RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

L. FUCHS

P. SCHULTZ

Endomorphism rings of valued vector spaces

Rendiconti del Seminario Matematico della Università di Padova, tome 65 (1981), p. 103-110

http://www.numdam.org/item?id=RSMUP 1981 65 103 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1981, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Endomorphism Rings of Valued Vector Spaces.

L. Fuchs - P. Schultz (*)

The study of valued vector spaces as a tool to obtain information about the socles of abelian p-groups has proved extremely useful. We continue this approach with the study of the endomorphism rings of valued vector spaces. As we shall see, they resemble—as expected—endomorphism rings of abelian p-groups.

We discuss two aspects of the endomorphism rings.

Firstly, we investigate the relationship between two valued vector spaces whose endomorphism rings are isomorphic. Our theorem is analogous to the Baer-Kaplansky theorem on abelian p-groups, [3], but in the present case isomorphism is replaced by a weaker notion: a vector space isomorphism which does not necessarily preserve valuation, only inequalities between values.

Secondly, we give a ring-theoretical characterization of endomorphism rings of valued vector spaces in general. This result is motivated by Liebert's theorem [4] on the endomorphism rings of separable abelian p-groups, and its analogue for homogeneous separable torsion-free groups by Metelli and Salce [5]. In our proof, we use ideas from both of these papers.

We consider vector spaces V over a fixed field Φ which are equipped with valuations into a totally ordered set (or class) Γ . We assume that Γ has a maximum element ∞ and that every non-empty subset of Γ has a supremum. A valuation of V is a function $v: V \to \Gamma$ such

(*) Indirizzo degli AA.: Department of Mathematics, Tulane University, New Orleans, LA 70118, U.S.A.; Department of Mathematics, University of Western Australia, Nedlands, W.A. 6006, Australia.

that

- (i) $v(a) = \infty$ exactly if a = 0;
- (ii) $v(\alpha a) = v(a)$ for all $\alpha \neq 0$ in Φ and all $a \in V$;
- (iii) $v(a + b) \ge \min(v(a), v(b))$ for all $a, b \in V$.

A morphism between two valued vector spaces is a Φ -linear map which does not decrease values. We write morphisms on the left. The set of all morphisms from V to V forms a Φ -algebra, the endomorphism ring of V, which we denote End V. We shall regard End V as an abstract Φ -algebra, without valuation.

For unexplained terminology and elementary properties of valued vector spaces we refer to [1] and [2].

1. Valued vector spaces with isomorphic endomorphism rings.

Let V and W be valued vector spaces. A map $\varphi \colon V \to W$ is called a *pseudo-isomorphism* if

- (a) it is a vector space isomorphism;
- (b) $v(a) \le v(b)$ for $a, b \in V$ if and only if $v(\varphi a) \le v(\varphi b)$.

Notice that if $\xi \in \text{End } V$, then $\varphi \xi \varphi^{-1} \in \text{End } W$, and the correspondence

$$\xi \to \varphi \xi \varphi^{-1}$$

gives rise to a ring isomorphism between End V and End W. We wish to show that, conversely, every isomorphism between the endomorphism rings is induced by a pseudo-isomorphism of the valued vector spaces.

THEOREM 1. Let V and W be valued vector spaces and ψ : End $V \to \infty$ End W an algebra isomorphism. Then there exists a pseudo-isomorphism $\varphi \colon V \to W$ such that

$$\psi \xi = \varphi \xi \varphi^{-1}$$
 for all $\xi \in \operatorname{End} V$.

For brevity, write E = End V and $E^* = \text{End } W$, and set $\xi^* = \psi \xi$ for $\xi \in \text{End } V$.

If ε is a primitive idempotent in E, then ε^* is one in E^* . As εV is 1-dimensional, its non-zero elements have the same value, so we can preorder the set of primitive idempotents of E by setting

$$\varepsilon \leq \varrho$$
 to mean $v(\varepsilon V) \leq v(\varrho V)$.

Notice that $\varepsilon \leq \varrho$ if and only if $\varrho E \varepsilon \neq 0$. Consequently, ψ preserves the preorder of primitive idempotents, i.e. $\varepsilon \leq \varrho$ exactly if $\varepsilon^* \leq \varrho^*$.

