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Endomorphism Rings of Valued Vector Spaces.

L. FUCHS - P. SCHULTZ (*)

The study of valued vector spaces as a tool to obtain information
about the socles of abelian p-groups has proved extremely useful.
We continue this approach with the study of the endomorphism rings
of valued vector spaces. As we shall see, they resemble-as ex-

pected-endomorphism rings of abelian p-groups.
We discuss two aspects of the endomorphism rings.
Firstly, we investigate the relationship between two valued vector

spaces whose endomorphism rings are isomorphic. Our theorem is

analogous to the Baer-Kaplansky theorem on abelian p-groups, [3],
but in the present case isomorphism is replaced by a weaker notion: a
vector space isomorphism which does not necessarily preserve valua-
tion, only inequalities between values.

Secondly, we give a ring-theoretical characterization of endomor-
phism rings of valued vector spaces in general. This result is motiv-
ated by Liebert’s theorem [4] on the endomorphism rings of separable
abelian p-groups, and its analogue for homogeneous separable torsion-
free groups by Metelli and Salce [5]. In our proof, we use ideas from
both of these papers.

We consider vector spaces V over a fixed field 0 which are equip-
ped with valuations into a totally ordered set (or olass) -V. We assume
that _T’ has a maximum element oo and that every non-empty subset
of T has a supremum. A valuation of V is a function v : V - T such

(*) Indirizzo degli AA.: Department of Mathematics, Tulane University,
New Orleans, LA 70118, U.S.A.; Department of Mathematics, University
of Western Australia, Nedlands, W.A. 6006, Australia.
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that

(i) v(a) = oo exactly if a = 0;

(ii) v(aa) = v(a) for all 0 in 0 and all a E Y;

(iii) v(a + b) 2 min (v(a), v(b)) for all a, b E V.

A morphism between two valued vector spaces is a 0-linear map
which does not decrease values. We write morphisms on the left.

The set of all morphisms from V to V forms a 0-algebra, th6 endo-
morphism ring of Tr, which we denote End V. We shall regard End V
as an abstract 0-algebra, without valuation.

For unexplained terminology and elementary properties of valued
vector spaces we refer to [1] and [2].

1. Valued vector spaces with isomorphic endomorphism rings.

Let V and W be valued vector spaces. A map g : ~’ -~ W is cal-

led a pseudo-isomorphism if

(a) it is a vector space isomorphism;

(b) v(a)  v(b) for a, b E V~ if and only if 

Notice that if ~ E End Tr, then End W, and the correspond-
ence

gives rise to a ring isomorphism between End V’ and End W. We
wish to show that, conversely, every isomorphism between the endo-
morphism rings is induced by a pseudo-isomorphism of the valued
vector spaces.

THEOREM 1. Let V and W be valued vector spaces and 1jJ: End V -
- End yY an algebra isomorphism. Then there exists a pseudo-isomor-
phism Y -~ W such that

For brevity, y write E = End Tr and E* = End W’~ and set ~* = "PE
for ~ E End TT,
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If E is a primitive idempotent in then E* is one in E*. As E V
is 1-dimensional, its non-zero elements have the same value, so we

can preorder the set of primitive idempotents of E by setting

Notice if and only if eEB =F 0. Consequently y ip preserves
the preorder of primitive idempotents, exactly if 8* e*.

Let us select in the support of Y, (supp V = 0 in V}), a
strictly descending chain which is inversely well-
ordered in the ordering of T, and which is cofinal in supp V in the
sense that for every y E supp V there is C ~ such that y.
As is a summand of V, some primitive idempotent Ec- E satisfies

moreover, ute can choose these -,, (~ C Â) to be pairwise
orthogonal. It is evident that there are endomorphisms $jg of Y (for
all d C ~  Â) such that

The endomorphisms 8a and ~a~ satisfy:

(i) 8(1 are pairwise orthogonal primitive idempotents;

It is clear that the endomorphisms s) and ~* in E* satisfy the
same conditions. By primitivity, ~~ W is 1-dimensional, and (ii) im-
plies that ~a~ will map onto We wish to show that, for
every a  Â, we can select a Ca E s: W such that = co for all o  (2.

