ X Dy

implies that

implies that on R+ X S2, where r(t) is the same func-
tion assumed in ( b ) .

(d) If F(t, u, u,) is not quasimonotone in u, nor monotone in 92
and if the closed set W = [u is flow invariant relative
to (5.1) to (5.3), then the estimate (5.4) holds where r(t), e(t) are now
being solutions of

where

_(e) If F(t, u, q) is not quasimonotone in u nor monotone in lp
and W is not known to be flow invariant, then (5.4) holds and if r(t),

satisfy the relations

for all a such that 0~==~ 

lp) for all 0’ such and J; = ri, 

for 

PROOF. The conclusion ( a ) follows from Corollary 4.1. Theorem 4.2
yields (b) with the choice .F = gi = g2. Uniqueness of solutions of

y’ - pet, Y, yi) together with the fact pet, 0, 0) = 0 implies (c). Corol-
lary (4.3) gives the conclusion (d) whereas (e) follows from Corollary 4.4.
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