Let us select in the support of V, (supp $V = \{v(a) | a \neq 0 \text{ in } V\}$), a strictly descending chain $\{v(a_{\sigma})\}_{\sigma<\lambda}$ $(a_{\sigma}\in V)$ which is inversely well-ordered in the ordering of Γ , and which is cofinal in supp V in the sense that for every $\gamma \in \text{supp } V$ there is a $\sigma < \lambda$ such that $v(a_{\sigma}) \leq \gamma$. As Φa_{σ} is a summand of V, some primitive idempotent $\varepsilon_{\sigma} \in E$ satisfies $\varepsilon_{\sigma} V = \Phi a_{\sigma}$; moreover, we can choose these ε_{σ} $(\sigma < \lambda)$ to be pairwise orthogonal. It is evident that there are endomorphisms $\xi_{\sigma\varrho}$ of V (for all $\sigma < \varrho < \lambda$) such that

$$\xi_{\sigma
ho}a_{
ho}=a_{\sigma} \quad ext{ and } \quad \xi_{\sigma
ho}a_{ au}=0 \quad ext{ for } au
eq arrho$$
 .

The endomorphisms ε_{σ} and $\xi_{\sigma\rho}$ satisfy:

- (i) ε_{σ} are pairwise orthogonal primitive idempotents;
- (ii) $\xi_{\sigma\varrho} \varepsilon_{\varrho} = \xi_{\sigma\varrho} = \varepsilon_{\sigma} \xi_{\sigma\varrho}$ for all $\sigma < \varrho$;
- '(iii) $\xi_{\sigma\varrho} \xi_{\varrho\pi} = \xi_{\sigma\pi}$ for all $\sigma < \varrho < \pi$.

It is clear that the endomorphisms ε_{ϱ}^* and $\xi_{\sigma\varrho}^*$ in E^* satisfy the same conditions. By primitivity, ε_{ϱ}^*W is 1-dimensional, and (ii) implies that $\xi_{\sigma\varrho}^*$ will map ε_{ϱ}^*W onto ε_{σ}^*W . We wish to show that, for every $\sigma<\lambda$, we can select a $c_\sigma\in\varepsilon_\sigma^*W$ such that $\xi_{\sigma\varrho}^*c_\varrho=c_\sigma$ for all $\sigma<\varrho$. Suppose that these c_σ have been so chosen for every $\sigma<\tau$. If $\tau-1$ exists, choose c_τ so as to satisfy $\xi_{\tau-1,\tau}^*c_\tau=c_{\tau-1}$. If τ is a limit ordinal $<\lambda$, choose c_τ to satisfy $\xi_{\sigma\tau}^*c_\tau=c_\sigma$ for some $\sigma<\tau$. Then, for $\sigma<<\varrho<\varrho<\tau$, $\xi_{\varrho\tau}^*c_\tau=\alpha c_\varrho$ for some $\alpha\in \mathcal{\Phi}$, and (iii) guarantees that $\alpha=1$.

We are now ready to define a map $\varphi \colon V \to W$. Given $0 \neq a \in V$, pick an a_{σ} and an $\eta \in E$ such that $a = \eta a_{\sigma}$ (our choice of the a_{σ} ensures that this is possible), and let

$$\varphi: a \to \eta^* c_\sigma$$
.

This φ is well-defined, for if $a=\xi a_{\varrho}$ for some $\xi\in E$ and $\varrho>\sigma$, then $\xi_{\sigma\varrho}a_{\varrho}=a_{\sigma}$ implies $(\xi-\eta\xi_{\sigma\varrho})\xi_{\varrho}=0$ whence $(\xi^*-\eta^*\xi_{\sigma\varrho}^*)\xi_{\varrho}^*=0$ and $\xi^*c_{\varrho}=\eta^*c_{\sigma}$. It is straightforward to check that φ is a vector space isomorphism between V and W. To show that it is a pseudo-isomorphism, note that if $v(a)\leq v(b)$ for $a,b\in V$, then $\chi a=b$ for some $\chi\in E$. Write $a=\xi\alpha_{\sigma},b=\eta a_{\sigma}$; then $(\chi\xi-\eta)\varepsilon_{\sigma}=0$ which implies $(\chi^*\xi^*-\eta^*)\varepsilon_{\sigma}^*=0$. Hence $\chi^*(\varphi a)=\varphi b$, and thus $v(\varphi a)\leq v(\varphi b)$, indeed. Finally, every $e\in W$ is of the form $e=\eta^*e_{\sigma}$ for some $e=\eta^*e_{\sigma}$ and $e=\xi^*e$. Consequently,

$$\xi^* c = \xi^* \eta^* c_\sigma = \varphi(\xi \eta a_\sigma) = \varphi \xi \varphi^{-1} \varphi(\eta a_\sigma) = \varphi \xi \varphi^{-1} c$$

completing the proof of the theorem.