Suppose that these Ca have been so chosen for every a  z. If -r - 1

exists, choose et so as to satisfy = c,-,. If r is a limit ordinal

 2 choose c, to satisfy c~ for some d  T. Then for a 
 o  T, ~;TCT == exce for some a E 0 and (iii) guarantees that a = 1.

We are now ready to define a map g : V - W. Given 0 # a E Tr,
pick an a(1 and an q c E such that a = nao (our choice of the aa ensures
that this is possible), y and let
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This P is well-defined, for if a = for some $ E .E and p &#x3E; d, then

ao implies (E-nEop)Ep= 0 whence (E*2013n*Eop)E*p= 0 and $* cg =
- It is straightforward to check that p is a vector space iso-
morphism between V and W. To show that it is a pseudo-iso-
morphism, note that if v ( c~ )  for a, b then = b for some

z ejE7. Write a = b then (~2013~)~= 0 which implies
(x* ~*- o. Hence = pb, and thus v(pb), indeed.
Finally, every c E w~ is of the form c = for some and (].

Consequently,

completing the proof of the theorem.
It is straightforward to check that if g is a pseudo-automorphism

of Tr, then

is an order-automorphism of supp V. In certain cases, e.g. if supp V
is well-ordered, the identity map is the only order-automorphism. In

these cases, a pseudo-automorphism of V is necessarily an automor-
phism ; therefore Theorem 1 implies that then all automorphisms of
End V are inner. (This is well known for ordinary vector spaces V
where supp V may be viewed as a singleton.)

2. A characterization of endomorphism rings.

Our next purpose is to characterize intrinsically those rings which
are endomorphism rings of valued vector spaces.

Let .E = End V be the endomorphism ring of a valued vector

space Tr. By I we shall denote the set of primitive idempotents in .E,
and by .Eo the left ideal of E generated by I. First we show that the

following hold:

(i) For all n E E and p e 1, there is a a c I such that = i7e.

(ii) For all e, d E I, either eEa =A 0 or 0; whichever is

not 0 is a 1-dimensional subspace of E.

(iii) If, for some ~ d E I both 0 and oEd # 0, then
their product 0 either.
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(iv) E is complete and Hausdorff in the topology where a sub-
base of neighbourhoods of 0 consists of left annihilators
of elements of I, and Eo is dense in E in this topology.

In fact, (i) follows from the fact that qov is an at most 1-dimen-
sional subspace of TT, so it is an indecomposable summand of V.

To prove ( ii ), observe that = 0 if and only if cannot

be mapped onto This is the case exactly if  If 

&#x3E; v (~), then 
As = ~TT and 0 implies 0, (iii) is clear.
Finally, y to prove (iv), note that all endomorphism rings are com-

plete Hausdorff in the finite topology. In the present case, {1] E =

= 0} = E(1- or) for any a E Tr where c~ is the projection to the first
summand in V = V’ (for a suitable subspace V’ of TT) . In other

words, the finite topology of .E has a subbase of neighbourhoods of 0
consisting of left annihilators Ann 9 of in E. Given q E E and
ai , ... , the subspace ~’ spanned by the aI, ..., an is a summand
of V~. If a is a projection V - W and U = {1] E ... 

= qan = 0}
is the corresponding neighbourhood of 0, then 1 - ~ E U. As U is a

left ideal of E U; here qn E Eo since ~c is the sum of n primi-
tive idempotents. The density of .Eo in E is now clear.

What we have said so far establishes the necessity part of the
following theorem.

THEOREM 2. Let E be a 0-algebra with 1. E is the endomorphism
ring of a valued vector space V if and only if E satisfies conditions (i)-(iv).

In order to prove sufficiency, let E satisfy (i)-(iv). The set I of

primitive idempotents, which is not empty by (iv), can be preordered
by setting, or E I,

This relation  is trivially reflexive (as a E aEa). Its transitivity
follows from (iii), while (ii) implies that it is a total preorder. The

classes [ o ] under the equivalence e - or exactly a 

form a totally ordered set .h, and we define a function 

by _ [ o] . We can now adjoin to T new elements, so that -P will
contain oo and suprema for all of its non-empty subsets.

We give a detailed proof in case h has a smallest element, and
then indicate how this has to be modified in the general case.
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Let [E] be the smallest element in Define

For o E I, OY is never 0, because (ii) and the minimality of [8] imply
that (lV = (lEe is 1-dimensional. We assign the value f ( O ) to the
elements of e V:

This definition is unambiguous, for if pEe = a = for some p, o E I

and ~, q E E, then both (2a = a and a, thus 0 ~ od E eEa and
0 ~ 0’p E aE(2 imply [(2] _ [d]. Furthermore, (i) guarantees that we
can assign a value to every a E V.

In order to ascertain that v : V - h yields a valuation of the vec-
tor space V, we have to verify that v ( a + b ) &#x3E; min (v(a), v(b)) for
all a, b Set a = $E7 b = qi (~, ~ E E) ; by (i) (2a = a and ab = b
for some Again by (i), ~(a -~- b) -- a -f- b for some re I;
therefore either 0 or 0 (or else a -f- b = 0 in which case
there is nothing to prove). Hence either # 0 or 0, that is

either  t(~) or f (or) ~ t( 1’), as desired.
Every E E E induces an endomorphism E of V via

where a (r~ E E). To see that ~ does not decrease values, sup-
pose that a E I satisfy o(qs) _ ?7E and == (cf. (i)). It is

enough to consider the case 0; then = J$oqs implies
0 whence f (~)  f (a), i.e. induces the

zero endomorphism of V, i.e. then in view of

eEe # 0 for all eEl we conclude from (iii) that = 0 for all p c 7.
We infer that E c- Ann for all p e -1, so the Hausdorfl property
in (iv) guarantees that ~ = 0. Consequently, E can be viewed as a
subring of End V = F.

For = e V is 1-dimensional in view of (ii). Thus
we can write

(~ E E). Given any we then have ux = X8 for some 

By (i), some o E I satisfies Clxe = y8, where f (d) &#x3E; f(o) since p does
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not decrease values. Hence 0 which, along with 0 implies
as stipulated by (iii). Hence and

there is a ~ E E such that ~x = For any y = ne E Tr we now have

(where we set eq8 - ax for some a E 0), showing that flë = Hence
it is evident that

This implies at once

Next, let n be a primitive idempotent in F. Then flz for a

suitable z E Tr. By ( i ), GZ = z for some GEl whence we obtain

We conclude that the finite topology of I’ has a subbase consisting
of left annihilators (in I’’ ) of the elements of I. It also follows that
the finite topology of F induces the given topology of E.

We proceed to verify that .Eo is dense in .F’. Let a E .F’ and U =
- r1 (ej c- 1; j = 1, ... , n ) a neighbourhood of 0 in F. Since

by (iv) Eo is dense in E, there is an q E .Eo such that 1 - q E U r1 E.
Manifestly, U is a left ideal of ~’, so i.e. U.
Here an E Eo as is evident from = Eo, so Eo is dense in .Z~’, indeed.

To conclude this proof, note that Eo E  ~’ and Eo is dense in F.
By (iv), .E is complete, so necessarily E = .F, as we wished to prove.

If 1-’ fails to have a smallest element, then we proceed as follows:
Just as in the proof of Theorem 1, we choose a decreasing chain

of primitive idempotents which is cofinal in I. As in Liebert’s theorem
on the endomorphism rings of separable abelian p-groups [4], we use
the fact that oEa is 1-dimensional if cr  e in our chain to define a
direct system of left ideals of the form and we take V to be the
direct limit of this system.

Now the Hausdorff property of the topology on E ensures that E
is canonically embedded as a subring of End TT = I’. In the proof
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above that = for every p E I, we replace the minimal idem-
potent E by some J in our chain and use the canonical embedding
of Ej in .h to conclude that FE, = Eo.

Finally, the proof that the finite topology on F induces the given
topology on E, and that Eo is dense in 1~ follows exactly as in the
proof above.
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