It is straightforward to check that if φ is a pseudo-automorphism of V, then

$$f \colon v(a) \to v(\varphi a)$$

is an order-automorphism of supp V. In certain cases, e.g. if supp V is well-ordered, the identity map is the only order-automorphism. In these cases, a pseudo-automorphism of V is necessarily an automorphism; therefore Theorem 1 implies that then all automorphisms of End V are inner. (This is well known for ordinary vector spaces V where supp V may be viewed as a singleton.)

2. A characterization of endomorphism rings.

Our next purpose is to characterize intrinsically those rings which are endomorphism rings of valued vector spaces.

Let E = End V be the endomorphism ring of a valued vector space V. By I we shall denote the set of primitive idempotents in E, and by E_0 the left ideal of E generated by I. First we show that the following hold:

- (i) For all $\eta \in E$ and $\varrho \in I$, there is a $\sigma \in I$ such that $\sigma \eta \varrho = \eta \varrho$.
- (ii) For all ϱ , $\sigma \in I$, either $\varrho E \sigma \neq 0$ or $\sigma E \varrho \neq 0$; whichever is not 0 is a 1-dimensional subspace of E.
- (iii) If, for some $\xi \in E$, ϱ , $\sigma \in I$ both $\xi E \varrho \neq 0$ and $\varrho E \sigma \neq 0$, then their product $\xi E \varrho E \sigma \neq 0$ either.

(iv) E is complete and Hausdorff in the topology where a subbase of neighbourhoods of 0 consists of left annihilators of elements of I, and E_0 is dense in E in this topology.

In fact, (i) follows from the fact that $\eta \varrho V$ is an at most 1-dimensional subspace of V, so it is an indecomposable summand of V.

To prove (ii), observe that $\varrho E\sigma V=0$ if and only if σV cannot be mapped onto ϱV . This is the case exactly if $v(\varrho) < v(\sigma)$. If $v(\varrho) \ge v(\sigma)$, then $\varrho E\sigma V=\varrho V$.

As $\rho E \sigma V = \rho V$ and $\xi E \rho V \neq 0$ implies $\xi E \rho E \sigma \neq 0$, (iii) is clear.

Finally, to prove (iv), note that all endomorphism rings are complete Hausdorff in the finite topology. In the present case, $\{\eta \in E | \eta a = 0\} = E(1-\sigma)$ for any $a \in V$ where σ is the projection to the first summand in $V = \Phi a \oplus V'$ (for a suitable subspace V' of V). In other words, the finite topology of E has a subbase of neighbourhoods of 0 consisting of left annihilators Ann ϱ of $\varrho \in I$ in E. Given $\eta \in E$ and $a_1, \ldots, a_n \in V$, the subspace W spanned by the a_1, \ldots, a_n is a summand of V. If π is a projection $V \to W$ and $U = \{\eta \in E | \eta a_1 = \ldots = \eta a_n = 0\}$ is the corresponding neighbourhood of 0, then $1 - \pi \in U$. As U is a left ideal of E, $\eta - \eta \pi \in U$; here $\eta \pi \in E_0$ since π is the sum of n primitive idempotents. The density of E_0 in E is now clear.

What we have said so far establishes the necessity part of the following theorem.

THEOREM 2. Let E be a Φ -algebra with 1. E is the endomorphism ring of a valued vector space V if and only if E satisfies conditions (i)-(iv).

In order to prove sufficiency, let E satisfy (i)-(iv). The set I of primitive idempotents, which is not empty by (iv), can be preordered by setting, for ϱ , $\sigma \in I$,

$$\varrho \leqq \sigma$$
 if and only if $\sigma E \varrho \neq 0$.

This relation \leq is trivially reflexive (as $\sigma \in \sigma E \sigma$). Its transitivity follows from (iii), while (ii) implies that it is a total preorder. The classes $[\varrho]$ under the equivalence $\varrho \sim \sigma$ exactly if $\varrho \leq \sigma$ and $\sigma \leq \varrho$ form a totally ordered set Γ , and we define a function $f: I \to \Gamma$ by $f(\varrho) = [\varrho]$. We can now adjoin to Γ new elements, so that Γ will contain ∞ and suprema for all of its non-empty subsets.

We give a detailed proof in case Γ has a smallest element, and then indicate how this has to be modified in the general case.

Let $[\varepsilon]$ be the smallest element in Γ . Define

$$V=E_{\varepsilon}$$
.

For $\varrho \in I$, ϱV is never 0, because (ii) and the minimality of $[\varepsilon]$ imply that $\varrho V = \varrho E \varepsilon$ is 1-dimensional. We assign the value $f(\varrho)$ to the elements of ϱV :

$$v(\varrho a) = f(\varrho) \quad (\mathbf{0} \neq a \in V)$$
.

This definition is unambiguous, for if $\varrho \xi \varepsilon = a = \sigma \eta \varepsilon$ for some ϱ , $\sigma \in I$ and ξ , $\eta \in E$, then both $\varrho a = a$ and $\sigma a = a$, thus $0 \neq \varrho \sigma \in \varrho E \sigma$ and $0 \neq \sigma \varrho \in \sigma E \varrho$ imply $[\varrho] = [\sigma]$. Furthermore, (i) guarantees that we can assign a value to every $a \in V$.

In order to ascertain that $v \colon V \to \Gamma$ yields a valuation of the vector space V, we have to verify that $v(a+b) \ge \min \big(v(a),v(b)\big)$ for all $a,b \in V$. Set $a=\xi \varepsilon, b=\eta \varepsilon$ $(\xi,\eta \in E)$; by (i) $\varrho a=a$ and $\sigma b=b$ for some $\varrho,\sigma \in I$. Again by (i), $\tau(a+b)=a+b$ for some $\tau \in I$; therefore either $\tau a \ne 0$ or $\tau b \ne 0$ (or else a+b=0 in which case there is nothing to prove). Hence either $\tau \varrho \ne 0$ or $\tau \sigma \ne 0$, that is either $f(\varrho) \le f(\tau)$ or $f(\sigma) \le f(\tau)$, as desired.

Every $\xi \in E$ induces an endomorphism $\bar{\xi}$ of V via

$$\bar{\xi}a = \bar{\xi}(\eta\varepsilon) = (\xi\eta)\varepsilon$$

where $a=\eta\varepsilon$ $(\eta\in E)$. To see that $\bar{\xi}$ does not decrease values, suppose that ϱ , $\sigma\in I$ satisfy $\varrho(\eta\varepsilon)=\eta\varepsilon$ and $\sigma(\xi\eta\varepsilon)=\xi\eta\varepsilon$ (cf. (i)). It is enough to consider the case $\xi\eta\varepsilon\neq 0$; then $\xi\eta\varepsilon=\sigma\xi\eta\varepsilon=\sigma\xi\varrho\eta\varepsilon$ implies $\sigma\xi\varrho\neq 0$ whence $f(\varrho)\leq f(\sigma)$, i.e. $v(\eta\varepsilon)\leq v(\xi\eta\varepsilon)$. If $\xi\in E$ induces the zero endomorphism of V, i.e. if $\bar{\xi}V=\xi E\varepsilon=0$, then in view of $\varrho E\varepsilon\neq 0$ for all $\varrho\in I$ we conclude from (iii) that $\xi E\varrho=0$ for all $\varrho\in I$. We infer that $\xi\in \mathrm{Ann}\,\varrho$ for all $\varrho\in I$, so the Hausdorff property in (iv) guarantees that $\xi=0$. Consequently, E can be viewed as a subring of End V=F.

For every $\varrho \in I, \ \varrho E \varepsilon = \varrho V$ is 1-dimensional in view of (ii). Thus we can write

$$\varrho V = \varPhi x$$
 for some $x = \xi \varepsilon \in V$

 $(\xi \in E)$. Given any $\mu \in F$, we then have $\mu x = \chi \varepsilon$ for some $\chi \in E$. By (i), some $\sigma \in I$ satisfies $\sigma \chi \varepsilon = \chi \varepsilon$, where $f(\sigma) \ge f(\varrho)$ since μ does

not decrease values. Hence $\sigma E \varrho \neq 0$ which, along with $\varrho E \varepsilon \neq 0$ implies $\sigma E \varrho \cdot \varrho E \varepsilon \neq 0$, as stipulated by (iii). Hence $\sigma E \varrho \cdot \varrho E \varepsilon = \varPhi(\chi \varepsilon)$, and there is a $\xi \in E$ such that $\xi x = \mu x$. For any $y = \eta \varepsilon \in V$ we now have

$$egin{aligned} (\muar{arrho})y &= (\muar{arrho})\etaarepsilon &= \mu(arrho\etaarepsilon) &= \mu(lpha x) = \\ &= \xi(lpha x) &= \xi(arrho\etaarepsilon) &= (\xiarrho)(\etaarepsilon) &= (\overline{\xiarrho})y \end{aligned}$$

(where we set $\varrho\eta\varepsilon = \alpha x$ for some $\alpha \in \Phi$), showing that $\mu\bar{\varrho} = \overline{\xi\varrho}$. Hence it is evident that

$$F\varrho=E\varrho\quad ext{ for every } \varrho\in I$$
 .

This implies at once

$$FE_0 = E_0$$
.

Next, let π be a primitive idempotent in F. Then $\pi V = \Phi z$ for a suitable $z \in V$. By (i), $\sigma z = z$ for some $\sigma \in I$ whence we obtain

$$\operatorname{Ann}_{F}\pi=\operatorname{Ann}_{F}\sigma.$$

We conclude that the finite topology of F has a subbase consisting of left annihilators (in F) of the elements of I. It also follows that the finite topology of F induces the given topology of E.

We proceed to verify that E_0 is dense in F. Let $\mu \in F$ and $U = \bigcap \operatorname{Ann}_F \varrho_j$ $(\varrho_j \in I; j = 1, ..., n)$ a neighbourhood of 0 in F. Since by (iv) E_0 is dense in E, there is an $\eta \in E_0$ such that $1 - \eta \in U \cap E$. Manifestly, U is a left ideal of F, so $\mu(1 - \eta) \in U$, i.e. $\mu - \mu \eta \in U$. Here $\mu \eta \in E_0$ as is evident from $FE_0 = E_0$, so E_0 is dense in F, indeed.

To conclude this proof, note that $E_0 \le E \le F$ and E_0 is dense in F. By (iv), E is complete, so necessarily E = F, as we wished to prove.

If Γ fails to have a smallest element, then we proceed as follows:

Just as in the proof of Theorem 1, we choose a decreasing chain of primitive idempotents which is cofinal in I. As in Liebert's theorem on the endomorphism rings of separable abelian p-groups [4], we use the fact that $\varrho E \sigma$ is 1-dimensional if $\sigma < \varrho$ in our chain to define a direct system of left ideals of the form $E \sigma$, and we take V to be the direct limit of this system.

Now the Hausdorff property of the topology on E ensures that E is canonically embedded as a subring of End V = F. In the proof

above that $F\varrho = E\varrho$ for every $\varrho \in I$, we replace the minimal idempotent ε by some σ in our chain and use the canonical embedding of E_{σ} in F to conclude that $FE_0 = E_0$.

Finally, the proof that the finite topology on F induces the given topology on E, and that E_0 is dense in F follows exactly as in the proof above.

REFERENCES

- [1] L. Fuchs, Vector spaces with valuations, J. Alg., 35 (1975), pp. 23-38.
- [2] L. Fuchs, Abelian p-groups and mixed groups, Les Presses de l'Université de Montréal, 1980.
- [3] I. KAPLANSKY, Infinite Abelian Groups, Univ. of Michigan Press, Ann. Arbor, 1969.
- [4] W. LIEBERT, Endomorphism rings of abelian p-groups, Studies on Abelian Groups, Gunod, 1969, pp. 239-258.
- [5] C. Metelli L. Salce, The Endomorphism Ring of an Abelian Torsionfree Homogeneous Separable Group, Arch. der Math., 26 (1975), pp. 480-485.

Manoscritto pervenuto in redazione il 19 agosto 1980.